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Abstract In this paper, we propose a hybrid grid-particle
method for the numerical simulation of fluid mixing prob-
lem. The method solves the incompressible Navier–Stokes
equations using a grid method and the advection–diffusion
equation of chemical species concentration using a particle
method. With this framework, the fluid mixing problem at
moderate Reynolds number (∼102) and high Péclet num-
ber (∼105), which is typical for liquid–liquid mixing in
microsystem, can efficiently be solved utilizing the charac-
teristics of each approach; the flow field is stably solved
even with long time step, and the concentration field is
accurately solvedwithminimal numerical diffusion. The pro-
posed hybrid method is examined through three test cases,
and the results show that the hybrid method provides sub-
stantial accuracy for simulating the fluid mixing problem at
high Péclet number.

Keywords Numerical simulation · Hybrid method ·
Fluid mixing · Numerical diffusion

1 Introduction

Fluidmixing is ubiquitous in nature but an important physical
phenomenon encountered in many industrial applications. It
is associated with various physics like chemical reaction,
synthesis, substance generation, separation, etc. In chemi-
cal engineering field, predicting and controlling fluid mixing
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process in reactors is one of the intensive research subjects.
That is because many types of chemical productions involve
liquid blending process to initiate chemical reactions, and
moreover, properties of the resulting products can signifi-
cantly be associated with involved mixing procedure. For
example, mixing process in the nanoparticle precipitation is
known to influence the particle size distribution of the out-
put [50,54]. In this context, the numerical simulation of fluid
mixing attracts continuous attention from industry and acad-
emia as a powerful tool to analyze and optimize the chemical
production process.

On the background of recent considerable progress in
microfabrication technology, mechanical devices involving
microfluidic system, such as MEMS (micro-electro mechan-
ical system) [14,16] and lab-on-a-chip device [17,48,51],
have been prevalent as a promising technology for chem-
ical, biological, and pharmaceutical industries [15,24,45].
In those devices, microscale mixing, mixing in characteristic
length scale frommillimeter to submicrometer order, is often
an essential and crucial unit and has an important role to play
in [8]. That is because, in such small dimensions, viscous
force dominates, in other words Reynolds number is small,
and the flow tends to be strongly stratified; mixing in such
laminar regime most likely becomes inefficient and requires
long residence time to make mixture sufficiently homoge-
neous. In pursuit of efficient rapid mixing in microsystems,
a variety of geometrical designs is developed as a passive
micromixer [19]. For instance, herringbonemicromixer [52],
three-dimensional serpentine micromixer [34], and T-shaped
micromixer [4,21,58] with modifications [2,39] are the pas-
sive micromixers that achieve effective mixing enhancement
by incorporating so-called chaotic advection [43] at low
Reynolds number.

A number of numerical simulations have been carried
out for analysis of fluid mixing behavior in micromixer and
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assessment of its mixing performance [1,3,6,9,12,22,35],
wherein the motion of incompressible Newtonian fluids
and the molar concentration of chemical species are solved
based on the continuity and Navier–Stokes equations and
the advection–diffusion equation, respectively.Most of those
simulations are performed using the finite volume method
(FVM) [56]. FVM has several strong points such as con-
servativeness of physical quantity, geometric adaptability of
computational mesh, and high numerical stability, while at
the same time, the numerical diffusion takes place, like many
other numerical methods based on the Eulerian description.
The numerical diffusion leads to excessive diffusion rate
and can be a crucial limiting factor for accurate solution.
Influence of the numerical diffusion is known to be more
significant at higher Péclet number for the solution of concen-
tration (or Reynolds number for velocity), and in general, it
demands considerably high spatial resolution tomake numer-
ical diffusion negligible at very high Péclet number. In many
cases of the fluid mixing problems in micromixer, although
the Reynolds number is moderate, e.g. only in the order of
102 atmost [42], since the characteristic length scale is small,
the Péclet number can be very high because the Schmidt
number is in the order of 103 if working fluid is liquid [3].
Therefore, the fluid flow can accurately be calculated with no
difficulty, but solution of the chemical species concentration
field requires considerable computational expense for satis-
factory accuracy due to the unavoidable numerical diffusion
in FVM [5,7].

A numerical method based on the Eulerian description,
such as FVM, is called grid method, and in contrast, a
method based on the Lagrangian description is called particle
method. Particle methods for the computational fluid dynam-
ics, such as SPH [40] and MPS [28], have been attracting
a great deal of attention for their capability to treat com-
plex geometry and physics, and applied to various kinds
of problems [31,33] including ones that are difficult to be
solved using the grid method. Another important property of
the particle method is that the numerical diffusion is much
less significant than in the grid method. In grid method, the
numerical diffusion occurs due to the discretization error of
the convective term; on the other hand, in particle method
no convective term appears in the governing equations, and
in this respect, occurrence of the numerical diffusion can be
avoided.

Under these circumstances, this research has been done
aiming at developing a hybrid of grid and particle methods
that provides substantial accuracy for simulating a fluid mix-
ing problem even at high Péclet number, e.g. higher than 105.
The current main target is a liquid–liquid mixing problem in
microsystem that is solved under following assumptions; the
dynamics of the fluid is described as continuum, incompress-
ible, and Newtonian; the fluid flow is under laminar state; all
fluids to be mixed have identical and homogeneous physi-
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Grid system
       Flow field

Particle system
       Concentration field

Fig. 1 Concept of the hybrid grid-particle method

cal properties, by which the chemical species concentration
can be treated as a passive scalar; no chemical reaction takes
place.

2 Hybrid grid-particle method

2.1 Overview

The calculation procedure of fluid mixing simulation can be
divided into two large parts: solution of fluid flow and solu-
tion of chemical species concentration. As depicted in Fig. 1,
the present hybridmethod combines grid-based approach and
particle-based approach in such a way that a grid method is
used for the solution of fluid flow and a particle method is
used for the solution of concentration field. With this frame-
work, the fluid mixing problem of interest can efficiently be
solved utilizing the characteristics of each approach.

In general, the numerical instability frequently arises as
severe practical difficulties in computational fluid dynam-
ics, and ensuring stability can be considered as primary
importance. The grid method is more reliable to conduct the
numerical simulation stably than the particle method. In the
particle method, there exists a strict limitation of the time
step size for stable computation, whereas the grid method
allows much longer time step. Associated with this fact, the
grid method is suitable to find steady solution. This feature
can also be an important advantage in the current problem
because a majority of the fluid mixing processes in passive
micromixer deals with the steady flow in low Reynolds num-
ber range [42]. Furthermore, at such a low Reynolds number
the numerical diffusion can substantially be vanished with
affordable spatial resolution and hardly causes significant
error. For these reasons, the grid method is appropriate for
the solution of fluid flow. In the present hybrid method, the
fluid flow is solved by means of the widely-used FVM, by
which the simulation can be conducted quite stably evenwith
a long time step.

On the other hand, the solution of chemical species con-
centration requires a greater emphasis on the accuracy rather
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than the computational stability. For the accurate analysis
of the mixing process, it is of importance to simulate faith-
fully behavior of the contact surface between distinct fluids
and development of the boundary layer generated around the
contact surface. As stated in Sect. 1, the Péclet number can
take very high value in the fluid mixing problem with liq-
uids. The nature of high Péclet number makes the boundary
layer thickness very thin and produces sharp discontinuities
at the contact surface in the concentration field. Such a mov-
ing sharp discontinuity is difficult to be dealt with in the grid
method and requires sophisticated treatment as non-diffusive
interface; otherwise, the thin boundary layer ismost probably
destroyed by the numerical diffusion. The multi-phase flow
is a representative application of the non-diffusive moving
interface calculation. A number of numerical techniques has
been developed to address this problem; examples are the
volume of fluid (VOF) method [20], piecewise linear inter-
face calculation (PLIC) method [47,60], coupled level set
and volume-of-fluid (CLSVOF) method [53], etc [49]. How-
ever, those interface calculation techniques assume absence
of diffusion and are basically inapplicable to the current
fluid mixing problem unless the Péclet number is infinite.
In contract to the grid method, the particle method is able
to conserve the sharp discontinuity with faithful calculation
of the diffusion. Moreover, the numerical stability in calcula-
tion of the diffusion equation is guaranteed by employing the
implicit time integration, and even with an explicit scheme
the stability condition is rarely violatedwhen the Péclet num-
ber is very high. For these reasons, the particle method is
appropriate for the solution of concentration.

The present hybrid method, which combines grid and par-
ticle methods, use both computational grid and particles. The
grid is fixed in space and the particle moves according to the
flow field calculated in the grid system. The variables needed
for the solution of fluid flow, i.e. velocity and pressure, are
defined on the grid system, and each particle has only the
concentration variable. The flow field is discretized and cal-
culated in the grid system, and the concentration field is in
the particle system; in this respect, the present hybridmethod
differs from the existing hybridmethods, such asmarker-and-
cell (MAC) method [18], particle-in-cell (PIC) method [13],
Liu’s hybrid method [32] and particle finite element method
(P-FEM) [23]. To solve the fluid mixing problem with the
hybrid grid-particle system, transfer of the velocity field from
the grid system to the particle system is needed. The pro-
posed method achieves this with interpolation by means of
the moving least square approach. Transfer of the concen-
tration field from the particle system to the grid system is
needed only if the chemical species concentration is an active
scalar, while this process can be skipped in the present study
since passive scalar is assumed. There are numerical meth-
ods developed for the accurate simulation of fluid mixing
problem. The backward random-walk Monte Carlo method

[57] is a numerical diffusion-free computational method for
the advection–diffusion problem, and it has provided a rig-
orous solution to the mixing process even for large values
of the Péclet number [36,37]. A semi-Lagrangian method
developed by Matsunaga and Nishino [38], which utilizes
fluid particle trajectory for discretization of the advection–
diffusion equation, achieves an accuracy equivalent to that of
the backward random-walk Monte Carlo method with lesser
computational cost. However, those computational methods
are computationally quite expensive andpractically restricted
to the time-independent analysis of the passive scalar trans-
port.

2.2 Solution of fluid flow (grid phase)

With the continuum assumption of flow, the dynamics of the
incompressible Newtonian fluid is described by the continu-
ity and the Navier–Stokes equations:

∇ · u = 0, (1)
∂u
∂t

+ ∇ · (uu) = −∇ p + 1

Re
∇2u, (2)

where velocity u, pressure p, and time t are nondimen-
sionalized by characteristic velocity U, ρU 2 (ρ is fluid
density), and L/U (L is characteristic length), respectively.
The Reynolds number (Re) is defined as

Re = LU

ν
, (3)

where ν denotes kinematic viscosity. For simplicity of the
problem, fluids to bemixed are assumed to have identical and
homogeneous physical properties. By this assumption, the
motion of fluid is independent from the concentration field;
in other words, the concentration can be treated as passive
scalar.

The governing equations of fluid motion is discretized
based on FVM. The variables velocity u and pressure p are
located at the cell center, i.e. collocated grid system [26,
46] is used. As the velocity-pressure coupling method, the
PISOalgorithm [25] and theSIMPLEalgorithm [44] are used
respectively for unsteady and steady conditions.

2.3 Solution of concentration (particle phase)

2.3.1 Governing equations

The molar concentration of chemical species is governed
by the advection–diffusion equation (so-called species equa-
tion):

Dc

Dt
= 1

Pe
∇2c, (4)
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where concentration c is scaled to take on a value from 0 to
1. The Péclet number (Pe) is defined as

Pe = LU

D
, (5)

where D denotes diffusion coefficient. To solve it with
Lagrangian particle system, the advection–diffusion equa-
tion (Eq. 4) is split into the advection equation (Eq. 6) and
the diffusion equation (Eq. 7):

dr
dt

= u, (6)

∂c

∂t
= 1

Pe
∇2c, (7)

where r denotes the particle position. The variable of con-
centration c is defined on each particle and spatially moves
according to the flow field solved in the grid system. Equa-
tions (6) and (7) are solved separately.

2.3.2 Advection

The advection equation (Eq. 6) governs time evolution of
particle position. To calculate the particle movement, veloc-
ity information is required at particle position, but velocity
is defined only on grid. Thus, the velocity field calculated on
the grid system is mapped onto to each particle by means of
themoving least square [30] with theweight function defined
as

w(x) =
⎧
⎨

⎩

1

|x|/re + ε
− 1

1 + ε
0 ≤ |x| < re

0 re ≤ |x|
, (8)

where re is the effective radius, ε is a small value to avoid
the singularity encountered at |x| = 0. The effective radius
re is set as 1.8�x (�x is grid spacing), and ε is 10−6. The
particle position r is updated based on a two-stage algorithm
(so-called Heun’s method, illustrated in Fig. 2) as

r(t + �t) = r(t) + �t

2
{u(t, r(t)) + u(t + �t, r̃(t))} , (9)

where r̃(t) is an intermediate position

r̃(t) = r(t) + �t u(t, r(t)), (10)

and u(t, x) is a velocity vector approximated by the moving
least square.

To preserve the accuracy of the particle advection calcu-
lation, subdivision of the time advancement is recommended
so that the local Courant number

Co(t, x) = |u(t, r(t))|�t

�x
(11)

r(t+Δt)

r(t)

r(t)˜

Fig. 2 Calculation of particle advection using Heun’s method

does not exceed some specified limit, e.g. Comax = 0.5.

2.3.3 Diffusion

The Laplacian operator in the diffusion equation (Eq. 7) is
discretized by means of the standard LSMPS scheme type-
A [55], which is based on the Taylor series expansion and
the weighted least squares method. The formulation of the
discretization scheme is briefly explained below. The Taylor
series expansion of scalar function φ around ri with nearby
point r j yields

φ(r j ) = φ(ri )

+
n∑

m=1

[
1

m!
(
ri j · ∇)m

φ(r)
]

r=ri

+ O(|ri j |n+1) (12)

⇔
n∑

m=1

[
rms
m!

(
r∗
i j · ∇

)m
φ(r)

]

r=ri

= φ(r j ) − φ(ri )

+O(|ri j |n+1) (13)

where ri j = r j − ri , r∗
i j = ri j/rs, rs is scaling parameter.

Equation (13) can be written in the form:

pT(r∗
i j ) · H−1

rs δ = φ(r j ) − φ(ri ) + O(|ri j |n+1), (14)

where namely in two-dimensional space

r∗
i j = r j − ri

rs
=

(
x j − xi

rs
,
y j − yi

rs

)T

, (15)

p(r) =
(
x, y, x2, xy, y2, . . . , xn, xn−1y, . . . , yn

)T
, (16)

Hrs = diag

(
1!
r1s

,
1!
r1s

,
2!
r2s

,
1!1!
r2s

,
2!
r2s

,
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. . . ,
n!
rns

,
(n − 1)!1!

rns
, . . . ,

n!
rns

)

, (17)

δ =
(

∂φ

∂x
,
∂φ

∂y
,
∂2φ

∂x2
,

∂2φ

∂x∂y
,
∂2φ

∂y2
,

. . . ,
∂nφ

∂xn
,

∂nφ

∂xn−1∂y
, . . . ,

∂nφ

∂yn

)T

. (18)

One minimizes the functional

J
(
H−1
rs δ

)

=
∑

j �=i

w(ri j )
[
pT(r∗

i j ) · H−1
rs δ − {

φ(r j ) − φ(ri )
}]2

,

(19)

which leads to the normal equations

⎧
⎨

⎩

∑

j �=i

w(ri j )p(r∗
i j )p

T(r∗
i j )

⎫
⎬

⎭
·
(
H−1
rs δ

)

=
∑

j �=i

w(ri j )p(r∗
i j )

{
φ(r j ) − φ(ri )

}
. (20)

Equation (20) is expressed in matrix notation as

Mi

(
H−1
rs δ

)
= bi (21)

with

Mi =
∑

j �=i

w(ri j )p(r∗
i j )p

T(r∗
i j ), (22)

bi =
∑

j �=i

w(ri j )p(r∗
i j )

{
φ(r j ) − φ(ri )

}
. (23)

If the moment matrix Mi is not singular, solutions δ are
uniquely determined by solving the normal equations,

δ = Hrs

(
M−1

i bi
)

, (24)

and the Laplacian ∇2φ can, in two-dimensional case, be cal-
culated as

∇2φ = ∂2φ

∂x2
+ ∂2φ

∂y2
= (0, 0, 1, 0, 1, 0, . . . , 0)T · δ. (25)

In this study, the effective radius is set as re = 2.5�0 (�0 is the
particle spacing) for the weight function w(ri j ), and n = 3
is chosen, which gives 2nd order accuracy for the Laplacian
operator.

One has two options for the time discretization scheme
of the diffusion equation (Eq. 7), namely the explicit Euler
scheme

c(t + �t) − c(t)

�t
= 1

Pe
∇2c

∣
∣
∣
∣
t

(26)

and the implicit Euler scheme

c(t + �t) − c(t)

�t
= 1

Pe
∇2c

∣
∣
∣
∣
t+�t

. (27)

Note that the Laplacian operator is evaluated at the old posi-
tion r(t) in the explicit Euler scheme (Eq. 26), while it is
evaluated at the new position r(t + �t) in the implicit Euler
scheme (Eq. 27). Therefore, when the explicit Euler scheme
is applied, the time advancement of the particle position
(Eq. 9) is calculated after the diffusion equation; on the other
hand, for the implicit Euler scheme the calculation order is
the other way around.

2.3.4 Solid boundary

In contrast to the grid method, in which the implementa-
tion of boundary condition is relatively straightforward, the
particle method has no entrenched rigorous boundary treat-
ment. One commonly-used technique to implement the solid
boundary is to fill the solid domain with fixed dummy parti-
cles as illustrated in Fig. 3a. This dummy particle technique
is generally successful to prevent interior fluid particles from
unphysical penetration through the boundary, while it suffers
from several drawbacks. In general, the technique requires a
large number of dummy particles to create solid boundaries.
That is because the solid phase represented by the dummy
particles needs sufficient thickness (at least thicker than the
effective radius) to prevent the unphysical effect caused by
insufficient particle density for the interior particle near the
boundary. This fact leads to increase of the problem size and
thus the computational cost more than is necessary. More-
over, the requirement for the solid domain thickness results
in the limitation of the computational geometry; for example,
the zero thickness obstacle (baffle) can not be implemented.
In the present hybrid method, the solid boundary condition
in the particle system is implemented by means of the virtual
mirror particle technique [10,29,41] depicted in Fig. 3b. The
virtualmirror particle is the reflection of interior particle with
respect to the boundary plane, where the physical quantity of
the mirror particle is obtained by the corresponding interior
particle and the boundary condition.

In order to solve the diffusion equation (Eq. 7) with the
particle system, one needs to impose appropriate boundary
conditions for calculation of the Laplacian operator. In this
study, only the zero-flux boundary condition (Eq. 28) is taken
into account for the concentration field,

∂c

∂n

∣
∣
∣
∣
	

= 0, (28)
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Interior partilce

Dummy particle

(a)

Point reflection

Line reflection

Line reflection

Interior partilce

Virtual mirror particle

(b)

Fig. 3 Solid boundary implemented by dummy particle (a) and virtual
mirror particle (b)

where n denotes normal unit vector with respect to the
boundary plane. The zero-flux condition is awidely-accepted
mathematical model of the impermeable boundary for chem-
ical species in fluid mixing problem. The zero-flux condition
is imposed by considering the virtual mirror particles. The
virtual mirror particles are included as nearby particles for
the discretization of the Laplacian operator, wherein the con-
centration of the mirror particle is the same value as the
corresponding interior particle.

2.3.5 Inlet and outlet boundaries

The inlet boundary for the particle system is implemented
using the particle injectors as drawn in Fig. 4. Those injec-
tors are uniformly distributed with spacing �0 and fixed on
the inlet boundary plane to inject new fluid particles at a
frequency given by the inlet flow rate

V̇ inj(t) = �20n · u(t, rinj). (29)

If the inlet velocity is time-independent, the injection fre-
quency is simply given by

V̇ inj(t)

V0
, (30)

where V0 = �30, but that is not always the case. Therefore,
determination of the injection timing makes use of the total
flow rate

l0

Injector

Inlet 
boundary

Fluid particle

V0

Vinj

Fig. 4 Inlet boundary implemented by particle injectors

V inj(t) = V0
2

+
∫ t

0
V̇ inj(t)dt, (31)

the time advancement of which is calculated as

V inj(t + �t) = V inj(t)

+�t

2

{
V̇ inj(t) + V̇ inj(t + �t)

}
. (32)

Injection of particle is executed (repeatedly if needed) as long
as a condition

V inj(t) − V0N
inj ≥ V0 (33)

satisfies, where N inj denotes the total count of the injected
particles which is incremented each after the injection. Posi-
tion of the injected particle is determined as

rinj + V inj(t) − V0(N inj + 1)

V̇ inj(t) + V̇ inj(t + �t)

×
{
u(t, rinj) + u(t + �t, rinj)

}
. (34)

Implementation of the outlet boundary is more simple.
Through the outlet boundary, particles are moving out from
the computational domain. Thus, those particles are detected
to be deleted or marked as a ghost particle.

2.3.6 Particle redistribution

As the particle positions evolve in time, the particle distri-
bution is becoming more distorted. The highly anisotropic
particle spacing eventually causes the numerical instability
[27]. To remedy this issue, we employ the particle redis-
tribution based on the particle shifting approach [59] which
improves particle spacinguniformity by slightly shifting each
particle position according to

r′
i = ri + δri , (35)
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δri = −αUmax�t
∑

j∈Λi

R2
i

|ri j |2 ni j , (36)

Ri = 1

|Λi |
∑

j∈Λi

|ri j |, (37)

ni j = ri j
|ri j | , (38)

Λi = {
j |0 ≤ |ri j | < re

}
, (39)

where r′
i is particle position after the redistribution, α is

relaxation parameter,Umax is maximum velocity magnitude,
and �t is time step size. The relaxation parameter is set as
α = 0.01, and the effective radius is re = 2.5�0. This par-
ticle redistribution is operated once in each time step after
the particle advection. Calculation of the particle shifting
also requires appropriate boundary treatment. For the particle
near the solid boundary, the virtual mirror particle technique
is applied and the mirror particles are included to calcu-
late Eq. (36). In the vicinity of inlet or outlet boundary, the
particle redistribution with the virtual mirror technique may
cause numerical instability. Thus, if the shortest distance to
inlet/outlet boundary is smaller than the effective radius of
the particle shifting (here 2.5�0), the particle redistribution
is switched off or set α = 0.

2.4 Calculation procedure

The present hybrid method performs the fluid mixing sim-
ulation in the following procedure as described in Fig. 5.
After the initial setup, the velocity field of the next time step
is firstly solved with the grid method and the concentration
field is then solved in the particle system. In the particle
phase, solution of the concentration field is proceed in three
steps: (a) particle advection including injection (inlet) and
ejection (outlet), (b) solution of the diffusion equation, (c)
particle redistribution, where the order of the calculation
steps changes depending on the adopted time discretization
scheme of the diffusion equation, namely the explicit Euler
scheme (Eq. 26) or the implicit Euler scheme (Eq. 27), as
stated previously. The particle phase is proceed as (b) → (a)
→ (c) in the explicit case, or (a) → (c) → (b) in the implicit
case.

3 Numerical simulations

3.1 Unsteady one-dimensional diffusion problem

In the stationary one-dimensional domain x = [0, 1], the
unsteady diffusion problem governed by

∂c

∂t
= ∂2c

∂x2
(40)

Grid phase

NO

YES

Particle phase

Time 
advancement

START

END

Input initial conditions

Update velocity and pressure

Solution of diffusion equation
(explicit case)

Solution of diffusion equation
(implicit case)

Particle advection

Injection and ejection

Particle redistribution

Termination?

Fig. 5 Flow chart of the calculation procedure in the hybrid grid-
particle method

is considered under the initial condition

c0(x) =
⎧
⎨

⎩

0 x < 0.5
0.5 x = 0.5
1 x > 0.5

(41)

and the boundary conditions

∂c

∂x

∣
∣
∣
∣
x=0

= ∂c

∂x

∣
∣
∣
∣
x=1

= 0. (42)

The analytical solution for the time evolution of the concen-
tration field is given by

cext(t, x) = 2
∞∑

n=0

An cos (nπx) exp
(
−n2π2t

)
, (43)

An =
∫ 1

0
c0(x) cos (nπx) dx . (44)

For this test case, we examine two kinds of the parti-
cle distribution, the regular arrangement and the irregular
arrangement. In the regular arrangement, the particles are
distributed uniformly

x regi =
(

i + 1

2

)

�0, (45)

where the particle spacing is �0 = 1/Np (Np denotes the
particle number). In the irregular arrangement, the parti-
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cle position is determined using the uniform pseudorandom
number δx ∈ [−0.3�0, 0.3�0] as

x irri = x regi + δx . (46)

The explicit Euler scheme is chosen for the time discretiza-
tion of the diffusion equation, and the time step size �t is
determined based on the condition

Di = Pe · �t

�20
≤ 0.1, (47)

where Di is the diffusion number, and Pe = 1. As the current
problem assumes absence of fluid flow, the particle redistri-
bution is not employed.

For the comparison with the present hybrid method which
utilizes theLSMPSLaplacian discretization scheme,wehave
also tested the MPS Laplacian model[28]

〈
∇2φ

〉

i
= 2d

n0λ0
∑

j �=i

w′(rij)
(
φ j − φi

)
, (48)

where d is the number of space dimensions, n0 and λ0 are
constant parameters calculated with uniformly arranged par-
ticles as

n0 =
∑

j �=i

w′(rij), (49)

λ0 =

∑

j �=i

w′(rij)|rij|2

∑

j �=i

w′(rij)
(50)

with the MPS weight function

w′(x) =
{ re

|x| − 1 0 ≤ |x| < re

0 re ≤ |x|
. (51)

Figure 6 shows the concentration distributions simulated
using the present hybrid method employing the LSMPS
Laplacian scheme. The results showgood agreementwith the
analytical solutions for both regular (Fig. 6a) and irregular
particle arrangements (Fig. 6b). Figure 7 shows convergence
of the nodal supreme error defined as

emax(t) = max
xi

|c(t, xi ) − cext(t, xi )| (52)

for the spatial resolution range from Np = 16 to 256 at
t = 0.025. In the irregular arrangement case, we plot the
mean value of 20 samples, where the error bar size is equal
to the standard deviation. For the regular arrangement, both
MPS and LSMPS schemes show the 2nd order convergence

x
0.0 0.2 0.4 0.6 0.8 1.0

x
0.0 0.2 0.4 0.6 0.8 1.0

c

0.0

0.2

0.4

0.6

0.8

1.0
t = 0

t = 0.001

t = 0.01
t = 0.025

t = 0.1

t = 1

(a)

c

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Fig. 6 Comparison of concentration profile of the one-dimensional
diffusion problem between calculated (symbols) and analytic (lines)
solutions; a regular arrangement, b irregular arrangement

and almost the same nodal supreme error. Quality of theMPS
scheme is degraded for the irregular arrangement, whereas
the LSMPS scheme shows the same calculation accuracy
as the regular arrangement case and the consistency is con-
firmed.

3.2 Mixing in a lid-driven cavity

We have calculated the fluid mixing problem in a two-
dimensional square lid-driven cavity illustrated in Fig. 8,
where the upper wall moves rightward at a constant veloc-
ity and other walls are fixed. For the boundary condition of
the concentration field, the zero-flux condition applies at all
walls. The time evolution of the flow field and the concen-
tration field are solved under the initial conditions
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Fig. 7 Convergence of the nodal supreme error for the unsteady one-
dimensional diffusion problem at t = 0.025
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Fig. 8 Simulation condition of the lid-driven cavity flow

u0(x, y) = 0, (53)

c0(x, y) =
⎧
⎨

⎩

0 x < 0.5
0.5 x = 0.5
1 x > 0.5

. (54)

The uniform grid system is used for solution of the fluid flow,
and the particles are also uniformly distributed at the initial
time. The implicit Euler scheme is adopted for the time dis-
cretization of the diffusion equation, by which the diffusion
number limit of the time step size for stability condition is
avoided and the computational cost can fairly be reduced by
using relatively large time step at high spatial resolutions.
The time step size �t is set as �t = �0, and subdivision of
the particle advection is employed based on the local Courant
number limit Comax = 0.5. The Reynolds number based on
the upper wall velocity and the edge length is set as Re = 1,
and the Péclet number is Pe = 104. As a reference, we also
carried out the simulation using FVM, where the convective
term is discretized by the 2nd order upwind scheme with the
gradient limiter.

As a preliminary test, we have investigated effect of
the particle redistribution to the particle distribution. Fig-
ure 9 shows the particle distributions at t = 0.25 compared
solutions without and with particle redistribution utilizing
the particle shifting technique, where diffusion of chemical
species concentration is neglected.Without the particle redis-
tribution, calculation of the concentration field was diverged
for Pe = 104. This is due to the highly anisotropic particle
spacing. In the LSMPS scheme, evaluation of the Laplacian
operator makes use of the weighted least square approach,
and the approximation quality is sensitive to the distribu-
tion of neighboring particles; for example, the calculation
accuracy can be deteriorated in scarce region and particles
too close to each other cause strong numerical instabilities.
Appropriate particle redistribution technique can remedy

Fig. 9 Particle distributions at
t = 0.25; a without particle
redistribution, b with particle
distribution
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Fig. 10 Simulated
concentration distribution in the
lid-driven cavity at
Re = 1, Pe = 104, and t = 10
by FVM (a) and the present
hybrid method (b)
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Fig. 11 Comparison of resultant concentration profiles between FVM
and the present hybridmethod in lid-driven cavity at t = 10 and x = 0.5

those issues by preserving the particle uniformity and numer-
ical simulation was stably carried out in the present study.

Figure 10 is the calculated concentration distributions at
t = 10, where the spatial resolution is set as 64 × 64 for

0
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Velocity magnitude
5.10
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Fig. 12 Fluid mixing problem in a zig-zag channel; a geometry and
boundary conditions, b flow field at Re = 1

both grid and particle systems. It is shown that solution of
the present hybrid method qualitatively agrees with that of
FVM. In Fig. 11, the concentration profile at the middle
plane x = 0.5 for varying spatial resolution from 32× 32 to
256×256. The results show that both computationalmethods
converges to the same solution. It is noteworthy that insuffi-
cient spatial resolution in FVM leads to overestimation of the
diffusion rate, i.e. numerical diffusion, whereas in the hybrid
method the perturbation appears instead of the numerical
diffusion. This perturbative error is resulted by the particle
redistribution; the particle shifting generates dissipative par-
ticlemovement to improve uniformity, and as a consequence,
particles are scattered in a random manner. It is also impor-
tant to be noted that the error due to the particle redistribution
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Fig. 13 Concentration distributions in a zig-zag channel calculated by FVM (upper), backward random-walk Monte Carlo method (middle), and
the present hybrid method (lower); a Pe = 103, b Pe = 104, c Pe = 105, d Pe = ∞

fairly vanishes as the spatial resolution increases, and the
hybrid method achieves the convergence with lower spatial
resolution than FVM.

The hybrid method requires some additional computa-
tional cost for utilizing the particle system with respect to
FVM which uses only the grid system since the particle
system generally entails more expensive cost than the grid
system. However, in the current numerical experiment, the
calculation time of the present hybrid method is only about
15% longer than that of FVM in case that one uses the same
number of particles as that of cells. This is because the domi-
nant cost of the fluid mixing simulation is the part of solution
of the fluid flow, accounting for more than 80% of the overall
calculation. Therefore, the additional computational expense

for using particle system in solution of the concentration field
should not be a severe penalty.

3.3 Mixing in a zig-zag channel

The continuousmixing process in a two-dimensional zig-zag
channel is illustrated inFig. 12a. Segregatedfluids are entered
from the inlet boundary and mixed in the channel bended in
a zig-zag manner. Fully developed laminar velocity profile

uin(y) = 6y(1 − y) (55)

is applied at the inlet boundary, and a reference constant
pressure is prescribed at the outlet. Figure 12b shows steady
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solution of the velocity field solved at Re = 1, where the
Reynolds number is based on the mean inlet velocity and the
channel height. In this problem,wehave calculated the steady
solution for the concentration field using three different com-
putational approaches: FVM, backward random-walkMonte
Carlo (Monte Carlo) method [57], and the present hybrid
method. In the hybrid method, the explicit Euler scheme is
used for the time discretization of the diffusion equation, and
the time step size is determined in the same manner as the
lid-driven cavity case. For all approaches, the computational
node or particle spacing is fixed at 1/40 and uniform.

Figure 13 shows the concentration distributions calculated
for Pe = 103, 104, 105, and ∞. The concentration field cal-
culated by FVM agrees well with that of the Monte Carlo
method at Pe = 103; however, for Pe ≥ 104 the numer-
ical diffusion causes overestimation of diffusion rate and
appreciable discrepancies with respect to the Monte Carlo
method emerge. On the other hand, the calculation results of
the present hybrid method shows good agreement with the
Monte Carlo method for all Péclet numbers tested.

In order to compare state ofmixing quantitatively, we have
evaluated themixing quality based on theDanckwerts’ inten-
sity of segregation [11], so-called intensity of mixing [6] or
mixing index [22],

MI = 1 − σ

σmax
, (56)

where σ indicates the standard deviation of concentration in
the measurement plane (or volume), and σmax is the standard
deviation at the inlet (here σmax = 0.5). The mixing index
(MI) is defined to be 0 for a completely segregated state and 1
for the completely mixed state (homogeneous concentration
distribution). In Fig. 14, the mixing index measured at cross-
section x = 6 is plotted for the range 102 ≤ Pe ≤ 106. In
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Fig. 14 Mixing index measured in a zig-zag channel at x = 6

case of FVM, the numerical diffusion dominates and mixing
state is not correctly evaluated for Pe ≥ 104. In contrast,
the present hybrid method faithfully evaluates the diffusion
effect even for high values of Pe, and discrepancy with the
Monte Carlo method is kept small.

4 Conclusion

We propose a hybrid grid-particle method for the numerical
simulation of fluid mixing problem. The current main target
is a liquid–liquid mixing problem in microsystem, in which
the non-dimensional parameters are typically Re ∼ 102 and
Pe ∼ 105 (Sc ∼ 103). For such high Pe, conventional grid-
based approaches suffer from severe numerical diffusion.
The proposedmethod combines the grid-based approach and
the particle-based approach in such a way that the incom-
pressible Navier–Stokes equations are solved using FVM,
and the advection–diffusion equation of chemical species
concentration is solved using a particle method. With this
calculation principle, the fluid mixing problem of interest
can efficiently be solved utilizing the characteristics of each
approach; the flow field is stably solved even with long time
step, and the concentration field is accurately solved with
minimal numerical diffusion.

The hybrid grid-particle method is examined through
three test cases. In the unsteady one-dimensional diffusion
problem, convergence of the resulting nodal error norm is
checked, and consistency of the Laplacian discretization
schemeemployed in theparticle phase is verified.As a second
test, the hybrid method is applied to the fluidmixing problem
in a lid-driven cavity flow. Converged result of the concentra-
tion field agreeswellwith that obtained byFVM, and it is also
found that the hybrid method achieves the convergence with
lower spatial resolution than FVM. The continuous mixing
process in a two-dimensional zig-zag channel is calculated
using three different approaches: present hybrid method,
FVM, and a reliable Monte Carlo method. In this test, the
computational node or particle spacing is fixed at 1/40 for
all approaches. The resulting concentration field obtained
by FVM shows considerable discrepancies with respect to
the Monte Carlo method for Pe ≥ 104 due to the numeri-
cal diffusion; on the other hand, the hybrid method shows
good agreement for Pe = 103, 104, 105, and ∞ in quali-
tative assessment, and for 102 ≤ Pe ≤ 105 in quantitative
assessment.
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