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Abstract The development of biomarkers based on high-
throughput techniques, cutting-edge biostatistics and bioinfor-
matics tools is revolutionizing molecular cancer epidemiolo-
gy. Once validated, such biomarkers will open new and prom-
ising perspectives for human health risk assessment and iden-
tification of at-risk populations. The application of OMICS to
environmental health research is currently resulting in the
production of large data sets on gene expression, transcription
factors, proteins, metabolites, adducts and epigenetic regula-
tion of the genome in relation to dietary and environmental
exposures. The assessment of whole genome transcriptomic
and epigenetic profiles (where microRNA analysis has raised
special attention in recent years) are regarded as potentially
powerful approaches to reduce uncertainties in health risk
assessments and to improve strategies for disease prevention,
which is a shared aim of the new European Union (EU)
research programme, Horizon 2020 (http://ec.europa.eu/
programmes/horizon2020/). However, to guarantee
appropriate application of OMICS, some challenges need to
be addressed in the coming years regarding study design,
technicalities in methodology and data analysis.
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Introduction

Molecular epidemiology in environmental health aims to elu-
cidate the combined role of genetics and environmental risk
factors in the development of disease [1].

In human studies, exposure to environmental factors, ab-
normalities in normal physiological functioning or changes in
biological processes can be measured by means of objective
indicators referred to as biomarkers. In oncology such bio-
markers may represent a molecule or cellular process that can
be measured in a wide range of biological samples and can be
interpreted as an indicator of increased cancer risk, or as of the
presence of cancer, either as a productor response to a malig-
nancy [2]. In order to be useful, biomarkers need to be thor-
oughly validated. However, so-called “gold standards”
concerning the process of validation still need to be defined
[3]. Examples of successfully validated biomarkers are mea-
surements of micronuclei as a preclinical marker for carcino-
genic risk [4], urinary levels of glucose for diagnosis of
diabetes, levels of cardiac troponin in serum for cardiovascu-
lar disease, creatinine levels in serum for renal disorders,
urinary levels of choriogonadotropin for pregnancy and serum
thyrotropin for primary hypothyroidism [5].

Biomarkers for health risk assessment hold promise for
elucidating the progression between an environmental expo-
sure and the stage of an associated disease. This knowledge
can improve the risk assessment [6] [7] of the substances that
people are exposed and in this way determine appropriate
policies for prevention [8] [4]. There are different methods
(e.g. ExpoCast Programme [9] and Multi-Criteria Decision
Analysis (MCDA) [10]) to screen properties of compounds
based on human risk.

In 1981 Doll and Peto stated that more than 75 % of cancer
deaths from the previous decade in the US were avoidable by
means of style of living and other enviromental factors[11]. In
2008, cancer was estimated to be responsible for 12–13 % of
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the total number of deaths in the US [12]. In view of the
expected increases in life expectancy and growth of the pop-
ulation, the proportion of new cancer cases diagnosed in less
developed countries is estimated to increase from about 56 %
of the world total in 2008 to more than 60 % in 2030 [13]. A
relationship between exposure to environmental factors and
cancer risk has been established but to which extent specific
exposures are causally related to cancer incidence remains
unclear. This is where the application of markers of exposure
and early biological effect biomarkers in environmental health
research are deemed helpful. Measurements of biomarkers of
exposure to environmental carcinogens may improve the ac-
curacy of exposure assessment, whereas biological effect
markers may be more sensitive as compared actual disease
outcomes. This would be the case as they reflect earlier and
more subtile molecular and cellular responses which are as-
sociated with disease risk. Moreover, such molecular
and cellular events are indicative of the modes-of-action, as
they identify key processes that explain the development of
the toxic effect and thus demonstrate the biological plausibil-
ity that exposure to a specific factor is eventually causing the
development of cancer. Identification of these markers is
suggested to improve risk assessment and prediction of dis-
ease development. Integration of biomarkers of exposure and
risk with data on inter-individual variability (e.g. genetic
polymorphisms), provides the opportunity to describe individ-
ual susceptibility in environmental cancer risk.

The term OMICS was given to the high-throughput tech-
nology that produces massive and complex data sets from
components of biological systems in a relatively short period
of time, attempting to understand the system as a whole and
aiming at the discovery of novel biomarkers [14]. Lower cost
of this technology increased the number of subjects per study,
improving reproducibility and data analysis [15] like these
illustrative examples show in the association of alterations on
gene expression in cord blood from children with arsenic
exposure during pregnancy[16] and effect of smoking on
bronchial epithelium cells[17]. Furthermore, in view of the
high heterogeneity of the disease, it is expected that integra-
tion across multiple OMICS platforms may provide better
understanding of the various cancer-specific phenotypes
[18]. In addition, personalized treatment is considered a pri-
ority in cancer research and a key factor that may improve
oncological outcomes [19•]. Also a better understanding of
the mechanisms underlying disease development based on
OMICS research, for instance by gaining insight into gene
environment interactions, it is expected to enable personalized
cancer prevention strategies [20].

Application of OMICS technology to environmental health
studies introduced a new generation in molecular epidemio-
logical research, enabling the detection of genetic polymor-
phisms in genome-wide-association-studies (GWAS) by
means of microarrays and high-throughput sequencing.

GWAS introduced a change in research approach, moving
away from targeted approaches focusing on relatively small
sets of candidate genes to the agnostic genome screening with
no prior hypothesis [21]. The consequence of this change
from hypothesis-driven to hypothesis-free studies is a steep
increase in the number of study participants needed to reach
sufficient statistical power.

Currently, high-throughput techniques combined with bio-
informatics analysis and cutting-edge biostatistics allow quan-
titative measurement of sets of molecules like gene expres-
sion, metabolites, adducts, proteins, transcription factors and
epigenetic regulation of the genome. However, it is difficult to
establish new links between diseases and exposures based on
induced gene expression changes as some exposures only
result in relatively small changes. This may result in inaccu-
rate classification of exposures or/and complexity of interac-
tions [22•]. Implementation of these OMICS technologies
might thus revolutionize the field but simultaneously, new
challenges concerning study design, laboratory protocols, sta-
tistics and interpretation need to be addressed. In this review,
we will focus mainly on biomarker discovery based on tran-
scriptomics and to some extent, epigenomics in environmental
health cancer studies.

Genomics Approaches in Environmental Cancer Risk
Assessment

Transcriptomics

The expression pattern of genes will change in response to
environmental exposures and can be measured as the abun-
dance of mRNA transcripts in a particular sample. Therefore,
gene expression profiling is used to identify genes or tran-
scripts that show different expression as a response to different
environmental fluctuations, time points or cell types. In mo-
lecular epidemiology studies transcriptome data can be used to
compare gene expression profiles between subpopulations,
for instance between a group of individuals with similar
characteristics, such as a specific exposure or disease, and a
reference group. This reference group usually consists of
healthy individuals or unexposed individuals that are matched
by age and sex. Other relevant characteristics, such as
smoking status or exposure to other environmental exposures
should also be matched or adjusted for in the analyses. Based
on the genes that are differentially expressed in these groups,
characteristic gene profiles, often derived from blood samples,
are identified as potential biomarkers [23•]. Additionally, a
priori knowledge on gene functions or pathwyas in which they
operate can be used to interpret these biomarkers in terms of
cancer risks, particularly if the gene expression changes lead
to deregulation of genetic networks with established or hy-
pothesized roles in cancer development.
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At present two different techniques, microarray technology
[23•]and high-throughput sequencing [24], are available for
studying gene expression. Both techniques have advantages
and drawbacks, depending on the experimental conditions.
Microarray technology is a powerful tool that enables measure-
ment of expression of thousands of genes simultaneously by
hybridization of mRNA to a solid surface [24]. In a classical
microarray experiment, mRNA is extracted from cells or tissue,
converted to complementary DNA (cDNA) and labeled by
incorporation of a fluorescent dye. After the sample has been
hybridized on the microarray and the remaining cDNA is
washed off, the array is scanned by a laser to obtain the signal
intensities for each sequence probe. After background correc-
tion and statistical data analysis the signal intensities estimate
the expression level of themRNA. There are several microarray
platforms on the market. The most common microarray plat-
forms are from Agilent Technologies and Affymetrix.
Microarrays have been used to study transcriptomic responses
in environmental health for over 10 years and therefore exper-
imental protocols and data analysis approaches are well
established and standardized. Standards like microarray quality
control (MAQC), minimum information about a microarray
experiment (MIAME) and external RNA control consortium
(ERCC) provide standardization to the assay [25•]. Microarrays
have become the method of choice for large-scale gene expres-
sion studies because the gene representation on chips has
increased while the associated costs have decreased. This trend
is supported by the increasing number of microarray-based
environmental health studies available through public databases
such as Gene Expression Omnibus (GEO) [26] and
ArrayExpress [27]. Such studies have shown differences in
gene expression profiles between diverse populations (e.g.,
exposed vs. non-exposed; adults vs. children; males vs. fe-
males). Based on amicroarray study, analyzing gene expression
in blood of smokers and non-smokers van Leeuwen et al.
identified six significant differentially expressed genes influ-
enced by cigarette smoke that mainly functioned within carcin-
ogen metabolism, oxidative stress response and anti-apoptosis
[28]. A study conducted in an area of the Czech Republic with
high levels of environmental pollution indicated that children
may have higher susceptibility to pollutants based on signifi-
cant differences in gene expression changes in children as
compared to their parents [29]. Smith et al. applied microarrays
to study global gene expression in the peripheral blood cells of
benzene-exposed workers and identified more than 100 genes
that were differentially expressed [30]. Another study investi-
gated genome-wide gene expression in 40 adults exposed to
environmental pollutants and identified gender-specific tran-
scriptional profiles significantly modulated in response to envi-
ronmental exposure to among others PCBs [31]. Finally,
Hochstenbach et al. evaluated the global gene expression in
cord blood of newborns as a consequence of fetal carcinogenic
exposure to dioxin-like compounds and acrylamide, and

identified different transcriptomic responses between boys and
girls [32]. All these studies relate gene expression to a wide
range of exposure and different health outcomes and demon-
strate the potential of transcriptomics to environmental health
research.

As a result of major improvements in sequencing technol-
ogy, high-throughput sequencing now represents a more com-
prehensive, sensitive and increasingly cost-effective ap-
proach. Sequencing of mRNA libraries, called RNA-seq, also
enables estimations of transcript levels from RNA samples
[33]. Before starting a RNA-seq experiment one has to choose
between several high-througput sequencing platforms as the
output vary and will affect how experiments are interpreted.
The key characteristics of these various platforms have been
reviewed by Chu et al. [34] . Sequencing-by-synthesis tech-
nology (SBS) is used im most RNA-seq studies. It simulta-
neously sequences millions of short fragments by massively
parallel sanger sequencing [35]. Several samples can be dis-
tributed over one sequencing lane allowing several samples
being sequenced in parallel. Briefly, mRNA is isolated from
cell line or tissue and converted to cDNA; after sequencing
adapters are ligated and after PCR amplification the samples
are sequenced and scanned; finally the data analysis begins
with quality control and the subsequent mapping of the se-
quencing reads to the transcriptome reference sequence; sev-
eral statistical packages are available to quantify the gene
expression based on this mapping [36]. Besides overcoming
several of the limitations of microarray analysis, such as
background signals, cross hybridization, different hybridiza-
tion properties or signal saturation, RNA-sequencing provides
a complete overview of the expressed genes, including low
abundant and novel transcripts as well as splice variants.
Furthermore it is not necessary to define genes of interest in
an experiment as all transcripts in a sample will be sequenced.
RNA sequencing also consists of steps where experimental
biases can occur, such as RNA fragmentation, cDNA or PCR
amplification (which are prone to transcript length) [37].
However, RNA-seq experiments require a large computation-
al capacity for calculations and storage of the sequencing data.
The approach is still in the early stage of development and
examples of applying next-generation sequencing to environ-
mental health studies in human populations are not yet avail-
able, but RNA-seq is increasingly being applied to in vitro
toxicogenomics studies [38] [39].

There is also more work to be done to determine the degree
of corroboration between microarray and RNA-seq approaches
and how historical data sets may be leveraged in light of
emerging technologies. A pilot study applying deep-
sequencing and microarray technology to study transcriptomic
responses of a population exposed to benzene reported signif-
icant overlap in differentially expressed transcripts using the
two technologies [24]. Comparable to the MAQC initiative for
microarray analyses, the Sequence Quality Contol (SeQC)
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project seeks to establish standards for high-throughput se-
quencing [23•]. Publicly available sequenced data can be re-
trieved from several databases such as the GEO or Sequence
Read Archive (SRA) [40]. Both techniques, microarray and
high-throughput sequencing, are prone to some factors leading
to false outcomes and therefore it is recommended to validate
the results by another quantitative measurement such as quan-
titative Polymerase Chain Reaction (qPCR). For both tech-
niques, microarray and high-throughput sequencing, gene ex-
pression profiles may be influence by differences in bench time
(time between sample collection and processing) or sample
storage, particularly when results are combined from different
studies [41]. For RNA-seq, insufficient sequencing depth may
result in loss of relevant information [42]. For microarray
results, the variation factors can as well be due to different
labeling or hybridization properties of transcripts which can
be statistically adjusted to some extent [43]. The unfolding
knowledge produced by high-throughput sequencing technol-
ogy in the near future will for sure enhance the understanding of
the underlying mechanisms of environmental exposure risks,
will identify new biomarkers and is clearly expected to replace
microarray-based techniques at some point in time.

Epigenomics and microRNAs

To understand environmental interactions with the genome it
is essential to also consider the epigenome, which refers to a
range of molecular modifications to DNA or histone proteins
as well as noncoding RNAs that do not affect the actual
sequence of a gene but can significantly alter its expression.
It is becoming increasingly well accepted that environmental
exposures may alter gene expression by mediating epigenetic
modifications. Consequently, these modifications may also
become important biomarkers of exposure and environmen-
tally influenced diseases [44••]. Research in environmental
cancer epidemiology focuses mainly on the epigenetic mech-
anisms of DNA methylation [45] and histone modification
[46]. Several epidemiological studies have revealed the influ-
ence of prenatal and early postnatal environmental factors on
cancer risk in later life mediated by epigenetic mechanisms
[47]. Sanders et al. examined the relationship between cadmi-
um exposure during pregnancy and DNA-methylation in leu-
kocytes of mother-newborn pairs and identified distinct DNA
methylation “footprints” as a result of cadmium exposure
[48]. Smeester et al. studied methylomes of arsenic-exposed
subjects and identified hypermethylated genes that are linked
to diseases like cancer, heart diseases and diabetes [49]. A
study investigating air pollution and gene-specific methyla-
tion in elderly men showed significant associations between
exposure levels and F3, ICAM-1, and TLR-2 hypomethyla-
tion, and IFN-γ and IL-6 hypermethylation [50]. Russo et al.
studied DNA methylation from bronchial epithelial cells and
matching blood of smokers and non-smokers and observed

lung cancer-associated methylation changes in both tissues. In
this study they proposed the altered DNAmethylation patterns
as biomarker to predict cancer progression or predisposition
[51]. Another publication by Sundar et al. presents usable
biomarkers for cigarette-smoke induced chronic lung dis-
eases by posttranslational acetylation and methylation of
histone H3 and H4 [52]. Baccarelli et al. studied time-
dependent methylation of a cohort exposed to particulate
pollutants (black carbon) and found decreased repeated-
element methylation after exposure to traffic particles
[53]. Another study exploring the association between
air pollution, DNA methylation and respiratory outcomes
in children identified increased CpG methylation in nitric
oxide synthase genes [54]. Herbstmann et al. observed
global methylation changes in a prenatal polycyclic aro-
matic hydrocarbon-exposed population [55]. Recent re-
views have summarized the human evidence on the as-
sociation of environmental exposures with air pollution
[56], arsenic [57], and other chemicals.

Recently, microRNAs (miRNAs) have emerged as a potential
new type of biomarkers in oncology and are suggested to provide
the base of novel clinically accessiblemolecular monitoring tools
for different types of cancer [58]. These small non-coding RNA
molecules are involved in the regulation of gene expression and
have unique sequences of about 22 nucleotides [59]. They are
cell type specific [60] and highly stable in biological fluids such
as urine, saliva or blood [61] [62]. These properties make circu-
lating miRNAs ideal biomarkers for both environmental health
studies and clinical diagnostics. Both microarray and deep-
sequencing technique can be applied to study the expression of
miRNAs. Based on a combination of microarray and deep-
sequencing data from a cohort possessing breast, lung, ovarian
and prostate carcinoma patients, Zadran et al. produced mRNA
and miRNA signatures that were able to distinguish with high
fidelity cancer patients and noncancerous controls [63]. In a
microarray study on human lung tumor and corresponding nor-
mal lung samples from highly asbestos-exposed subjects, known
and novel asbestos relatedmiRNAswere identified and shown to
be inversely correlated with expression of the corresponding
target genes. Interestingly, many more miRNAs were differen-
tially expressed between normal lung from either cancer cases
and healthy controls than between tumor and corresponding
normal samples from the same individual. The authors suggested
that miRNAs may be potential biomarkers for early-stage carci-
nogenesis [64]. Several studies aimed at sequencing blood cir-
culating miRNAs as markers of disease such as lung carcino-
genesis [65] or myeloid leukemia (AML) [66]. Zhi et al. se-
quenced small RNA libraries from serum of AML patients to
quantify circulating miRNA levels and identified a 6-miRNA
profile to differentiate between AML patients and normal con-
trols and possibly to predict survival [66].

The potential value of circulating miRNAs as biomarkers
of cancer progression may also be very promising for
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environmental cancer studies. To date, sample sizes in these
studies have been small so further evaluation of feasibility is
needed. Possibly a combination of conventional biomarkers
and circulating miRNAs will increase the specificity in dis-
ease detection.

Other OMICS and Integration

In addition to transcriptomics and epigenetics, additional
OMICS technologies may help to elucidate environmental
risks for and biomarkers of cancer. Proteins are encoded by
mRNA but their presence and enzymatic activity cannot be
accurately predicted by transcriptome analysis. Proteomics
analysis in oncology provides not only information about
functional proteins that are involved in the transformation to
malignancy but also biomarkers for prediction and therapeutic
efficacy. The proteomics platforms have evolved considerably
in the last few years in terms of the development of separation
and identification techniques by multi-dimensional sample
fractionation methods, mass spectrometry and microarrays
for proteins. [67]. Metabolomics is another expanding area
that enables analysis of small-molecule metabolites that result
from cellular processes. Metabolomics is growing into a pow-
erful, fast and accurate tool to detect spectrum of metabolites,
revealing novel biomarkers that are essential to understand
tumor mechanisms [68].

In environmental health studies, the integration of data
from proteomics and metabolomics platforms with emerging
novel approaches (such as adductomics [69] and
lipidomics[70]) may eventually explain the full spectrum of
a cellular response to an exposure and provide better insights
into the associated biological outcome. Nevertheless, the in-
troduction of technical artefacts from different platforms as
well as variations in data produced in different laboratories
complicate the cross-OMICS analyses.

The methodology for integrating OMICS data sets into a
systems biology approach comprises identification of a net-
work scaffold at the first place (the recognition of interactions
between cellular components), followed by the decomposition
of the scaffold (splitting the network into modules in order to
identify active components) and finally modelling of the cel-
lular network (analyze and simulate the data into a system
model) (Fig 1) [71]. This requires advanced biostatistics such
as Bayesian network analysis. Multi-level Ontology Analysis
(MONA) is an example of such an analysis tool where
thealgorithm for the analysis of integrated data from different
OMICS levelsprovides a flexible framework that allows dif-
ferent ontologies and high yields concerning results even for
complex models for the fine-tuning of mRNA by microRNAs
[72]. Integrative Clustering of Multiple Genomic Data Types
(iCluster) is another tool that allows integration of indepen-
dent sets of clusters or groups of genes in which expression
changes are observed under a certain condition [73].

Application of Genomics in Molecular Epidemiology

Over the last 10 years the number of publications in environ-
mental cancer research, applying high-throughput OMICS
technologies, has increased gradually (Fig. 2).

Earlier environmental health risk assessments have focused
on biomarkers of risks, neglecting the fact that humans are
exposed to a wide range of adverse environmental factors.
These environmental factors, called the external exposome[74],
include diverse agents like air pollutants, chemical contaminants,
diet or life style factors (tobacco, alcohol). These external factors
interact with the internal exposome that consists of processes
inside the cell likemetabolism, gene expression and epigenetic as
consequence of external exposure[44••]. These processes can be
measured by the variety of OMICS technologies and hence have
led to the novel paradigm of exposomics studies introducing
methods for internal and external exposure assessment [75]. An
ongoing European Union (EU) project, entitled EXPOsOMICS
(http://www.exposomicsproject.eu/), aims to predict health risk
related to environmental exposures such as air pollution or water
contaminants, during all critical periods of life. A major goal
within this project is the development of novel biomarkers and
measures of environmental exposures or of risk of health effects.
This goal will be achieved by combining: a large amount of
available health data from longitudinal cohorts; new data from
individual external exposures; new technological devices such as
sensors, smartphones and satellites; and cross-omics profiling
including transcriptomics and epigenomics. The analysis and
integration of data from different omics platforms and the mea-
surements of the external exposome still remain a challenge.
However, in the future these efforts will offer new insights into
the underlying molecular mechanisms of clinical outcomes, and
eventually the transcriptomic profiles and pathways will add to
biomarker discovery for health risks.

Fig. 1 Integration of heterogeneous data sets is based on the recognition
of interactions between cellular components merging information across
OMICS. Epigenome and microRNAs influences gene expression and
protein expression, leading to changes in metabolism.
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There are other large ongoing projects that also aim to assess
the impact of environmental and lifestyle risk factors on human
health such as Health and Environment Alliance (HEAL)
(http://www.env-health.org/) that identifies environmental
threats in order to establish protective policies; Human Early-
Life Exposome (HELIX) (http://www.projecthelix.eu/en), that
investigates the role of the exposome on mothers’ and
childrens’ health; and Envirogenomarkers (EGM) (http://
www.envirogenomarkers.net/), which investigates the
influence of environmental exposure in human health by
developing new cross-omics biomarkers.

Challenges in Environmental Cancer Risk Assessment

For an appropriate application of the multi-OMICS approach
there are several aspects that will need improvement in the
following years; these mainly concern study design, method-
ology and data analysis.

Study Design

Use of OMICS-based biomarkers demands suitable study de-
signs and they can be usable depending on the research question.
The standard epidemiological study designs, such as cohort or

case–control designs, and also hybrid designs, like case-cohort or
nested case–control designs, are relevant to environmental cancer
risk assessment. A recent review stressed the advantages of
nested case–control design and gave recommendations for best
practices in the use of biomarker discovery [76]. Case–control
design is the approach followed in the EGM project, where the
differences in transcriptomic profiles between cases and controls
are associated to intermediate biomarkers (changes that represent
signs of early effect) and in the same way as to exposures. This
so-called “Meet-in-the-middle” approach starts with studying
the relationship between exposure and disease, followed by
establishing associations between exposure and intermediate
OMICS biomarkers and ultimately, investigations of the link
between disease and the mentioned intermediate biomarkers
[77••].

Additionally, the repeated sampling design improves under-
standing of the impact that measurement error has on such
relationships between biomarkers and endpoints. Repeated infor-
mation from the same individual enables comparison of the
variability within and between individuals, allowing an estima-
tion of the inter-individual variance over the total variance [25•].

Life stage can be included in the assessment of exposures
introducing time as a variable in causal inferences since either
early or late exposures may have an effect on the development
of the disease.

Fig. 2 In the last 10 years the number of publications related to epide-
miological cancer research has been increased drastically. The numbers
are based on a pubmed search including the following search term:
((((((high-throughput sequencing) OR next-generation sequencing) OR

RNA-sequencing) OR microarray) OR transcriptome) OR transcripto-
mics’) AND ((((((epidemiology) OR epidemiologic) OR population-
based) OR case–control study) OR cohort study) OR cross-sectional
study) AND cancer AND human
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Technical Aspects

When OMICS analyses are applied to biobank or stored samples
from epidemiological studies several practical concerns about
sample suitability need to be considered. Each OMICS approach
has its own set of variabilities that need to be controlled. As
OMICS profiles in human blood samples can change over time
at room temperature or during storage on ice, the bench time
(time from collection of samples until storage in a freezer), needs
to be strictly controlled, certainly for the case of transcriptomics if
no RNA stabilizer has been added [41]. In case of multi-center
studies, laboratory protocols should be comparable and meet the
same standards for sample handling (e.g. stabilization of mRNA
and of microRNA, use of anticoagulants, long-term storage
conditions). Having standardized approaches across fieldwork
centers and laboratories reduces technical variation in the dataset
and thus improves the assessment of more robust biomarkers
[25•] [78].

Interpretation

The OMICS technologies available for environmental health
studies at the moment allow for analyzing a substantial number
of samples per run with great resolution (“endpoints” that can be
evaluated per assay). Data produced by OMICS requires a
different interpretation from the traditional hypothesis-based per-
spective. Since a hypothesis is no longer pre-defined it is more
likely that false positives will emerge. Consequently, appropriate
statistical tools are required [25•, 79].

There are several methods frequently used to analyze high-
dimensional OMICS data. One of them takes independently
each variable in a predictor matrix so that the relationship
between outcome and individual predictor is tested using the
same model (univariate approach). ANOVA, X2, GAMs and
Mixed Models are examples of this approach; the latter is an
improvement over the others since it comprises random effect
as part of the variability. Family-Wise Error Rate (FWER) and
False Discovery Rate (FDR) are strategies to correct for
multiple testing. Another method to analyze OMICS data is
based on the search for general patterns of association between
predictors (multivariate approach) [80]. Discriminant
Analysis of Principal Components (DAPC) is a multivariate
analysis that combines the methods Principal Components
Analysis (PCA), widely used to summarize into a more visual
way the information enclosed in large OMICS data sets and
Discriminant Analysis (DA), applied to identify different clas-
ses into groups from data sets [81].

It is important to take into consideration that many diseases
are interconnected. Consequently, it will be increasingly impor-
tant to take an inclusive approach that integrates data from
multiple OMICS levels to ensure simultaneous and unbiased
assessment of diverse biological processes [82, 83]. To have a
better understanding of the outcome it is required to establish a

complete interrelated diagram of cellular components that are
influenced by genes and their products, rather than simply study-
ing genes that are known to cause a disease [71]. There could be
underlying molecular networks that are not included in the
current classifications of diseases, so we should not be limited
by known causes of disease [84]. Knowledge and statistical
evidence can be comprised in the structure of a causal diagram
(representation of variables linked by lines and arrows), allowing
the visualization of combined data sets [85].

Pathway analysis is widely used to understand the under-
lying biology of OMICS measurements. Still, a number of
challenges related to approach need to be addressed including
incomplete annotations and/or poor resolution in databases
due to lack of exact transcrips and SPNs (according to the
high resolution data from genomics and proteomics) [86] and
the description of dynamics of genomics responses measured
over time.

Biomarkers in Preventive Cancer Research

“Discovery” phase is the first step for biomarker development.
It involves the identification of potential biomarkers by com-
parison between cancerous and normal tissues. In the second
phase called “Validation” the biomarkers from the previous
stage are measured in clinical assays in order to discriminate
between a cancerous or healthy status.

Especially for early diagnosis, biomarkers do not provide
sufficient sensitivity for detection at low levels and/or speci-
ficity to reveal preclinical disease [2]. A biomarker should be a
molecule that is present in a well detectable amount and be
specific to a tissue of interest in order to be explicit. More data
needs to be available since biomarkers require to be regularly
monitored over the duration of an individual’s disease by
suitable tests with quality control and overcome at least one
independent validation study [5]. Differences between meth-
odologies implemented in different laboratories is hampering
the validation of useful biomarkers and thus consensus on the
use of specific techniques is needed [87].

Also OMICS biomarkers need to be validated along similar
lines in dedicated studies like those from Bonassi et al. investi-
gating micronuclei as cancer risk biomarker through prospective
cohort studies [88] and from Peluso et al. studying bulky DNA
adducts in a nested case–control study with lung cancer patients
[89].

Current technologies allow us to perform simultaneous
evaluations of environmental health risks in association with
of a wide range of exposures and lifestyle factors. It remains a
challenge to determine whether and how the huge OMICS
data sets can be applied to assess their validity and utility in
disease prevention, including assessment of at-risk groups,
impact of age and gender, cost-effectiveness of OMICS bio-
markers with their ethical and social implications.
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Conclusions

OMICS has enabled the expansion ofmolecular epidemiology
and it is contributing to advance personalized cancer medi-
cine. Given the critical role of statistics and bioinformatics in
all of these studies, implementation of these new high-
throughput techniques require scientists trained to use the
emerging tools [90] and proper integration of the different
knowledge from discovery to implementation of the outcome
and public health decision making [91].

Molecular epidemiology has played a key role in the identifi-
cation of carcinogenic compounds like cadmium, lead,
polychlorinated biphenyls, p,p’-dichlorodiphenyldichloroethylene
and hexachlorobenzene. However, biomarkers of exposure to
many other carcinogens and their mechanisms of action are still
unknown. Once novel biomarkers are identified to be linked to
carcinogens they still should pass an appropriate process of vali-
dation before being widely used in research or in clinical and
prevention activities[92].

The issues and challenges discussed above and related to
study design, technical aspects like bench times and standard-
ized approaches, as well as the need for improved and inte-
grated data analysis and interpretation still need to be ad-
dressed. In the next decade a massive expansion of informa-
tion is expected, which needs to be translated to improvement
of the state of health and management of environment [93].
Despite the significant improvement in technology and com-
putation achieved in the last years, continuous efforts are
needed in order to identify and validate biomarkers for cancer
risk assessment.
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