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Abstract This paper presents a simplified small-signal

stability analysis method for low voltage (LV) inverter-

based microgrids, in a generalized manner. The simplifi-

cation is based on a simplified microgrid structure that

relies on dominating inverter coupling impedances with

respect to interconnecting line impedances of LV distri-

bution networks. The analysis is further simplified by

analytically determining equilibrium points of system state

variables in terms of known microgrid parameters. And it

eliminates the additional analysis required for determina-

tion of the equilibrium points of the state variables. Sim-

ulation and analysis results show that the proposed method

successfully predicts the instability boundaries of micro-

grid systems for resistive interconnecting lines.

Keywords Inverters, Microgrids, Stability analysis, Droop

control, Distribution networks

1 Introduction

Microgrid has emerged recently as a promising low

voltage (LV) electrical network application in smart grids as

an alternative to the conventional centralized structure. In

grid connected mode, microgrid behaves as a controllable

single unit by appropriate supervisory control techniques. It

provides control and operation flexibility to the distributed

generation networks including renewable sources [1].

Islanded operation of microgrids, on the other hand, requires

decentralized local control techniques as in conventional

networks for reliable network operation. In this mode, droop

based voltage and frequency controls are commonly applied

to distributed generator (DG) inverters [2–7].

For such nonlinear systems, small-signal model of the

system is widely used to observe the effect of system

parameters on stability under small disturbances [8]. How-

ever, complete dynamic model of microgrids is quite com-

plicated due tomulti-control stages ofDG inverters [9, 10].As

the number of inverters increases in themicrogrid, the analysis

becomes quite a difficult procedure. Therefore, the recent

trend is the simplification of the dynamical model of micro-

grids and developing a generalized analysis method. The

microgrid model proposed in [11] simplifies the analysis by

neglecting voltage and current dynamics of DG inverters in

the microgrid. However, as shown in [12], this model loses

accuracy in the instability boundaries due to static modelling

of interconnecting line impedances. To overcome this draw-

back, a dynamic phasors based modelling has been proposed

in [12]. However, the model considers only a single droop

controlled DG inverter connected to a stiff (constant voltage)

ACnetwork. Amore detailedmicrogridmodel, including line

currents as state variables, has been proposed in [13]. How-

ever, themodel neglects power filters of DGs, and considers a

microgrid structure without coupling impedances at DG
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outputs by assuming large enough interconnecting line

impedances in the microgrid. Apparently this model is not

suitable for LV networks with small interconnecting line

impedances. Besides, power filters are required in practice to

filter out harmonics and to damp frequency and voltage

variations. A generalized stability analysis method for ring

type microgrid structures has been proposed in [14], consid-

ering only power stage dynamics. However, too many

assumptions in the proposed microgrid model reduce the

accuracy of the method. Most recently, singular perturbation

based model reductions have been presented in [15–17],

whichdetect the fast states of the systemand reduce themfrom

the model. These models have a variety of accuracy levels

depending on the order of the reduction.

On the other hand, since all of the microgrid models

mentioned above are linearized small-signal dynamic

models, they require additional analysis to determine initial

conditions of state variables. As a common approach, load

flow analysis tools or dynamic simulations (for small scale

microgrids) are used to obtain equilibrium points of

the state variables, which makes the stability analysis quite

challenging as the microgrid enlarges.

This paper proposes a simplified and generalized sta-

bility analysis method to facilitate the analysis and

parameter selection for microgrids. Firstly, we propose a

common LV microgrid network model, based on the

assumption of weak line impedances of LV distribution

networks with respect to coupling impedances of DGs.

Then, based on the modelling approach presented in [11], a

simplified dynamic model for LV microgrids is obtained in

a generalized manner. Secondly, the developed system

model is constructed in terms of state variables that can be

determined from inherent power sharing characteristics of

droop control. This eliminates the additional analysis

required for determination of equilibrium points of relevant

state variables. In this way, the proposed small-signal sta-

bility analysis method can be applied to practical LV

microgrids in one step.

The rest of the paper is configured as follows; in Sec-

tion 2, a simplified common microgrid structure is con-

structed for LV microgrids. Section 3 describes the

developed generalized stability analysis method based on

the simplified microgrid structure. Section 4 presents

the comparison of analysis results with simulation results

and effect examination of some critical DG and grid

parameters on stability. Conclusion is given in Section 5.

2 Simplified LV microgrid model

Figure 1 presents a generic microgrid structure in radial

form. In practical applications, a central controller coor-

dinates the microgrid in a hierarchical manner for optimum

network operations [3, 4]. Intermittent nature of the

renewable sources and lack of rotating mass storage of

conventional synchronous generators require the use of

storage units such as batteries in the microgrid. Then, in the

grid connected mode of the microgrid, the coordination

problem evolves as the dispatch of DG powers in an

optimum manner using appropriate algorithms [18–22]. In

this mode, DGs are applied output current based local

control strategies to inject the dispatched powers to the grid

[2, 23]. In island mode, local control strategy of DGs turns

to droop based voltage control strategy for autonomous

power sharing. In this mode, power dispatch optimization

can be done by updating droop coefficients. Since the

stability problem subjected in this paper arises in the island

mode, the paper will focus on the island mode of operation,

as described in the following parts.

Microgrids are applied mostly in LV distribution net-

works [1–4]. The islanding switch, shown in Fig. 1, is

preferably placed in high voltage side of distribution

transformer for safety [24]. The microgrid consists of N

C 2 nodes each of which are represented by a DG and a

corresponding load Zli with respective active and reactive

powers PLi and QLi i ¼ 1; 2; . . .;Nð Þ. Each DG is connected

to the microgrid via a coupling impedance Zi :¼ Zihi. In

Fig. 1, _Ei :¼ Ei\/i and _Ii represent complex output volt-

ages and currents of DGs; and _VLi :¼ VLi\/Li corresponds

to the load voltages. Pi and Qi denote the active and

reactive output powers of DGs and Zli i ¼ 1; 2; . . .;N � 1ð Þ
is the impedance of the respective interconnecting line of

the LV distribution feeder.

In LV distribution networks, impedances of power lines

(Zli) are usually small. On the other hand, a minimum

interconnecting line impedance is required between DGs

for stable parallel operation, as will be seen in Section 5.

For this reason, a significant physical or virtual coupling

impedance is intentionally placed at the output of DGs

[9, 25, 26]. Therefore, the following assumption can be

made for practical LV implementations of microgrids:

Zli � 0 i ¼ 1; 2; . . .;N ð1Þ

The assumption in (1) leads the generic LV microgrid

model in Fig. 1 to reduce to the simplified common

structure given in Fig. 2. In this simplified model, the

microgrid loads can be represented by a unified load

impedance ZL with:

PL ¼
PN

i¼1

PLi

QL ¼
PN

i¼1

QLi

8
>><

>>:
ð2Þ

where PL and QL are total active and reactive load powers

in the microgrid, respectively.
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3 Stability analysis

In this section, equations for the proposed generalized

small-signal stability analysis, based on the simplified

microgrid model in Fig. 2, are derived. Since the system is

non-linear, the analysis will be performed using linearized

system equations.

3.1 DG inverter model

Block diagram of a droop controlled DG inverter is

shown in Fig. 3. vg is microgrid voltage; vo is inverter output

voltage (filtered); vo* is output voltage reference; io is

ınverter output current; vi is ınverter output voltage; vi* is

ınverter driver voltage reference; if is filter inductance cur-

rent; if* is filter inductance current reference; Vs is ınverter
DC input voltage; Cs is ınput Bulk capacitor; m is frequency

droop coefficient; and n is voltage droop coefficient. The

inverter control structure is composed of an innermost cur-

rent control loop, an outer voltage control loop and the

outermost droop based power control loop. The common

approach for the inner current and voltage controllers is the

use of proportional integral (PI) controllers with load com-

pensating feed forward [4, 9, 10, 27]. Since the voltage and

current dynamics have no significant impact on the overall

system stability, the DG inverters in the microgrid can be

treated as ideal voltage sources characterized only by power

dynamics dictated by droop control [9–14].

Droop control takes place in power control block in

Fig. 3 as:

xi ¼ xs � miPif ð3Þ

Ei ¼ Es � niQif ð4Þ

where xs and Es are set values for frequency and voltage,

corresponding to no-load condition; mi and ni denote

frequency and amplitude droop coefficients; Pif and Qif

represent the filtered output powers of DGs, respectively.

Dynamic power equations are obtained as follows:

Dxi ¼ �mi

wfi

sþ wfi

DPi ð5Þ

DEi ¼ �ni
wfi

sþ wfi

DQi ð6Þ

where wfi is cut-off frequency of low pass power filters and

Pi and Qi are instantaneous active and reactive output

powers of DGs; and D denotes small variations of the

corresponding state variable. The frequency is related to

the phase of the voltage as:

Dxi ¼ dDui=dt ð7Þ

To obtain linearized power expressions for DPi and DQi,

consider a single ith DG in the simplified microgrid model

in Fig. 2. The active and reactive powers injected from the

ith DG to the common load through corresponding coupling

impedance Zi \ hi can be expressed as:

Z1

Load-1

Z2

DG-N

PL1, QL1

Main 
grid

DG-2DG-1

MV
LV

Islanding 
switch

PL2, QL2 PLN , QLN

Zl1 Zl2 Zl(N-1)

ZN

P1, Q1 P2, Q2 PN, QN

VL1 VL2
VLN

E1 E2 EN
I1 I2 IN

Central 
controller

DMS

ZL1 Load-2 ZL2 Load-N ZLN

·
·

·
·

·
··

·

·

LVdistribution networks

Fig. 1 Microgrid system

DG-1 Z1 θ1

PL, QL

P1, Q1

VL φLE1 φ1 DG-2

P2, Q2

Z2 θ2

DG-N

E2 φ2

ZN θN

PN, QN

EN φ N

ZL θL

Fig. 2 Simplified common LV microgrid model
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Pi ¼ p
EiVL

Zi
cosðhi þ uL � uiÞ �

V2
L

Zi
coshi

� �

ð8Þ

Qi ¼ p
EiVL

Zi
sinðhi þ uL � uiÞ �

V2
L

Zi
sinhi

� �

ð9Þ

where Ei and VL are the peak magnitudes of DG output

voltages and common load voltage respectively; /i and /L

are phase angles of the corresponding voltages; p is a

coefficient related to the phase of the system and is equal to

3/2 for three phase systems and to 1/2 for single phase

systems. The linearized power expressions around

equilibrium points Eie, /ie, VLe, /Le become:

DPi ¼ ki1DEi þ ki2Dui þ ki3DVL þ ki4DuL ð10Þ
DQi ¼ ki5DEi þ ki6Dui þ ki7DVL þ ki8DuL ð11Þ

where coefficients kij 2 R, (i = 1, 2, …, N and j = 1, 2, …,

8) are obtained as:

ki1 ¼ p
VLe

Zi
cosðhi þ uLe � uieÞ

� �

ki2 ¼ p
EieVLe

Zi
sinðhi þ uLe � uieÞ

� �

ki3 ¼ p
Eie

Zi
cosðhi þ uLe � uieÞ �

2VLe

Zi
cos hi

� �

ki4 ¼ p
�EieVLe

Zi
sinðhi þ uLe � uieÞ

� �

ki5 ¼ p
VLe

Zi
sinðhi þ uLe � uieÞ

� �

ki6 ¼ p
�EieVLe

Zi
cosðhi þ uLe � uieÞ

� �

ki7 ¼ p
Eie

Zi
sinðhi þ uLe � uieÞ �

2VLe

Zi
sin hi

� �

ki8 ¼ p
EieVLe

Zi
cosðhi þ uLe � uieÞ

� �

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð12Þ

It should be noted that, when deriving linearized power

expressions in (10) and (11), coupling impedances, Zi is

assumed constant and defined as:

Zi ¼ Ri þ jXi ð13Þ

where Ri is the resistance and Xi = xnLi is the reactance of

the ith coupling impedance defined for the nominal angular

frequency, xn of the microgrid. Note that the static cou-

pling impedance model is claimed to decrease the accuracy

of the analysis and alternatively a dynamic coupling

approach has been proposed in [12], which will be dis-

cussed again in Section 4.

The coefficients given in (12) have the usual structure

with equilibrium point values of voltage amplitudes and

voltage phase angles. These equilibrium values are needed

for the analysis to be performed. But the voltage phase

angles are difficult to estimate and additional analysis is

required to obtain them. Dynamic simulations or load flow

analysis are the common tools used in the literature to

obtain these equilibrium values. Fortunately, by comparing

the coefficients in (12) with power expressions in (8) and

(9), the coefficients can be obtained equivalently as:

ki1 ¼
Pie

Eie

þ p
V2
Le

ZiEie

cos hi

ki2 ¼ Qie þ p
V2
Le

Zi
sin hi

ki3 ¼
Pie

VLe

� p
VLe

Zi
cos hi

ki4 ¼ �Qie � p
V2
Le

Zi
sin hi

ki5 ¼
Qie

Eie

þ p
V2
Le

ZiEie

sin hi

ki6 ¼ �Pie � p
V2
Le

Zi
cos hi

ki7 ¼
Qie

VLe

� p
VLe

Zi
sin hi

ki8 ¼ Pie þ p
V2
Le

Zi
cos hi

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð14Þ

Power control 
block

VS inverter

DG source

Vs

vi
if io

Current 
controller

viif

ωs, m 

Lf

Cf

Es, n

Cs

Voltage 
controller

vo

vo, io

Z
Current 
limiter

vo

vg

io if

vo, io

+

Z

io

***
+

+

Fig. 3 Block diagram of a droop controlled voltage source inverter

A simplified stability analysis method for LV inverter-based microgrids 615

123



The coefficients in (14) require only steady-state load-

ings and steady-state voltage magnitudes of DG inverter

outputs and loads. The inherent power sharing property of

droop control for active power and derived expression for

reactive power sharing below provide approximate ways to

obtain these parameters analytically. Besides, for LV net-

works, nominal operating voltage of the microgrid can be

assigned to all steady-state voltage magnitudes.

Active power sharing: In steady state, the frequency of

the microgrid is the same at all nodes. Then, from (3), for

the same frequency set point xs for all DGs, the total active

power in the microgrid is shared between the DG inverters

according to the expression below:

m1P1e ¼ m2P2e ¼ . . . ¼ miPie ð15Þ

With the assumption in (1), the total active power

loading of the microgrid given in (2) corresponds to the

total output powers of DGs. Using (15) active power of

each DG can be analytically calculated.

Reactive power sharing: Reactive power sharing

between DGs is not only dictated by amplitude droop

coefficient n but also by interconnecting line impedances

[25]. Based on the characteristics of LV distribution net-

works, the following assumption for the amplitudes of the

node voltages can be made:

Eie � VLe i ¼ 1; 2; ::;N ð16Þ

Then from (8) and using (16),

hi þ uLe � uie ¼ die ¼ a cos
PieZi

pV2
Le

þ cos hi

� �

ð17Þ

Substitute (17) and (4) into (9):

Qie ¼ p
ðEs � nQieÞVLe

Zi
sin die �

V2
Le

Zi
sin hi

� �

ð18Þ

Rearrange (18), the expression of reactive power sharing

can be obtained as:

Qie

Zi

pVLesindie
þ ni

� �

þ VLe

sin hi
sindie

¼ c ð19Þ

where c ¼ Es is a constant, and die is defined as:

die ¼ a cos
PieZi

pV2
Le

þ coshi

� �

ð20Þ

Using (19), the total steady-state reactive power loading

in the microgrid can be distributed to DGs in a similar

manner as in the case of active power.

3.2 Load equations

Average active and reactive load powers of the unified

RL load in Fig. 2 can be expressed as:

PL ¼ V2
L

ZL
cos hL

QL ¼
V2
L

ZL
sin hL

8
>><

>>:
ð21Þ

where ZL \ hL is the complex impedance of the unified

load in polar form. Linearization of load power expressions

leads to:

DPL ¼
2VLe

ZL
cos hLDVL

DQL ¼ 2VLe

ZL
sin hLDVL

8
>><

>>:
ð22Þ

Comparing linearized equations in (22) with power

expressions in (21), the linearized load power expressions

can be expressed in terms of steady-state load powers as:

DPL ¼ 2PLe

VLe

DVL

DQL ¼ 2QLe

VLe

DVL

8
>><

>>:
ð23Þ

3.3 Combined microgrid equations

In terms of power dynamics, a droop controlled DG

inverter is a 3rd order system based on dynamics of two first

order low pass power filters and angular frequency. If state

variables are chosen as Dxi, DEi and Dui, the small-signal

dynamical model of the single ith DG inverter can be

obtained from (5)–(7) as:

D _xi ¼ �wfiDxi þ k
0

i1DEi þ k
0

i2Dui þ k
0

i3DVL þ k
0

i4DuL

D _Ei ¼ k
0

i5DEi þ k
0

i6Dui þ k
0

i7DVL þ k
0

i8DuL

D _ui ¼ Dxi

8
<

:

ð24Þ

where k
0
i1 ¼ �miwfiki1; k

0
i2 ¼ �miwfiki2; k

0
i3 ¼ �miwfiki3;

k
0
i4 ¼ �miwfiki4; k

0
i5 ¼ �wfi � niwfiki5; k

0
i6 ¼ �niwfiki6;

k
0

i7 ¼ �niwfiki7; k
0

i8 ¼ �niwfiki8:

In (24), non-state variables DVL and DuL can be

reduced from the equations by using the equality of powers

at load bus as:

XN

i¼1

DPi ¼ DPL

XN

i¼1

DQi ¼ DQL

8
>>>><

>>>>:

ð25Þ

Substitute (10), (11) and (23) into (25), we can obtain:

DVL

DuL

� �

¼ a�1b

DEi

Dui

Dxi

2

4

3

5

3Nx1

ð26Þ

where a is a 2 9 2 matrix defined as:
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a ¼

2PLe

VLe

�
X

ki3 �
X

ki4

2QLe

VLe

�
X

ki7 �
X

ki8

2

6
4

3

7
5 ð27Þ

and b is a 2 9 3N matrix defined as:

b ¼ ki1. . . ki2. . . 0. . .
ki5. . . ki6. . . 0. . .

� �

ð28Þ

Substitute (26) into (24), the following homogeneous

equation in state-space form is obtained:

D _Ei

D _ui

D _xi

2

4

3

5 ¼
a
b
c

2

4

3

5

|ffl{zffl}
A

DEi

Dui

Dxi

2

4

3

5 ð29Þ

where a, b, c are defined as:

a¼

k015 . . . 0 k016 . . . 0 0 . . . 0

..

. ..
. ..

. ..
. ..

. ..
.

0 . . . k0N5 0 . . . k0N6 0 . . . 0

2

6
6
4

3

7
7
5þ

k017 k018

..

. ..
.

k0N7 k0N8

2

6
6
4

3

7
7
5a

�1b

b¼ 0 0 I½ �

c¼

k011 . . . 0 k012 . . . 0 �wf1 . . . 0

..

. ..
. ..

. ..
. ..

. ..
.

0 . . . k0N1 0 . . . k0N2 0 . . . �wfN

2

6
6
4

3

7
7
5þ

k012 k014

..

. ..
.

k0N3 k0N4

2

6
6
4

3

7
7
5a

�1b

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð30Þ

In (29) and (30), dimension of A matrix is 3N and sub-

matrices a, b, c has a dimension of N 9 3N. I is an identity

matrix and 0 is a null matrix with the dimension of N 9 N.

4 Analysis results

Developed stability analysis method has been applied to

a test microgrid with two DG-load pair connected with an

interconnecting line, as shown in Fig. 4. The test grid has

three-phase, 60 Hz and 130 V nominal phase-neutral

voltage. Parameters of inverters and corresponding cou-

pling impedances, interconnecting line and loads are given

in Table 1. For the value of the interconnecting line

impedance Zl, impedance of the main distribution feeder of

CIGRE network has been chosen [28]. The rated power of

DG-1 is devised to be the half of DG-2, then the droop

coefficients are set as m1 = 2m2 = 0.005 and

n1 = 2n2 = 0.01. The simulations have been performed

using MATLAB-Simulink. In the simulations, the actual

test microgrid in Fig. 4 has been used. The analysis has

been applied to the simplified model of the test structure by

neglecting interconnecting line impedance. For the analy-

sis, the system state matrix A given in (29) has been used,

from which eigenvalues kk, (k = 1,2,…,3N) of the system

can be obtained.

Case 1: In the first case, the simulation has been per-

formed for the given microgrid parameters above. The

equilibrium points of the relevant parameters, obtained

Z1

Load-1

Z2

PL1, QL1

DG-2DG-1

PL2, QL2

Zl

P1, Q1 P2, Q2

VL1 VL2

E1 E2

ZL1 Load-2 ZL2

·

·

·

·

Fig. 4 Structure of test microgrid

Table 1 Parameters of test microgrid

Type Parameter Value Unit

DG inverters

and coupling

impedances

Switching frequency fs 10 kHz

Output filter inductance Lf 1.84 mH

Output filter resistance rf 0.11 X

Output filter capacitance Cf 30 lF

Cut-off frequency of power

filters wf

31.85 rad/s

Voltage frequency set value xs 380 rad/s

Voltage amplitude set value Es 132 V

DC input voltage Vs 310 V

Inductance of Z1 0.77 mH

Resistance of Z1 0.11 X

Inductance of Z2 1.57 mH

Resistance of Z2 0.19 X

Interconnection

line

Line impedance Zl 81.5?j68 mX

Loads Impedance of load-1 ZL1 47?j56.5 X

Impedance of load-2 ZL2 47 X
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from the simulation, are given in Table 2.When the analysis

is performed using the actual equilibrium points given in

Table 2. The eigenvalues of the system are obtained from

(30) as: k1 = 0, k2 = -31.85, k3 = -32.3, k4 = -131.4,

k5 = -14.1 ? j79.9, and k6 = -14.1 - j79.9.

On the other hand, for 130 V phase-neutral nominal grid

voltage, and from (15) and (19) the individual active and

reactive DG powers are calculated as 2P1 = P2 = 506.6 W,

Q1 = 130 var, Q2 = 135 var. The corresponding system

eigenvalues are obtained as: k1 = 0, k2 = -31.85,

k3 = -32.3, k4 = -130.7, k5 = -14.2 ? j79.4, and

k6 = -14.2 - j79.4.

As seen from both results, use of approximate values for

equilibrium points of power and voltages does not make

significant change in the system eigenvalues. Complex

eigenvalues with negative real parts state that the system

has a stable and oscillatory response. The zero eigenvalue

points out the existence of multiple equilibrium points for

voltage phase angles. Note that the behavior of the system

is dictated by differences of voltage phase angles. Fig-

ures 5 and 6 present simulation and analysis results for the

frequency waveforms of the inverters in the test microgrid.

The analysis results have been obtained with both actual

and approximate (simplified analysis) equilibrium point

values on the same plot. The frequency waveforms also

indicates that the developed analysis model represents the

microgrid system quite well for the given condition.

However, parameter selection for a system is dictated

mainly by instability conditions and a successful analysis

tool should be accurate in determining instability bound-

aries. Therefore, the next test condition has been selected

around an instability boundary.

Case 2: A boundary of instability emerges in the simu-

lations for the frequency droop coefficient values of

m1 = 2m2 = 0.015, while the other parameters are kept the

same. For this condition, the simplified analysis method

results in the system eigenvalues: k1 = 0, k2 = -31.85,

k3 = -32.3, k4 = -134.2, k5 = -12.7 ? j138.6, and

k6 = -12.7 - j138.6.

The negative real parts in the analysis results above,

however, point out a stable system. The simulation and

analysis results for the frequency variation of DG-1 is

shown in Fig. 7. This result means that as the conditions

approach the stability boundaries of the system the accu-

racy of the analysis reduces. The same discrepancy has

been observed in the literature and there exist two claims

for it. In [11], the reduction of analysis accuracy with

increasing m is devoted to the reduction of accuracy of the

small-signal model due to the increased deviations of initial

points of frequencies from equilibrium points. In [12], it is

reasoned by no inclusion of inductive coupling dynamics in

the analysis. To investigate the effect of inductive cou-

plings, another instability boundary has been searched in

the simulations by introducing pure resistive couplings

between the inverters.

Case 3: For resistive couplings, an instability boundary is

observed when Z1 is set to 1.2 X and Z2 is set to 1.8 X
while keeping the remaining parameters the same as in

Case 1. When the analysis is performed for this condition,

Table 2 Equilibrium points for Case 1

Parameter Value

E1 130.5

E2 131.0

VL1 130.0

VL2 130.2

P1 255.0

P2 510.0

Q1 131.0

Q2 142.0

Fig. 5 Frequency waveforms of DG-1 for Case 1

Fig. 6 Frequency waveforms of DG-2 for Case 1

Fig. 7 Frequency waveforms of DG-1 for Case 2
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the system eigenvalues are obtained as: k1 = 0, k2 =
-31.85, k3 = -32.3, k4 = -63.9, k5 = -0.16 ? j31.6, and

k6 = -0.16 - j31.6.

The corresponding simulation and analysis results for

DG-1 inverter frequency are presented in Fig. 8. As seen

from the results, in case of resistive couplings between the

inverters, the proposed analysis method accurately predicts

the instability boundaries. Note that the coupling impe-

dances at the outputs of DGs can be virtually implemented.

In addition, resistive grids have respective advantages

compared to inductive grids [25, 29]. Therefore, for

microgrids with resistive coupling impedances, the pro-

posed analysis method can be effectively used in deter-

mining system parameters.

To analyze the effect of system parameters on stability a

parametric stability analysis can be performed. The con-

cerned parameter can be varied while the others are kept

constant and the analysis is repeated for each value of the

varying parameter. The simple structure of the proposed

method facilitates this process. Figure 9 shows trace of

system eigenvalues for the variation of coupling impedance

amplitude Z while the other parameters are kept constant.

The microgrid system requires a minimum amplitude for

the coupling impedances (Z & 0.4 for given conditions)

for stable operation. This result reinforces the assumption

in (1). Another result, consistent with the complete model

in [9], is presented in Fig. 10. It states that the increasing

power droop coefficient m deteriorates the system stability.

An interesting result is observed in case of variation of

the grid voltage. It is observed that the increasing grid

voltage deteriorates the system stability, as shown in

Fig. 11. This result dictates inclusion of grid voltage as a

critical design parameter in terms of system stability.

5 Conclusion

This paper presents a simplified stability analysis

method for island mode operation of inverter-based LV

microgrids. The analysis method is based on the charac-

teristics of LV distribution networks.

Analysis and simulation results have shown that the

stability of island mode microgrids are not sensitive to

small variations of grid parameters such as node voltage

amplitudes and DG powers. Then, by approximately

obtaining the parameters of linearized power expres-

sions in terms of these grid parameters, additional prereq-

uisite analyses to determine equilibrium points of the state

variables have been eliminated, which considerably facil-

itates the analysis. Analysis results have shown that the

stability of microgrid is highly sensitive to interconnecting

line impedances between DGs. It has been observed that

inductive coupling dynamics lead the analysis results to

deviate around the instability boundaries. However, the

analysis method can successfully predict the instability

boundaries for resistive networks.
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Fig. 8 Frequency waveforms of DG-1 for Case 3

Fig. 9 Trajectories of systemeigenvalues for decreasingZ (Pi = 5 kW,

Qi = 3 kvar, mi = 0.001, ni = 0.001, hi = p/8, VL = 180 V, wfi =

31.85 rad/s)

Fig. 10 Trajectories of system eigenvalues for increasing m (Pi-

= 5 kW, Qi = 3 kvar, ni = 0.001, Zi = 0.5, hi = p/8, VL = 180 V,

wfi = 31.85 rad/s)

Fig. 11 Trajectories of system eigenvalues for increasing grid

voltage (Pi = 5 kW, Qi = 3 kvar, mi = 0.001, ni = 0.001, Zi = 0.5,

hi = p/8, wfi = 31.85 rad/s)
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