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Abstract This paper proposes a new algorithm—binary

glowworm swarm optimization (BGSO) to solve the unit

commitment (UC) problem. After a certain quantity of

initial feasible solutions is obtained by using the priority

list and the decommitment of redundant unit, BGSO is

applied to optimize the on/off state of the unit, and the

Lambda-iteration method is adopted to solve the economic

dispatch problem. In the iterative process, the solutions that

do not satisfy all the constraints are adjusted by the cor-

rection method. Furthermore, different adjustment tech-

niques such as conversion from cold start to hot start,

decommitment of redundant unit, are adopted to avoid

falling into local optimal solution and to keep the diversity

of the feasible solutions. The proposed BGSO is tested on

the power system in the range of 10–140 generating units

for a 24-h scheduling period and compared to quantum-

inspired evolutionary algorithm (QEA), improved binary

particle swarm optimization (IBPSO) and mixed integer

programming (MIP). Simulated results distinctly show that

BGSO is very competent in solving the UC problem in

comparison to the previously reported algorithms.

Keywords Binary glowworm swarm optimization,

Correction method, Priority list, Unit commitment

1 Introduction

Unit commitment is an important optimization problem

in the power system. Its objective is to determine the on/off

status of each unit and the economic dispatch of power

demand in a scheduling period in order to minimize the

total system production cost under generating units’ con-

straints and power system’s constraints. Since the unit

commitment (UC) problem has the characteristic of high-

dimension, discreteness and non-linearity, it takes lots of

time to get the exact best solution of this problem by the

enumeration method, and the computation time increases

dramatically with the size of unit [1].

Because of its significant economic benefits, researchers

around the world have done a lot of research and proposed

many methods. Reference [2] used the dynamic program-

ming method to solve the UC problem. In order to save the

computation time, the units were classified and all the units

formed different kinds of groups. As a result, the combi-

nations of the units, as well as the computation time

decreased. The extended priority list (EPL) method was

introduced in [3]. The EPL method consisted of two steps.

At first, disregarding the operational constraints, we got the

original solutions by priority list (PL) algorithm very

quickly, secondly, some heuristic processes were used to

ensure that all the solutions satisfy the operational con-

straints. Reference [4] concentrated on the implementation

aspects of Lagrangian relaxation (LR) method applied to

realistic and practical UC problem, which aided in con-

firming the viability of this technique especially for large

scale thermal UC programs. On this basis, [5] presented the

enhanced adaptive Lagrangian relaxation (ELR) method

with novel method to decide the on/off status of the units,

new way of initializing the Lagrangian multipliers, unit

classification, and adaptive adjustment of Lagrangian mul-

tiplier. As a result, the production cost was less expensive
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than the Lagrangian relaxation method. Furthermore, the

CPU time is much smaller. Although these conventional

optimization algorithms have the advantage of high speed

and accuracy in solving small-scale UC problem, with the

increase in the size of the generating units, the quality of the

solution decreases and some of these algorithms are easy to

fall into the ‘‘curse of dimensionality’’.

Reference [6] presented a genetic algorithm (GA) to

solve the UC problem. Since the selection scheme, muta-

tion operation and the corresponding correction method

were used, the GA provided flexibility in modeling both

time-dependent and coupling constraints. Simulated

annealing (SA) method had the probabilistic jumping

property which existed in the whole searching process and

varied with time. When it was applied to the UC problem,

it helped to keep the diversity of the feasible solutions and

improved the probability of getting the best solution [7, 8].

Particle swarm optimization (PSO) method, first proposed

by Eberhart and Kennedy, was easy to code and did not

have many parameters to adjust in comparison with the GA

mentioned above. Therefore, it not only obtained the better

solution, but also considered more constraints such as the

realistic nonlinear time-dependent startup cost, limits of the

ramp rate and the prohibited zone [9]. Instead of the ran-

dom mutation in the PSO method, the improved particle

swarm optimization algorithm (IPSO) takes into account

more information of the particles, thus the particles had

more probability of moving to the better solution. Penalty

factor was applied to the solutions that violate any of the

constraints [10]. On this basis, [11] presented a new

improved binary PSO (IBPSO) method, which was used to

deal with the on/off status of the units. Meanwhile, the

Lambda-iteration method was adopted to dispatch the load

economically. In the iterative process, some heuristic strat-

egies were used to repair the solutions that violate the system

constraints or operational constraints. Reference [12] pro-

posed the evolutionary programming (EP) method. All the

feasible solutions changed randomly and competed with

each other; then the better solutions were selected and got

into the next iteration. The power output of the units in the

whole scheduling period was represented by a string of

symbols. The quantum-inspired evolutionary algorithm

(QEA) proposed in [13] was improved by integrating the

quantum theory. To be specific, the on/off status of the units

was represented by the quantum bits and used the rotation

gates to keep the diversity of the feasible solutions and move

to the better solutions. The best solution of the QEA method

was less expensive than that of the previous methods and the

execution time increased linearly with the size of the gen-

erating units. To a certain extent, these intelligent algorithms

solve the problem brought by the augment of the scale of the

generating units. However, they have the disadvantage of

falling into local optimal solution prematurely. With the

population of the software CPLEX, the MIP method to solve

the UC problem became very effective. However, the

accuracy of convergence had great impact on the computa-

tion time and the quality of the solution [14].

Glowworm swarm optimization (GSO) is a new swarm

intelligence optimization algorithm [15]. The optimization

process is as follows. At first, all the glowworms are ran-

domly generated in the search space. Each of them carries

luciferin, which represents the brightness of the light send

out by the glowworms, then they look for the glowworms

that have higher brightness within their own range of view,

and move towards one of them using the roulette approach.

After the move, the luciferin of the glowworms is updated.

In case of having too many glowworms within their view

range, every one of them adjust their view range after the

move. Many researchers have applied the GSO algorithm

to solve practical problems. The 0–1 knapsack problems

were effectively solved by using GSO algorithm [16]. The

GSO algorithm was also used to find the optimal solution

for the continuous optimization problem. The results above

showed that GSO performed much better than many other

algorithms, especially for different kinds of various global

optimization problems [17].

This paper proposes a binary glowworm swarm opti-

mization (BGSO) algorithm to solve the UC problem. Each

glowworm in the BGSO algorithm is a T�N matrix that

represents all the units’ on/off status in the whole sched-

uling period. Since the on/off status of the units are binary

variables, we propose the Hamming distance to represent

the distance between the glowworms creatively, instead of

the Euclidean distance adopted in the original GSO. Fur-

thermore, we thought of a new way to update the on/off

status of the units in the form of probability. Meanwhile,

the Lambda-iteration method is adopted to solve the eco-

nomic dispatch problem. The Lambda-iteration method and

the BGSO algorithm are run at the same time for the

purpose of finding the solution that has the least total

production cost. Furthermore, the correction method and

several adjustment techniques are proposed to ensure that

the solutions are diverse in the iterative process and satisfy

all the constraints.

This paper is organized as follows. The mathematical

formulation of the UC problem including the objective

function and the constraints is illustrated in Section 2.

Section 3 describes the procedure and principle of GSO.

Section 4 proposes the BGSO applied to the UC problem.

Furthermore, the correction method to guarantee that the

solutions are feasible and several techniques to keep the

diversity of the solutions and contribute to better solutions

are also illustrated. The BGSO method is tested with the

number of generating units in the range of 10–140 and the

results are compared with the other algorithms in Sec-

tion 5. The conclusion is given in Section 6.
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2 Formulation of UC problem

2.1 Objective function

The objective of the UC problem is to minimize the total

production cost consisting of the generation cost and the

start-up cost of the generating units under the circumstance

where the operational constraints and the constraints of the

generating units are satisfied in the scheduling period. The

objective function is expressed as

F ¼
XT

t¼1

XN

i¼1

½Ciðpt
iÞ � ut

i þ Siu
t
ið1 � ut�1

i Þ� ð1Þ

where F is the total production cost; T the number of hours

in the scheduling period; N the number of generating units;

and ut
i on/off status of the unit i at hour t, 1 represents the

on status of the unit i at hour t, 0 represents the off status of

the unit i at hour t. Ci(pi
t) is the generation cost function of

unit i. It is normally a quadratic polynomial represented by

Ciðpt
iÞ ¼ aiðpt

iÞ
2 þ biðpt

iÞ þ ci ð2Þ

where pt
i generation output of unit i at hour t; and ai, bi, ci

are parameters of unit i.

Si is the start-up cost of unit i which is related to the

duration time of the off state of unit i. It can be expressed

by

Si ¼
HSCi MDTi\Xt

OFFi �MDTi þ CSHi

CSCi MDTi þ CSHi\Xt
OFFi

�
ð3Þ

where HSCi is hot start-up cost of unit i; CSCi the cold start-

up cost of unit i; Xt
OFFi the duration time during which unit

i keeps off status at hour t; CSHi cold start time of unit i; and

MDTi the minimum down time of unit i.

2.2 Constraints

The constraints of the UC problem are listed as follows:

1) System power balance constraint

XN

i¼1

ut
ip

t
i ¼ Dt ð4Þ

2) Spinning reserve constraint

XN

i¼1

ut
ip

max
i �Dt þ Rt ð5Þ

3) Generation limit constraint

pmin
i � pt

i � pmax
i ð6Þ

4) Minimum up time constraint

ðut�1
i � ut

iÞðXt�1
ONi � MUTiÞ� 0 ð7Þ

5) Minimum down time constraint

ðut
i � ut�1

i ÞðXt�1
OFFi � MDTiÞ� 0 ð8Þ

where Dt is power demand at hour t; Rt the spinning reserve

at hour t; pmax
i the maximum power generation of unit i;

pmin
i the minimum power generation of unit i; MUTi the

minimum up time of unit i; and XONi
t the duration time

during which unit i keeps on status at hour t.

3 Glowworm swarm optimization

In the GSO algorithm, a group of glowworms are ini-

tialized randomly in the solution space of the objective

function and each of them has the same value of luciferen.

The brightness of the glowworm is proportional to the value

of luciferen. Moreover, the fitness value of the glowworm is

closely related to the luciferen. The larger the value of a

glowworm’s luciferen is, the more strongly it attracts the

other glowworms within their own scope, which is called the

local-decision range. In the iterative process, glowworm i

moves towards one of the glowworms that both have better

fitness value and are within the ith glowworm’s local-deci-

sion range with a certain probability. Then the ith glow-

worm’s local-decision range is adjusted for the purpose of

controlling the quantity of the glowworms within it. The

procedure of GSO algorithm is presented as:

1) Luciferin update phase

liðtÞ ¼ ð1 � qÞ � liðt � 1Þ þ c � JðxiðtÞÞ ð9Þ

where xiðtÞ is the location of glowworm i at iteration t; li(t)

the luciferin of glowworm i at iteration t; q the luciferin

decay constant; c the luciferin enhancement constant; and

JðxiðtÞÞ the objective function of glowworm i.

2) Movement phase

Within glowworm i’s local-decision range, it selects

glowworm j from all the glowworms that have larger value

of luciferin by the way of roulette probability.

Roulette probability formula

pijðtÞ ¼
ljðtÞ � liðtÞP

k2NiðtÞlkðtÞ � liðtÞ
ð10Þ

Distance formula

dijðtÞ ¼ jjxiðtÞ � xjðtÞjj ð11Þ

Location update formula

xiðt þ 1Þ ¼ xiðtÞ þ s
xjðtÞ � xiðtÞ

djiðtÞ

� �
ð12Þ

where Ni(t) is the numbers composed by all the glowworms

that have larger value of luciferin within glowworm i’s
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local-decision range; dij(t) the distance between glowworm

i and glowworm j; jj:jj the standard Euclidean norm oper-

ator; and s the size of step.

3) Local-decision range update phase

ri
dðt þ 1Þ ¼ minfrs;maxf0; ri

dðtÞ þ bðnt � jNiðtÞjÞgg
ð13Þ

where ri
dðtÞ is the local-decision range of glowworm i at

iteration t; rs the maximum local-decision range parameter

used to control the rate of changing local-decision range; nt

the parameter used to control the number of glowworms

within the local-decision range; and jNiðtÞj the total num-

ber of glowworms that have the larger luciferin within the

local-decision range.

4 BGSO for UC problem

4.1 Binary glowworm swarm optimization

The GSO algorithm is used to solve the problems that

contain continuous variables. When it comes to the UC

problem, the variables representing the on/off state of the

units are binary, hence the BGSO is proposed to solve the

UC problem. The modification of GSO is shown as follows.

1) Computation of distance

Instead of the Euclidean distance adopted in the GSO,

Hamming distance is proposed to represent the distance

between glowworm i and glowworm j. The Hamming

distance between two glowworms is the number of loca-

tions where one has a ‘‘0’’ and the other a ‘‘1’’ [18]. It can

be expressed by

hm dijðtÞ ¼ hamming distanceðxiðtÞ; xjðtÞÞ ð14Þ

2) Location update

The location of every glowworm is composed of m

binary variables. In the location update process, the moving

step is ignored and each dimension of glowworm i’s

location is updated in the form of the probability. It can be

expressed by

xi;k t þ 1ð Þ ¼
xi;kðtÞ r kð Þ\p1

xj;k tð Þ p1 � r kð Þ� p2

roundðnÞ p2 � r kð Þ

8
<

: ð15Þ

where xi;kðtÞ is the location of dimension k of glowworm i

at iteration t; rðkÞ the parameter generated randomly

r(k) 2 [0, 1](1 B k B m); p1, p2 the parameters used to

control the update probability; and n the random variable

generated between 0 and 1.

4.2 Initialization of glowworms for UC problem

In this paper, the initialization process is not only to

generate a quantity of initial feasible solutions that satisfy

all the constraints, but also to keep the diversity of the

solutions. At the end of the initialization process, the total

production cost corresponding to each glowworm is cal-

culated, which is the basis of the following iterative

process.

4.2.1 Structure of glowworms

Each glowworm is a T � N matrix, the elements of which

represent all the units’ on/off status in the whole scheduling

period. For example, ui
t in row t and column i represents the

on/off status of unit i at hour t.

U ¼

u1
1 u1

2 � � � u1
N

u2
1 u2

2 � � � u2
N

..

. ..
. ..

. ..
.

uT
1 uT

2 � � � uT
N

2
6664

3
7775

4.2.2 Initialization of glowworms

In order to improve the quality of the initial solutions,

the priority list and the decommitment of redundant unit

are applied. In this paper, the priority list is based on the

capacity of units. The unit that has the maximum capacity

has the highest priority. If two units have the same

capacity, the one that has lower average full-load cost has

the higher priority. The procedure of the initialization of

glowworms is as follows.

Step 1: Set t = 1.

Step 2: If t = 1, set the units whose initial status is a

positive number and less than its minimum up

time be on status. Else duplicate the on/off status

of the units at hour t - 1.

Step 3: Check the maximum output of the committed

units. If the committed units cannot satisfy the

spinning reserve constraint (5) at hour t, commit

the unit in the ascending order of the priority list

until (5) is satisfied.

Step 4: Search for redundant unit that have the following

properties in the descending order of the priority

list at hour t.

1) This unit satisfies minimum up time con-

straint.

2) After this unit is decommitted, the spinning

reserve constraint (5) is still satisfied.

If such a unit is found, it is decommitted with

fifty percent probability, ensuring the diversity

of the initial solutions.
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Step 5: Update the status of the unitstatus when they

meet the

Xt
ONi ¼ Xt�1

ONi þ 1 if ut
i ¼ 1

0 if ut
i ¼ 0

�

Xt
OFFi ¼ 0 if ut

i ¼ 1

Xt�1
OFFi þ 1 if ut

i ¼ 0

�

8
>><

>>:
ð16Þ

Step 6: If t \ T, set t = t ? 1 and return to step 2. Else

go to step 7.

Step 7: Computation of total production cost

The total production cost consists of generation

cost and start-up cost. These two parts are

discussed separately as follows.

1) Generation cost

We have already got the on/off status of the

units at every hour so we can apply the

Lambda-iteration method to dispatch the load

economically; then use (2) to compute the

generation cost of each hour

2) Start-up cost

According to the changing time of the units’

on/off status we can use (3) to compute the

start-up cost very easily.

Step 8: Update the value of luciferin by using (9).

4.3 Iterative process for UC problem

After the initialization of the glowworms, the glow-

worms move in the iterative process. However, they may

move out of the solution space, which means that the

solutions violate at least one of the constraints so the cor-

rection method is adopted to keep the solutions feasible.

Furthermore, several techniques are proposed in case of

falling into the local optimal solution.

4.3.1 Formation of new glowworm by BGSO

In the iterative process, each of the glowworms moves

towards another glowworm. The procedure is as follows.

Take glowworm i for example.

Step 1: Computation of the hamming distances between

glowworm i and the other glowworms by using

(14).

Step 2: Since the objective function is to minimize the

production cost, glowworm i is attracted by the

glowworms that have less luciferin within its

own local-decision range.

Step 3: Use (10) to compute the possibility of moving to

glowworm j.

Step 4: Select a glowworm with the roulette approach and

use (15) to update the location of glowworm i.

4.3.2 Correction of newly formed glowworm

Instead of the penalty factor, the correction method is

adopted to make the newly formed glowworm satisfy all

the constraints.

Take the units’ on/off status at time t for example.

Step 1: Set the units that violate (7) be on status and the

units that violate (8) be off status at hour t.

Step 2: Set the units be off status when they meet the

following two conditions.

1) The load at hour t is less than the load at

hour t - 1.

2) The unit is off status at hour t - 1.

Step 3: Check whether the spinning reserve constraint

(5) is satisfied.

If not, firstly commit the units that are on status

at hour t - 1 (t [ 1) and off status at hour t; then

commit the units in the ascending order of the

priority list until (5) is satisfied.

Step 4: Update the status of the unit as shown in (16).

4.3.3 Adjustment techniques of newly formed glowworm

In the iterative process these techniques are applied to

the feasible solutions in order to provide the probability of

better solution and guarantee the diversity of the solutions.

The detailed discussion is shown below.

1) Decommitment of redundant unit

Step 1: Search for the redundant unit that have the

following two properties in the descending

order of the priority list at hour t.

a) This unit satisfies (7).

b) After this unit is decommitted, the

spinning reserve constraint (5) is still

satisfied.

Step 2: If such a unit is found, use (17) to determine

this unit’s on/off status at hour t.

ut
i ¼

0 rand\ðj � 0:5Þ=MDTi

1 rand �ðj � 0:5Þ=MDTi

�
ð17Þ
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The way to decide the value of j.

a) Set k = 1, j = 1.

b) If k ? t = 25, set j = MDTi and break.

Else if Dt?k [ Dt, set j = k and break.

c) If k B MDTi, set k = k ? 1 and return to step b).

Else set j = k and break.

Equation (17) takes into account the load information in the

following hours so it is more likely to produce better

solution; moreover, the usage of the form of probability

and random number ensures the diversity of the feasible

solutions.

2) Conversion from cold start to hot start

Normally, cold start cost is much larger than hot start cost.

Therefore, for the unit i that is committed at hour t when it

has been kept off status for exactly MDTi ? CSHi ? 1 hours,

if it is committed one hour ahead, the total production cost

may decrease. The detailed procedure is as follows

Step 1: Calculate the generation cost at hour t - 1

represented by Cg1.

Step 2: Commit unit i at hour t - 1 and recalculate the

generation cost at hour t - 1 represented by Cg2.

Step 3: Compare Cg2 - Cg1 and the difference between

cold start cost and hot start cost of unit i. If the

latter is larger, it is reasonable to commit unit

i one hour ahead, which means unit i’s

conversion from cold start to hot start.

3) Switch of two units’ commitment order in the adjacent

two hours

Take the unit i committed at hour t and the unit j com-

mitted at hour t ? 1 shown in Fig. 1 for example. If the

commitment of unit j instead of unit i at hour t does not

violate (5) and (8), then compute the total production cost

at hour t and t ? 1 in these two different situations and

choose the better one with seventy percent probability.

4) Switch of two units’ decommitment order in the

adjacent two hours

Take the unit j decommitted at hour t and the unit i de-

committed at hour t ? 1 shown in Fig. 2 for example. If

the decommitment of unit i instead of unit j at hour t does

not violate (5) and (7), then compute the generation cost at

hour t in these two different situations and choose the better

one with seventy percent probability.

5) Replacement of the committed unit based on the

minimum up time

If unit i is committed at hour t and decommitted at hour

t ? MUTi, which indicates that unit i may be redundant

from hour t ? 1 to t ? MUTi, replace unit i with the units

that have less minimum up time and satisfy (8) at hour

t with fifty percent probability.

4.4 Implementation of BGSO for solving UC problem

The procedure of the proposed BGSO for solving UC

problem is presented as follows.

Fig. 1 Switch of the commitment order

Fig. 2 Switch of the decommitment order

Table 1 10-unit system data

Unit Pmax/MW Pmin/MW a/($/MW2h) b/($/MWh) c/($/h) Min up/h Min dn/h Hot start cost/$ Cold start cost/$

1 455 150 0.00048 16.19 1000 8 8 4500 9000

2 455 150 0.00031 17.26 970 8 8 5000 10000

3 130 20 0.002 16.6 700 5 5 550 1100

4 130 20 0.00211 16.5 680 5 5 560 1120

5 162 25 0.00398 19.7 450 6 5 900 1800

6 80 20 0.00712 22.26 370 3 3 170 340

7 85 25 0.00079 27.74 480 3 3 260 520

8 55 10 0.00413 25.92 660 1 1 30 60

9 55 10 0.00222 27.27 665 1 1 30 60

10 55 10 0.00173 27.79 670 1 1 30 60
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Step 1: Set counter = 1.

Step 2: Initialize the glowworms as in Section 4.2.2.

Step 3: Use (9) to update every glowworm’s luciferin

value.

Step 4: Every glowworm move towards one of the

other glowworms that have less production cost.

Step 5: Modify the glowworms as in Section 4.3.2 to

make them satisfy all the constraints.

Step 6: Adjust the glowworms as in Section 4.3.3.

Step 7: Calculate every glowworm’s total production

cost.

Step 8: Use (13) to update their local-decision range.

Step 9: If counter \ maximum iterations, counter =

counter ? 1 and go to step 3. Else, go to step 10.

Step 10: Display the optimal solution.

5 Numerical results

The BGSO algorithm is tested on the power system with

10, 20, 40, 60, 80, 100, 120 and 140 generating units in the

24-h scheduling period. The 10-unit data is shown in

Table 1 and the power demand in the scheduling period is

shown in Table 2. The 20, 40, 60, 80, 100, 120 and

140-unit data are obtained by duplicating the 10-unit data,

whereas the power demand is proportional to the number of

units. In Addition, the spinning reserve is set to be 10% of

power demand.

Table 2 Load demand

Hour Demand/MW Hour Demand/MW

1 700 13 1400

2 750 14 1300

3 850 15 1200

4 950 16 1050

5 1000 17 1000

6 1100 18 1100

7 1150 19 1200

8 1200 20 1400

9 1300 21 1300

10 1400 22 1100

11 1450 23 900

12 1500 24 800

Table 3 Unit output of the 20-unit system’s best solution

Hour Generating unit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 455 455 245 245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 455 455 295 295 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 455 455 382.5 382.5 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0

4 455 455 455 455 0 0 0 0 40 40 0 0 0 0 0 0 0 0 0 0

5 455 455 455 455 0 0 130 0 25 25 0 0 0 0 0 0 0 0 0 0

6 455 455 425 425 130 0 130 130 25 25 0 0 0 0 0 0 0 0 0 0

7 455 455 455 455 130 0 130 130 45 45 0 0 0 0 0 0 0 0 0 0

8 455 455 455 455 130 130 130 130 30 30 0 0 0 0 0 0 0 0 0 0

9 455 455 455 455 130 130 130 130 97.5 97.5 20 20 25 0 0 0 0 0 0 0

10 455 455 455 455 130 130 130 130 162 162 33 33 25 25 10 10 0 0 0 0

11 455 455 455 455 130 130 130 130 162 162 73 73 25 25 10 10 10 10 0 0

12 455 455 455 455 130 130 130 130 162 162 80 80 25 25 43 43 10 10 10 10

13 455 455 455 455 130 130 130 130 162 162 33 33 25 25 10 10 0 0 0 0

14 455 455 455 455 130 130 130 130 97.5 97.5 20 20 25 0 0 0 0 0 0 0

15 455 455 455 455 130 130 130 130 30 30 0 0 0 0 0 0 0 0 0 0

16 455 455 310 310 130 130 130 130 25 25 0 0 0 0 0 0 0 0 0 0

17 455 455 260 260 130 130 130 130 25 25 0 0 0 0 0 0 0 0 0 0

18 455 455 360 360 130 130 130 130 25 25 0 0 0 0 0 0 0 0 0 0

19 455 455 455 455 130 130 130 130 30 30 0 0 0 0 0 0 0 0 0 0

20 455 455 455 455 130 130 130 130 162 162 43 43 0 0 10 10 10 10 10 0

21 455 455 455 455 130 130 130 130 105 105 20 20 0 0 10 0 0 0 0 0

22 455 455 455 455 0 0 130 0 105 105 20 20 0 0 0 0 0 0 0 0

23 455 455 432.5 432.5 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0

24 455 455 345 345 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Parameters are set as follows: the number of glowworms

is 50; the luciferin decay constant q = 0.4; the luciferin

enhancement constant c = 0.6; the local-decision range is

twice the number of the units; b = 0.08; nt = 5; p1 = 0.1;

p2 = 0.9. The program is written in MATLAB R2011a and

executed on a 2.5 GHz CPU with 4-GB RAM personal

computer. In order to have a comprehensive understanding

of the BGSO method, 50 trials are done on every test

system.

Since the best solution of the 10-unit system of BGSO is

the same as that of QEA, the units’ power output of the best

solution can be seen in [13].The best solution of the 20-unit

system is shown in Table 3 and 4, which have never been

illustrated in detail before. We can see that thegeneration

cost in the scheduling period is 1114879 and the start-up

cost is 8400 so the total production cost is 1123297.

The best, worst and mean values of the total production

cost, together with the mean computation time by MIP,

QEA, IBPSO and BGSO for different test systems are

shown in Table 5. We can see that the best solution of the

BGSO algorithm is better in most of the test systems and

the best solution of BGSO algorithm is very close to that of

the MIP method in the 60-unit test system. From Fig. 3, we

can see that the proposed method is faster than the IBPSO

method in all the test systems and QEA algorithm in 10, 20,

40 and 60-unit test systems. Although the calculation time

of BGSO is longer than that of the MIP method, the cal-

culation time of BGSO increases almost linear with the

number of the units, which means that it has the capacity of

solving large-scale UC problems.

6 Conclusion

A BGSO has been proposed for solving the UC problem.

The distance between the glowworms is represented by the

Hamming distance instead of the Euclidean distance and

the update of the glowworm’s location is expressed by the

way of probability. The priority list and decommitment of

redundant unit make a big contribution to the high quality

Table 4 Cost of the 20-unit system’s best solution

Hour Generation

cost

Start-

up cost

Spinning

reserve

On/off status

1 27366.26 0 420 11110000000000000000

2 29109.00 0 320 11110000000000000000

3 33111.24 900 282 11110000100000000000

4 37195.34 900 244 11110000110000000000

5 39457.23 560 274 11110010110000000000

6 44157.72 2220 334 11111011110000000000

7 46008.84 0 234 11111011110000000000

8 48300.68 1100 264 11111111110000000000

9 53838.78 1200 309 11111111111110000000

10 60115.10 640 304 11111111111111110000

11 63832.12 120 314 11111111111111111100

12 67780.33 120 324 11111111111111111111

13 60115.11 0 304 11111111111111110000

14 53838.78 0 309 11111111111110000000

15 48300.68 0 264 11111111110000000000

16 43027.32 0 564 11111111110000000000

17 41283.65 0 664 11111111110000000000

18 44774.09 0 464 11111111110000000000

19 48300.68 0 264 11111111110000000000

20 61047.05 640 299 11111111111100111110

21 53891.99 0 279 11111111111100100000

22 44328.11 0 234 11110010111100000000

23 34862.51 0 182 11110000100000000000

24 30854.84 0 220 11110000000000000000

Table 5 Comparison of simulation results for different systems

Unit Algorithm Cost Mean

time
Best Worst Mean

10 MIP [13] 564647 2

QEA [12] 563938 564672 563969 19

IBPSO [10] 563977 565312 564155 27

BGSO 563938 564226 563952 3

20 MIP [13] 1123908 5

QEA [12] 1123607 1125715 1124689 28

IBPSO [10] 1125216 1125730 1125448 55

BGSO 1123297 1124081 1123771 12

40 MIP [13] 2243020 11

QEA [12] 2245557 2248296 2246728 43

IBPSO [10] 2248581 2249302 2248875 110

BGSO 2242882 2244573 2243582 31

60 MIP [13] 3361614 29

QEA [12] 3366676 3372007 3368220 54

IBPSO [10] 3367865 3368779 3368278 172

BGSO 3361683 3364103 3363115 52

80 MIP [13] 4483194 38

QEA [12] 4488470 4492839 4490126 66

IBPSO [10] 4491083 4492686 4491681 235

BGSO 4482003 4486739 4484513 76

100 MIP [13] 5601857 47

QEA [12] 5609550 5613220 5611797 80

IBPSO [10] 5610293 5612265 5611181 295

BGSO 5601281 5608327 5604186 104

120 BGSO 6722634 6732546 6726644 128

140 BGSO 7891543 7905542 7898763 154
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and diversity of the initial solutions. Furthermore, in the

iterative process, the correction method and several

adjustment techniques help to search for the better feasible

solutions. The simulated results show that the total pro-

duction cost of BGSO is less expensive than those of the

other methods in the range of 10–100 units except for the

MIP method in the 60-unit system. In addition, the CPU

time of BGSO increases almost linear with the size of the

units, which is favorable for the large-scale power systems.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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