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Abstract To deal with uncertainties of renewable energy,

demand and price signals in real-time microgrid operation,

this paper proposes a model predictive control strategy for

microgrid economic dispatch, where hourly schedule is

constantly optimized according to the current system state

and latest forecast information. Moreover, implicit network

topology of the microgrid and corresponding power flow

constraints are considered, which leads to a mixed integer

nonlinear optimal power flow problem. Given the non-con-

vexity feature of the original problem, the technique of conic

programming is applied to efficiently crack the nut. Simu-

lation results from a reconstructed IEEE-33 bus system and

comparisons with the routine day-ahead microgrid schedule

sufficiently substantiate the effectiveness of the proposed

MPC strategy and the conic programming method.

Keywords Conic programming, Economic dispatch (ED),

Microgrid, Mixed-integer nonlinear programming

(MINLP), Model predictive control (MPC), Optimal power

flow (OPF)

1 Introduction

Within the global wide concentration on cleaner,

greener and sustainable development, tremendous efforts

have been dedicated to the exploitation of renewable

energy sources (RES), the promotion of distributed gen-

erators (DGs), and the excavation of latent, abundant

energy residing in demand-side under the paradigm of

smart grid, in order to achieve more efficient and eco-

nomical power generation, transmission and utilization.

Microgrid has long and proverbially been acknowledged as

one highly successful way to integrate all these brand-new

power sources into the existing power system without

causing any catastrophic abnormality [1]. Consequently,

problems concerning microgrid modelling, planning and

operation has become a heated topic in both academic

investigation and industrial applications.

The economic dispatch of microgrid is usually con-

structed as a nonlinear programming problem. Existing

methods concerning this problem can be categorized into

two aspects, the centralized method and the decentralized

method. With regard to the former, the microgrid central

controller (MGCC) is responsible for a coordinated deci-

sion making process to balance supply and demand of all

units in the system. Mathematical methods, including

sequential quadratic programming [2], interior-point algo-

rithm [3], mixed integer programming [4], and heuristic-
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based intelligent algorithms, like generic algorithm [5] and

particle swarm optimization [6] are mostly common seen in

this respect. To overcome model complexity and the low

computation efficiency of the centralized method, decen-

tralized method treats each unit as an autonomous agent

with their own operation goals. MGCC then gathers all the

self-scheduling information and gives adjustment orders

based on system-wide economy and reliability [7, 8].

Furthermore, privacy of different DER entities can be well

protected via this distributed manner.

Two problems have been discovered with the current

researches. First of all, microgrid economic dispatch is

generally modelled in an open-loop style one day ahead,

i.e. based on the prediction of weather conditions, demand,

and electricity price, optimal power dispatch for each hour

of next day is completed in one calculation. The schedule

produced via this static method may not remain optimal in

real-time scenarios with unexpected fluctuations of uncer-

tain factors. Normally there are two ways to address these

uncertainties [9]: to transform every possible scenarios into

their deterministic equivalence and find a good solution for

all the cases or to dynamically adjust the schedule according

to real-time conditions, namely the rolling optimization. The

former approach is relatively conservative by exaggerating

the effects of extreme scenarios with low probability; while

the latter could ensure an optimal power dispatch via timely

modification of operation schedule.

The rolling optimization of microgrid operation is

mainly realized via model predictive control (MPC) strat-

egy [10–12], where microgrid operation schedule is deci-

ded on the basis of predictions for future renewable energy

generation and power consumption, and is continuously

corrected according to the latest system state. However, the

majority of the past studies loosely assume that all gener-

ators and loads in microgrid are connected to one bus,

hence ignore the underlying distribution network con-

straints, e.g. node voltage boundaries. As a consequence,

schedules got by this way may hazard system reliability

and prove infeasible in practice [8].

In summary, a dispatch scheme that properly copes with

real-time uncertainty and nonlinear power flow constraints

makes the original microgrid economic dispatch problem a

much more complicated one, and requires efficient math-

ematical methods to solve. In this paper, we handle this

specific problem with both model predictive control strat-

egy and conic programming. The main contributions of our

work are listed as follows.

1) We formulate a model predictive-based centralized

control model for microgrid with multiple distributed

energy resources and flexible load in real-time envi-

ronment. Facing the real-time uncertainties, power

dispatch of all the controllable units in the system is

optimized on a rolling basis by microgrid EMS to

ensure a global power balance and operation economy

under all possible scenario realizations.

2) We construct the above real-time microgrid economic

dispatch problem as an optimal power flow (OPF)

model to enclose network constraints and losses,

therefore guarantee the feasibility of the proposed

schedule at a distribution network level. The model

established could be easily modified and adapted to

distribution feeders at any scale.

3) We apply the technique of conic programming to solve

the proposed mixed-integer nonlinear optimization

problem. This method relaxes the nonlinear power

balance equality constraints into linear inequality

constraints to evade their non-convexity, while retains

the global optimality of the solution. To the best of our

knowledge, conic programming has not been previ-

ously used in the context of microgrid economic

dispatch. Case studies are implemented to verify its

applicability and efficiency.

The rest of the paper is organized as follows. Section 2

describes the centralized model predictive control

scheme of microgrid system, followed by the detailed

mathematical model of real-time microgrid economic dis-

patch. Section 3 introduces the conic programming tech-

nique and presents the mixed-integer conic programming

formulation of the original problem. Section 4 reveals

simulation results from a case study and makes compar-

isons between MPC schedule and the regular day-ahead

schedule. Finally, concluding remarks are made in Sect. 5.

2 MPC-based microgrid economic dispatch

2.1 Centralized MPC scheme of microgrid

In the MPC approach, control actions to a certain system

are computed online based on existing system knowledge

and future predictions rather than using off-line static results

[13]. At each time step, an optimization model that covers a

finite time horizon produces a control action sequence, but

only the first action is put into effect. The system then moves

to the next time step with renewed system state and future

information, and repeats the calculation above. MPC is

considered closed-loop due to its ongoing modulation of

control actions to compensate for inaccurate prediction. The

principle of MPC is shown in Fig. 1.

As can be seen from above, an MPC scheme generally

includes the following components : � a control agent that

is in charge of optimizing control actions over a finite

horizon in accordance with a system-wide objective func-

tion; ` multiple local agents that implement control
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actions; ´ possible disturbances that may affect the local

implementation of control actions.

In the context of microgrid economic dispatch, microgrid

EMS acts as the central control agent to generate suitable set

points for all controllable units, as well as the optimal power

exchange with the utility grid, with the aim of minimizing

the total operation cost. Local agents include micro turbines,

energy storage system and flexible load. Together they

maintain a global power balance by constantly responding to

the coordinated energy management order from the higher-

level EMS. Wind speed, load variations and electricity pri-

ces belong to uncertain disturbances, and their predications

are continuously updated by EMS. The whole centralized

MPC scheme of microgrid economic dispatch is presented in

Fig. 2 [14]. Next part presents the detailed mathematical

description of the proposed model.

2.2 MPC-based problem formulation

2.2.1 Objective function

At time step i, microgrid EMS minimizes the total

operation cost over a time horizon with length N by solving

the following problem:

min costðiÞ ¼
XiþN�1

t¼i

ðkRTðtÞPRT
gridðtÞ

þ
XNG

MT¼1

CMGðPRT
MTðtÞÞ þ CRT

LS ðtÞ þ CRT
LCðtÞÞ

ð1Þ

where kRT (t) is the real-time price of interval t; PRT
grid(t) is

the power exchange; PRT
MT (t) is the micro turbine genera-

tion; NG is the set of micro turbines. The first term is the

cost for power exchange with the utility grid; the second

term stands for micro turbine generation cost; the last two

terms express costs for dispatching the flexible load,

including load transfer (CRT
LS (t)) and load interruption

(CRT
LC (t)). Acronym RT is short for real-time. Cost for wind

power is assumed to be zero.

Fuel cost of micro turbine is calculated as follows [15].

CMTðtÞ ¼ Cfuel

PMTðtÞ
gMT

ð2Þ

where Cfuel is the fuel cost, gMT is micro turbine efficiency.

For simplicity, it is assumed to be fixed and is derived from

technical manuals of Capstone� [16]. Equations (3) and (4)

compute the cost for transferred load and interrupted load,

respectively.

CLSðtÞ ¼
XNLS

r¼1

cLSr qLSr;t urðtÞ ð3Þ

CLCðtÞ ¼aLCPLCðtÞ ð4Þ

where NLS is the set of load transfer contracts; cLSr and qLSr;t
are the price and quantity in rth contract at interval t,

respectively; ur(t) is a 0-1 binary variable indicating the

status of load transfer; aLC and PLC(t) are the compensation

price and quantity of interruptible load, respectively.

2.2.2 State equations of controllable units

The controllable units include micro turbines, energy

storage system, and transferrable/interruptible load. At each

time step i, their control actions over the next [i, i?N-1]

period are predicted via the following state equations:

Control agent

Local agent

Optimize control vector x by
solving the following 
MPC-based problem:

min obj f (x, u, v)
s.t.  A(x

x
) B

Aeq( ) == Beq
x=[x(t), , x(t+N 1)]

Implement 
control

action x(t)

Measure system 
state u and forecast 
future disturbance 

v over a time 
horizon [t, t+N 1]

Local
agent

Local
agent

Local
agent Local agent

Local agent

Disturbance
v(t)

t+1 t

Fig. 1 Principle of MPC

v t t

Weather
forecast

Wind turbine
generation

Electrical
load forecast

Real-time
price forecast

Microgrid EMS: 
economic dispatch 

and load management

PLoad(t)

Pwg(t)
SoC, Pes

PMT

PLC

System 
measurement

(t)RTλ Vk(t) (t), kjθ

SoC( (t 1), t 1),PMT ( , )r

Control action 
implementation

Pgrid

ur,vr

Stability check

t+1 t

Fig. 2 Control scheme of microgrid
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1) Micro turbine

PMTðtÞ � PMTðt � 1Þj j � rgP
max
MT ð5Þ

Pmin
MT �PMTðtÞ�Pmax

MT ð6Þ

XNG

MT¼1

PMTðtÞ=rMT ¼ PTloadðtÞ ð7Þ

where rg is a ramping parameter; PTLoad(t) is the current

amount of thermal demand; rMT is the power/heat ratio of

micro turbine.

Equation (5) limits the change of micro turbine generation

at two consecutive intervals. Equation(6) sets the generation

range. Equation (7) ensures that total thermal production of

micro turbines should be equal to thermal demand.

2) Battery

SoCðtÞ ¼ gbSoCðt � 1Þ þ DtPesðtÞ=Capes ð8Þ

SoCmin � SoCðtÞ� SoCmax ð9Þ

Pmax
es;d �PesðtÞ�Pmax

es;c ð10Þ

SoCð0Þ ¼ SoCðNÞ ð11Þ

where gb is the self-discharge rate of the battery; Dt is the
length of time interval; Capes is the battery capacity; Pes(t) is

battery charge/discharge rate. Equation (8) links SOC in

different time intervals [8]; (9) and (10) limit SOC and

charge/discharge rate, respectively; (11) guarantees that SOC

returns to its initial value at the end of a dispatch cycle.

3) Flexible load

We assume that there are two types of flexible load

residing in the microgrid system. The first type is the trans-

ferrable load, which consumes a constant amount of power

continuously at certain time slots, i.e. washing machines,

dryers, dish washers [17]. Scheduling of the transferrable load

is realized via contracts, which contains the amount of load

that can be transferred, the energy price, as well as the time

slots of load transfer and load recovery [18]. The second type

is the interruptible load, which refers to a certain amount of

base load that can be interrupted by microgrid EMS with cost

for systematic security or economic reasons [19].

PLSðtÞ ¼
XNLS

r¼1

qLSr;t urðtÞ ð12Þ

X

t02LSr;t;t0
vrðt; t0Þ ¼ urðtÞ ð13Þ

PLRðt0Þ ¼
XNLS

r¼1

X

t2LSr;t;t0
qLSr;t vrðt; t0Þ ð14Þ

0�PLCðtÞ� ePLoadðtÞ ð15Þ

Equation (12) calculates the amount of load transferred

at time interval t; (13) implies that if load transfer happens

at t, it must be recovered at another interval within the

given time slots LSr;t;t0 , where vr(t, t0) is a 0-1 binary

variable indicating whether there’s load transferring from

interval t to t0 in rth contract; (14) calculates the amount of

load recovered at time interval t0 from all other intervals. In

(15), PLoad(t) is the current amount of electrical load, � is a

positive factor indicating the maximum percent of

electrical load that can be interrupted.

2.2.3 Distribution network constraints

The real/reactive power injection at each node k in the

underlying distribution network system of the studied

microgrid with n nodes satisfies the following power bal-

ance constraints:

PkðtÞ¼
X

j2nðkÞ
PkjðtÞ

¼
X

j2nðkÞ
gkjV

2
k ðtÞ�VkðtÞVjðtÞðgkjcoshkjðtÞþbkjsinhkjðtÞÞ

¼PDG;kðtÞ�PL;kðtÞ
ð16Þ

QkðtÞ ¼
X

j2nðkÞ
QkjðtÞ

¼
X

j2nðkÞ
�bkjV

2
k ðtÞ þ VkðtÞVjðtÞðbkjcoshkjðtÞ � gkjsinhkjðtÞÞ

¼ QDG;kðtÞ � QL;kðtÞ
ð17Þ

where n(k) is the set of nodes that is connected to node k,

k ¼ 2; 3; . . .; n; gkj and bkj are the real and image part of

admittance between node j and node k; Vk(t) is the voltage

magnitude; hkj(t) is the voltage phase angle difference

between node k and node j; PDG;k(t)/QDG;k(t) is the sum of

real/reactive power generation from wind turbines, micro

turbines, battery charge/discharge and transferred/

interrupted load at node k, while PL;k(t)/QL;k(t) is its

initial load plus the load recovered. For simplicity, only

real power of DGs and load is dispatchable in this paper,

reactive power is set to fixed values.

PlossðtÞ ¼
Xn

k¼1

PIkðtÞ ð18Þ

PgridðtÞ ¼ PI1ðtÞ ð19Þ

Pmin
grid �PgridðtÞ�Pmax

grid ð20Þ

Vmin
k �VkðtÞ�Vmax

k ð21Þ

Equations (18) and (19) compute network losses and

power exchange with the utility grid, respectively. It should

be noted that node 1 in the network is assumed to be the

point of common coupling (PCC) and has a fixed voltage
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magnitude value of 1 p.u. with phase angle 0. Therefore,

power injection at node 1 is the power flow from utility

grid. Equation (20) sets the range of power exchange.

Equation (21) guarantees that node voltage level varies

within a normal range, i.e. [0.95, 1.05].

2.3 Control case

To verify the effectiveness of MPC strategy in opti-

mizing real-time microgrid economic dispatch, we choose

the routine day-ahead microgrid schedule as the control

case. In day-ahead schedule, set points of all controllable

units in the next day are calculated based on the predic-

tion of random factors, and they remain unchanged in

real-time operation. Plentiful researches have been carried

out on day-ahead schedule in literature, and interested

readers could refer to [20, 21] for more details. The day-

ahead schedule model has the following objective

function.

min cost ¼
XN

t¼1

ðkDA;estðtÞPDA
gridðtÞ

þ
XNG

MT¼1

CMTðPDA
MTðtÞÞ þ CDA

LS ðtÞ þ CDA
LC ðtÞÞ

ð22Þ

Equation (22) sets the aim of day-ahead schedule, which

is subjected to constraints (5)–(21), where kDA;est(t) is the

day-ahead estimated price, and all the other symbols hold

the same meaning as in previous equations, except that

acronym DA stands for day-ahead. Due to forecast errors

of RES generation, demand and prices, changes shall take

place in power exchange with utility grid and microgrid

thermal output when day-ahead schedule goes into effect in

real time. Deviation of real-time generation from day-

ahead schedule will be punished, so its actual cost is

measured as follows:

actual cost ¼
XN

t¼1

ðkDAðtÞPDA
gridðtÞ þ kRTðtÞðPRT

gridðtÞ

� PDA
gridðtÞÞ þ

XNG

MT¼1

CMTðPDA
MTðtÞÞ þ CDA

LS ðtÞ þ CDA
LC ðtÞ

þ kpenaltyTLoad maxð0;PDA
TLoadðtÞ � PTLoadðtÞÞ

þ kpenaltygrid jPRT
gridðtÞ � PDA

gridðtÞjÞ
ð23Þ

The first term of (23) implies a two-settlement system

for financial settlement of DA and RT power exchange

[22]. The last two terms imply financial punishment for

deficiency in thermal supply and deviation from day-ahead

power exchange, where PDA
TLoad(t) is the day-ahead

forecasted thermal load, kpenaltyTLoad and kpenaltygrid are the

penalty prices.

3 Problem reformulation based on conic
programming

3.1 Standard form of SOCP

The MPC-based microgrid economic dispatch model

contains integer variables and non-linear distribution net-

work constraints, therefore it is a non-convex problem and

to find the global optimal solution is NP-hard. One efficient

solution is via convex relaxation. In this section, we

introduce the technique of second-order cone programming

to realize convex relaxation and to get the optimal solution

of the original problem. A second-order cone programming

(SOCP) problem has the following standard form [23]:

min
xl

Xf

l¼1

cTxlj
Xf

l¼1

Alxl ¼ b; xl 2 Kl; l ¼ 1; 2; :::; f

( )

ð24Þ

The decision variable set Kl is presented as follows.

Quadratic cone:

Kl ¼ xl;i 2 Rnl jxl;1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xnl

j¼2

x2l;j

vuut ; xl;1 � 0

8
<

:

9
=

; ð25Þ

Rotated quadratic cone:

Kl ¼ xl;i 2 Rnl j2xl;1xl;2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xnl

j¼3

x2l;j

vuut ; xl;1; xl;2 � 0

8
<

:

9
=

;

ð26Þ

An SOCP problem is a convex programming problem

consisting of a linear objective function, linear equality/

inequality constraints and nonlinear but convex conic

inequality constraints, and its optimal solution can be

obtained using interior point methods within polynomial

time [24]. Next part presents how the MPC-based

microgrid economic dispatch problem can be transformed

into the form of convex mixed-integer second-order cone

programming and be efficiently solved.

3.2 OPF model reformulation

As is stated before, power balance constraints in MPC-

based microgrid economic dispatch model is nonlinear and

non-convex, and does not suit the standard form of conic

programming. Hence new variables are introduced to the

model as follows [25]:
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ukðtÞ ¼ V2
k ðtÞ=

ffiffiffi
2

p
ð27Þ

V2
k;minffiffiffi
2

p � ukðtÞ�
V2
k;maxffiffiffi
2

p ð28Þ

RkjðtÞ ¼ VkðtÞVjðtÞcoshkjðtÞ ð29Þ

TkjðtÞ ¼ VkðtÞVjðtÞsinhkjðtÞ ð30Þ

Based on these new variables, the real and reactive

power injection equations can be rewritten as:

PkðtÞ ¼
X

j2nðkÞ

ffiffiffi
2

p
gkjukðtÞ � gkjRkjðtÞ � bkjTkjðtÞ

¼ PDG;kðtÞ � PL;kðtÞ
ð31Þ

QkðtÞ ¼
X

j2nðkÞ
�

ffiffiffi
2

p
bkjukðtÞ þ bkjRkjðtÞ � gkjTkjðtÞ

¼ QDG;kðtÞ � QL;kðtÞ
ð32Þ

2ukðtÞujðtÞ�R2
kjðtÞ þ T2

kjðtÞ;Rkj � 0 ð33Þ

Equation (33) describes the relationship among the

newly defined variables uk(t), Rkj(t) and Tkj(t), which

constitutes a rotated quadratic cone. The function of (33) is

to relax the initial non-convex feasible region into a convex

one, since global optimality can only be ensured under the

condition that the problem is convex. Furthermore, it has

been proved that if (33) becomes binding at the solution

obtained by the reformulated OPF model, then this solution

is also the optimal one to the original problem [26].

By now, the conic programming model for MPC-based

microgrid economic dispatch becomes solving (1) while

complying with (5)–(15), (18)–(20), (28), (31)–(33), and

can be efficiently solved by commercial softwares that uses

branch-and-bound algorithm [27].

3.3 Solution process

The process of solving the proposed MPC-based

microgrid ED problem is demonstrated in Fig. 3.

As is shown in the figure, the third step in the process

involves solving a mixed integer nonlinear programming

problem due to the existence of nonlinear power flow

constraints and binary variables indicating load transfer.

Model complexity and computation burden would increase

rapidly with a longer prediction horizon. For the sake of

computation efficiency, a 24-hour time period is chosen

with 1 hour at each interval, i.e., N = 24. On the other hand,

a 24-hour period is also reasonable since it tallies with the

natural daily cycle of power consumption and electricity

price [28].

In addition, forecast tools are needed to predict possible

future disturbance. Multiple forecasting measures have

been developed in literature, including least-square support

vector machines (LS-SVM), neural network (NN), time-

series based ARIMA model, etc. However, as the main

focus of this paper is not forecast techniques, we assume

that forecast error of the uncertain factors follow a certain

probability distribution with known mean value and stan-

dard deviation.

4 Numerical analysis

4.1 System configuration

We transform the IEEE 33-bus distribution system [29]

into a microgrid by adding 2 wind turbines, 4 micro tur-

bines, one battery, transferrable and interruptible load at

the selected nodes. The configuration of microgrid system

is shown in Fig. 4. Hourly load is distributed among the

nodes according to the systems original load distribution

proportion. Historical data of real-time wind speed, prices

and load obtained from [30] and [31] are used for

simulation.

Day-ahead forecast error of wind speed, electrical

and thermal load and price follows normal distribution

with zero mean and the standard deviation of 20%, 10%

and 20%, respectively. In real-time forecast, we assume

that the standard deviation is reduced by half. Further-

more, we assume that there’s no forecast error of

thermal load in real-time. System parameters are shown

in Table 1.

Start

End

Measure current system status
[SoC(i 1), PMT (i 1), Pwg(i), PLoad(i), P λTLoad(i), RT (i)]

Forecast future energy consumption, prices 
and wind speed for time horizon [ i +1, i+N 1]

PLC , vr , ur based on the conic model 
(1), (5)-(15), (18)-(20), (28), (31)-(33)

Implement SoC(i), Pes(i), PMT (i), PLC(i), 
vr(i, t ), ur(i ) to update system state

Y

N
i=N?

Get control vector sequences MTSoC, , ,P Pes

i+1 i

Fig. 3 Solution process of MPC-based microgrid economic dispatch
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4.2 Simulation results

4.2.1 Verification of MPC effectiveness

Figure 5 compares micro turbine generation of the

MPC-based microgrid dispatch schedule and day-ahead

schedule. Since micro turbines have a higher fuel cost than

real-time price, they are mainly used to serve the thermal

load. Therefore, during time intervals with little forecast

error of thermal load (e.g. 1, 4, 9–11 h), micro turbine

generation of the two schedules are approximately the

same; while in time intervals with greater forecast devia-

tion (e.g. 3, 5–8, 13–14 h), power generation of the two

schedules differs a lot from each other. Forecast error of

thermal demand leads to less economic use of micro tur-

bines in day-ahead schedule.

Figure 6 displays the load profiles after load transfer and

load interruption in both schedules. By tracking real-time

prices, MPC schedule transfers and interrupts more flexible

load in price peak period (1–2 h, 8–9 h); While in day-

ahead schedule, forecast errors of real-time price results in

a load profile with less change.

Table 2 lists the operation cost obtained by MPC

schedule and day-ahead schedule on one day. To further

justify the higher economic efficiency of the former, sim-

ulations for both schedules have also been run for one-

week period, based on the measured weather data, price

information and demand record from November 2, 2014 to

November 8, 2014. And the results have been reported in

the table. It clearly shows that MPC schedule outperforms

the day-ahead schedule in economy and could reduce

system operation cost to a considerable extent.

4.2.2 Inspection on system stability

Figure 7 shows the microgrid voltage level over the

whole horizon. As can be observed in the figure, all bus

voltages are kept within the normal range [0.95 p.u, 1.05

p.u.], indicating that MPC schedule is feasible at a distri-

bution network level.

4.2.3 Computation efficiency

The MPC-based economic dispatch model has 5856

control variables in total, among which 1800 are 0–1 bin-

ary variables. The total number of constraints is 1931. The

81 765432 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24 25 26 27 28 29 30 31 32 33

MT

MT

MT

MT

ES LC LS

WT

WT

Fig. 4 Microgrid configuration

Table 1 System parameters

Micro turbine

No. Pmax
dg (kW) Pmin

dg (kW) rMT gð%Þ Cgas ($/MWh) rg

1 30 0 0.46 26 44.2 0.5

2 65 20 0.51 28 39.7 0.5

3 65 20 0.51 28 39.7 0.5

4 200 50 0.73 33 35 0.5

Battery

SoC Capes (kWh) Pcmax
es (kW) Pdmax

es (kW) Dt SoC(0) gb

0.3-0.9 500 250 -250 1 0.5 0.95

LS contract Load interruption

No. LS period LR period qLSr;t (MW) cLSr ($) aLC ($/MWh) �

1 1, 2 5, 6 0.3 5 100 0.2

2 8, 9 11, 12 0.3 10

3 18, 19 23, 24 0.2 15
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number of rotated quadratic cones is 768. 24-hour real-time

schedule is calculated by a desktop computer with

2.67 GHz Intel� Xeon� CPU and 6 GB RAM. MOSEK

optimization toolbox [27] is used to solve the mixed-inte-

ger SOCP problem. Convergence time for each interval is

shown in Table 3.

Average convergence time of Table 3 is 4.8 s and in the

worst case, convergence took 11 s, both are much shorter

than the one-hour dispatch interval, which verifies the

feasibility of MPC schedule in real-time power dispatch.

4) Test of algorithm robustness

Since both day-ahead schedule and MPC schedule

involve forecasts of uncertain factors, only that the latter

conducts an intra-day forecast with higher accuracy.

Forecast errors exert inevitable disturbance on the robust-

ness of scheduling strategy. To test the robustness of the

proposed MPC model, 10 hypothetical scenarios are ran-

domly generated with different forecast errors. Total costs

from day-ahead schedule and MPC schedule in each sce-

nario are shown in Fig. 8.

The standard deviation and range of the 10 costs cal-

culated by day-ahead schedule are $16.327 and $54.69,

respectively; while those of MPC schedule are $0.958 and

$3.1, respectively. Both indices show that optimal solutions

of the latter fluctuates less under various conditions, and

possesses higher robustness. This is because stochastic

parameters input in MPC model are updated on a rolling

basis, and power dispatch is adjusted accordingly, so that

negative disturbances on operation economy are greatly

depressed.
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Fig. 5 Comparison of micro turbine generation
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Fig. 6 Comparison of load profiles

Table 2 Comparison of operation cost

Operation cost MPC DA schedule

Total cost ( day) ($) 876.81 1019

Cost saving (%) 13.95

Total cost (1 week) ($) 8532 9299

Cost saving (%) 8.25

V
ol

ta
ge

 (p
.u

.)

0.94

0.96

0.98

1.00

1.02

1.04

1.06

Time (hour)
0 5 10 15 20 25

Fig. 7 Microgrid voltage level

Table 3 Computation time

Interval 1 2 3 4 5 6 7 8

Time (s) 4.7 4.9 9.0 5.2 4.6 11.0 3.3 4.1

Interval 9 10 11 12 13 14 15 16

Time (s) 7.2 3.0 4.7 8.0 4.3 7.9 5.2 5.0

Interval 17 18 19 20 21 22 23 24

Time (s) 3.2 3.1 6.3 1.6 2.4 2.7 2.2 1.7

900

1000

1100 Std: $16.327; R: $54.69

(a) Day-ahead schedule

Scenario

Scenario

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

C
os

t (
$)

C
os

t (
$)

876
878
880

Std: $0.958; R: $3.1

(b) MPC-based schedule

Mean: $1017.2

Mean: $877.27

Fig. 8 Operation costs under hypothetical scenarios
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To verify the equality of relaxed rotated quadratic conic

constraint (33) at the optimal solution, a relaxed deviation

D is further defined and computed as follows.

DkjðtÞ ¼ j2ukðtÞujðtÞ � R2
kjðtÞ � T2

kjðtÞj ð34Þ

The maximum value of D for all distribution lines

during 24-hour horizion is 5.1225e-07, proving that the

solution obtained is accurate enough.

From what has been observed above, it can be safely

concluded that MPC-based real-time schedule exceeds day-

ahead schedule in both operation economy and robustness,

which can be mainly attributed to its look-ahead perspective

and the embedded feedback modulation mechanism. Fur-

thermore, simulations also prove that computation burden of

MPC schedule is affordable under real-time circumstances.

5 Conclusion

In this paper we explore the use ofmodel predictive control

strategy in optimizing real-time microgrid power dispatch to

counteract the unfavorable influences of uncertain factors.

Distributed generators, energy storage and flexible load, along

with power flow constraints of the underlying distribution

system are all enclosed by the established model. To solve the

above mixed integer nonlinear optimal power flow problem,

the technique of second-order cone programming is applied to

evade the non-convexity of the original problem while

ensuring global optimality. The proposedmodel is tested on a

reconstructed IEEE-33 bus distribution system and compared

with the general day-ahead schedule. Simulation results show

that MPC schedule outshines day-ahead schedule in both

economy and robustness, and meets the requirement of fast

convergence, therefore is of high feasibility in practical

application.
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