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Abstract This paper proposes a new method for power

transmission risk assessment considering historical failure

statistics of transmission systems and operation failure

risks of system components. Component failure risks are

integrated into the new method based on operational con-

dition assessment of components using the support vector

data description (SVDD) approach. The traditional outage

probability model of transmission lines has been modified

to build a new framework for power transmission system

risk assessment. The proposed SVDD approach can pro-

vide a suitable mechanism to map component assessment

grades to failure risks based on probabilistic behaviors of

power system failures. Under the new method, both up-to-

date component failure risks and traditional system risk

indices can be processed with the proposed outage model.

As a result, component failure probabilities are not only

related to historical statistic data but also operational data

of components, and derived risk indices can reflect current

operational conditions of components. In simulation stud-

ies, the SVDD approach is employed to evaluate compo-

nent conditions and link such conditions to failure rates

using up-to-date component operational data, including

both on-line and off-line data of components. The IEEE

24-bus RTS-1979 system is used to demonstrate that

component operational conditions can greatly affect the

overall transmission system failure risks.

Keywords Risk assessment, Component failure risk,

Outage probability, Condition assessment, Support vector

data description

1 Introduction

With the continuous increase of energy demand, the

accurate risk assessment of power systems is of great

importance, since risks are increased when a power system

is operated close to its stability limits due to distributed

generation and market competition. With regard to power

system assessment, higher risks lead to lower reliability,

and vice versa. The probabilistic behaviors of power sys-

tem failures are the root origin of risks [1], and an effective

risk assessment model can provide quantitative risk indices

to represent system reliability. Traditionally, only historical

failure statistics are employed in power system risk

assessment, however the overall system risk is also related

to component operational conditions. When component

failure risks change, the overall system risk varies

accordingly. Incorporating component risks into the power

system risk assessment can improve the accuracy and

rationality of risk evaluations.

In the past decade, considerable efforts have been

devoted to probabilistic risk assessment of power trans-

mission systems and substation configurations. A widely
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used framework for power system risk assessment was

reported in [1, 2], in which the approach, objective,

application and economic cost were discussed in detail [3].

However, in this traditional framework, failure risks of

components, such as transformers and circuit breakers,

were not considered. Generally, the risk assessment of

components in substations was performed separately [4–6].

As a result, there is a lack of a mechanism to convert

component operational conditions into failure risks in the

traditional framework. In [4], a risk assessment model of a

combinative system in a transmission network and sub-

stations was proposed. Compared with the traditional

framework, in which system risks of transmission networks

and substation configurations are assessed separately, the

method presented in [4] can evaluate system risks consid-

ering both transmission networks and substations by

assessing new load curtailments at load points for each

failure state. As an improvement, substations are no longer

treated as a transmission node and substation configura-

tions, and individual components, such as breakers and

transformers, are linked to system risks by analyzing sta-

tistical data of substation components. However, compo-

nent failure data are still based on historical statistics.

Consequently, the impact of online component operational

conditions cannot be integrated in risk evaluations.

A multi-objective risk assessment framework was pre-

sented in [7], and probabilistic indices for assessing real-

time power system security levels were derived. However,

operation risks of components were still not considered. A

failure probability model was developed based on the

evidential reasoning (ER) theory for overhead lines in [8],

which can accurately reflect the impact of surroundings on

failure probabilities. However, component outage rates

were set as a fixed value, which was not linked to opera-

tional conditions of components. Based on the ER theory

and the functional group decomposition principle, a con-

tingency identification method for components was pre-

sented in [9].

However, in that research, component conditions, such as

operational conditions and monitoring data, were not con-

sidered, and components were just treated as part of trans-

mission lines. But actually, each component has its own

failure risk, which is influenced by its operational condition. In

practice, component condition assessment is usually con-

ducted by experts or trained on-site engineers. As operational

conditions could be affected by faults or environment, such as

loading conditions and temperatures [5, 6], the failure prob-

ability of components is not fixed. Thus, the outage probability

of transmission lines changes accordingly. As the component

failure probability changes, the results of risk assessment are

not fixed values as those of traditional risk assessment models

[1], which should be determined by both operational condi-

tions and historical data.

The support vector data description (SVDD) approach is

developed for classification and evaluation with machine

learning, which can be employed to aggregate diagnosis

information [10, 11]. In particular, regarding the probabi-

listic and uncertain behaviors of component failures,

SVDD is a suitable solution for presenting evaluation of

various failure conditions. Based on the outputs of SVDD

component evaluation, system operators can obtain overall

evaluations of studied components, which can be classified

into different condition levels accordingly. The SVDD

approach is capable of providing the most recent condition

for components in power transmission systems. The

objective of this paper is to develop a new risk assessment

method for power transmission systems, in which compo-

nent conditions are considered based on on-line and off-

line data. The method comprises of three parts: component

evaluation, index transition and system risk evaluation. The

proposed method employs SVDD for component risk

assessment and the Monte Carlo (MC) simulation [1] for

system state selections.

2 SVDD approach to component condition assessment

The SVDD approach is an one-class classification data

description method which proposed by Tax [10]. By

training with a set of certain samples, the distribution of

target class can be obtained by SVDD, so the outliers can

be divided. The SVDD approach can provide well distri-

bution area and can be used in condition detection, fault

diagnosis and multi-classification, etc. [12–14].

By applying SVDD approach to mechanical condition

monitoring and fault diagnosis, machine conditions can be

monitored only by using normal condition signals instead

of abnormal condition signals. With the method, the

machine set conditions (normal or abnormal) can be

described by using quantitative indices, and the scientific

decision-making basis for equipment management and

predictive maintenance can be offered. The method is used

to evaluate the condition of the key equipment in power

transmission lines, and it correctly evaluates an abnormal

condition of the equipment in time and contributes to a

successful diagnosis of the incipient fault of a bolt

crack.

As a data set containing N data objects: {xi, i = 1, 2, …,

N}, the basic concept of SVDD is trying to find a sphere

with minimum volume, containing all (or most of) the data

objects [10]. This is very sensitive to the most outlying

object in the target data set. When one or a few very remote

objects are in the training set, a very large sphere is obtained

which will not represent the data very well. Therefore, [15]

considered some data points outside the sphere and intro-

duced slack variable ni(ni C 0, i = 1, 2, …, n). Of the
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sphere, described by center a and radius R, the radius is

minimized as follows:

min
R

FðR; aÞ ¼ R2 þ C
Xn

i¼1

ni

s:t:
½uðxiÞ � a�½uðxiÞ � a�T �R2 þ ni

ni � 0; i ¼ 1; 2; . . .; n

(
; ð1Þ

where the variable C gives the trade-off between the sim-

plicity (or volume of the sphere) and the number of errors

(number of target objects rejected); the function u is a

nonlinear mapping function used for mapping objects into

the high dimensional.

The dual form of (1) is written as:

max
ai

L ¼
Xn

i¼1

aiKðxi � xjÞ

s:t:

Xn

i¼1

ai ¼ 1 i ¼ 1; 2; . . .; n

0� ai �C i ¼ 1; 2; . . .; n

8
>><

>>:
; ð2Þ

where K(xi � xj) is the kernel function which satisfies

Mercer’s theorem:

K xi � xj

� �
¼ uðxiÞ � uðxjÞ

� �
: ð3Þ

The kernel function implicitly maps the objects xi into

some feature space and when a suitable feature space is

chosen, a better and more tight description can be obtained.

No explicit mapping is required, the problem is expressed

completely in terms of K(xi � xj).

Finally, parameter ai can be obtained, and xi satisfies

ai [ 0, called the support vector. From the basic concept

and definition of SVDD [11], the equation is obtained as

follows:

R2 ¼K xk � xkð Þ � 2
X

i¼1

aiK xi � xkð Þ

þ
X

i;j

aiajK xi � xj

� �
8xk 2 SV \C; ð4Þ

where R2 is the distance to the center of the sphere (a); SV

means support vector.

Based on (4), each support vector can provide the value

of R2. For the test sample z, assuming that:

Dða; zÞ ¼Kðz � zÞ � 2
X

i¼1

aiKðz � xiÞ

þ
X

i;j

aiajK xi � xj

� �
i; j ¼ 1; 2; . . .; n: ð5Þ

If D(a, z) B R2, then z is considered as the target,

otherwise is considered as the outlier.

For illustration purposes, we define evaluation level as

the SVDD result of each component. It corresponds to the

relationships between component condition characteristic

values and failure probability. For example, based on a

transformer dissolved gas analysis (DGA) value, the SVDD

evaluation level of this component is graded as ‘good’,

‘normal’, ‘poor’ or ‘serious’. Therefore, each level equals

an area of failure rate (from 0 to 1), afterwards, the com-

ponent condition is considered in power transmission risk

assessment.

3 Power transmission system risk evaluation

considering component risks

In practice, power system risk assessment is concerned

with two aspects: i.e., system adequacy and system security

[1]. System adequacy mainly relates to the existence of

sufficient facilities within a system to satisfy consumer

load demands and system operational constraints, while

system security relates to the ability of a system to respond

to dynamic and transient disturbances arising within the

system. Thus, security is associated with the response of a

system to perturbations. As most of the risk assessments

Data

System state selection

Contingency analysis

Remedial actions
(OPF)

Any problem ?
N

Y

Any problem ?

Update indices

Meet stopping rules?

Output

N

N

Y

Y

Fig. 1 Procedure of power transmission risk assessment
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carried out by utilities are in the domain of adequacy

assessment [1], in this paper the system adequacy analysis

is set as the risk assessment objective.

The basic procedure of power transmission system risk

assessment is shown in Fig. 1 [1]. Firstly, a system sate is

selected based on historical failure statistics. Then, the

contingency analysis and optimal power flow (OPF)

method are performed to identify whether a selected state

causes any problems. Finally, risk indices are calculated. In

this paper, procedures of outage modeling in system state

selections have been modified using the updated outage

model considering component failure risks.

3.1 Traditional component failure models

Traditionally, for power transmission system risk eval-

uation, only failures of transmission components are con-

sidered, whereas generating units are assumed to be 100%

reliable. Key transmission components include overhead

lines, cables, transformers, capacitors, and reactors. Gen-

erally, these components are represented by a two-state (up

and down) model. Figure 2 shows the diagram of a basic

two-state repairable forced outage, which can be used to

describe a typical steady up-down-up cycle process.

The average unavailability of a transmission line in a

long-term process is defined as follows [1]:

Pline ¼
kline

kline þ lline

; ð6Þ

kline ¼
8; 760

MTTFline

lline ¼
8; 760

MTTRline

8
>><

>>:
; ð7Þ

where Pline is the outage probability of lines; kline and

llineare the line failure and repair rates (1/year), respec-

tively; MTTRline and MTTFline are the mean time to repair

(MTTR) (hours per year) and mean time to failure (MTTF)

(hours/year) of lines, respectively.

The historical data are recorded over a one year period

and subsequently the failure and repair rates can be derived

based on MTTF and MTTR, respectively.

3.2 Outage model integrating component failure risk

A new outage model has been developed based on

both historical failure statistics (IEEE RTS-79) [16] and

component failure risks. In the traditional outage model,

the forced outage probability of transmission lines is

denoted by Pline: Based on (1), the planned outage model

and Markov equations [1], the state space diagram con-

sidering both the line and component risks is shown in

Fig. 3.

Applying the Markov method based on the state space

diagram, the outage probabilities can be obtained as

follows:

Pci ¼
kcilline

kcilline þ klinelci þ llinelci

; ð8Þ

Pup ¼ llinelci

kcilline þ klinelci þ llinelci

; ð9Þ

Pline ¼
klinelci

kcilline þ klinelci þ llinelci

; ð10Þ

kci ¼
8; 760

MTTFci

lci ¼
8; 760

MTTRci

8
>><

>>:
; ð11Þ

where Pup; Pline and Pci are the probabilities of the up state,

the historical line outage state and the failure risk-based

outage state of the ith component; kline and kci are the

transition rates of historical line outages and component

failure risk-based outage states; lline and lci are the

recovery (repair) rates of the historical line outage and the

component failure risk-based outage state (repairs/year);

MTTRci and MTTFci are the MTTR and MTTF of com-

ponent, respectively.

In Section 3, the condition assessment of components

based on SVDD approach is used as an example to illus-

trate the procedures for calculating component failure risks.

As discussed previously, the overall assessment of a

component can be expressed using SVDD approach as a set

of evaluation grades, and then component failure rates can

be derived in association with the SVDD evaluation

levels.

There are normally a number of components in the same

transmission line or bus, and the line or bus fails when one

Up state
Outage state

(line)

lineλ

lineμ

Fig. 2 State space diagram of a two-state repairable forced outage

Up state

Outage state
(components)

Outage state
(line)

lineλ

line
μ

ciμciλ

Fig. 3 State space diagram considering both line and component

outages
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of the main components fails. As a result, the maximum

component failure risk value is selected to represent the

overall failure probability of components in the same line.

Considering failure risks of components, the transmission

line outage probability integrating both historical failure

statistics and component failure risks can be expressed in

the following (13):

Pc ¼ max Pc1;Pc2; . . .;Pcnð Þ; ð12Þ

PL ¼ Pline þ Pc ¼
klinelci þ kcilline

kcilline þ klinelci þ llinelci

; ð13Þ

where PL is the overall outage probability of transmission

lines; Pc is the maximum component failure risk among n

components in the same transmission line; Pcn is the outage

probability of the nth component in the same line.

As shown in (13), it is assumed that the ith component

has the maximum failure risk.

3.3 Load curve models and contingency analysis

In this paper, for the state enumeration or state sam-

pling method (nonsequential MC simulation), a nonchro-

nological load duration curve is utilized. A single load

curve is considered and loads at all buses are scaled

proportionally to follow the shape of the given load curve.

A multiple-step model is established to represent the load

duration curve [1]. Regarding the contingency analysis on

adequacy risk assessment, the capacity balance between

the generation and the load demand is important. As a

result, the DC power-flow-based contingency analysis is

employed in this study, because it provides fast and suf-

ficiently accurate real power flows following line outages

for risk assessment, in which a large number of outage

events are considered.

3.4 Optimization models for load curtailment

When an outage causes system problems, a special OPF

model is used to reschedule generations and alleviate

constraint violations. At the same time, load curtailment

needs to be avoided if possible or the total load curtailment

is required to be minimized if unavoidable. The objective

function of an OPF model is to minimize the total load

curtailment, whereas load curtailment at buses is the solu-

tion of the OPF model. The risk indices are then calculated

based on load curtailments in selected system outage states

and their probabilities of occurrence. To reduce the com-

putational burden, the DC power-flow-based OPF model is

usually employed in the adequacy risk assessment [1]. It

can be expressed in the following equations:

min
X

i2ND

Ci; ð14Þ

s:t:

TðSÞ ¼ AðSÞðPG � PD þ CÞ
X

i2NG

PGi þ
X

i2ND

Ci ¼
X

i2ND

PDi

PGmin
i �PGi �PGmax

i i 2 NG

0�Ci �PDi i 2 ND

jTkðSÞj � Tmax
k k 2 L

8
>>>>>>>><

>>>>>>>>:

; ð15Þ

where i is the bus number; Ci is the load curtailment at the ith

bus; TðSÞ is the real power flow vector in the outage state; AðSÞ
is the relation matrix between real power flows and power

injections in the outage state S; PG and PD are the generation

output and load power vectors, respectively; C is the load

curtailment vector; PGi, PDi, Ci and Tk(S) are the elements of

PG, PD, C and T(S), respectively; the subscript ‘‘min’’, ‘‘max’’

are the limits, respectively; NG, ND and L are the sets of

generation buses, load buses and branch circuits in a system.

The objective of the model is to minimize the total load

curtailment while satisfying the power balance, DC power flow

relationships and limits on line flows and generation outputs.

3.5 Risk indices

There are various risk indices, which are used for

quantifying system risks. In practice, loss-of-load proba-

bility (LOLP) and expected demand not supplied (EDNS)

are two most popular indices, which are employed in this

research. LOLP indicates the probability of load loss

caused by element capacity shortage (1/year). It can be

expressed in the following equation:

LLOLP ¼
X

x2X

IfðxÞPðxÞ; ð16Þ

where P(x) is the probability of system state x; IfðxÞ
is a two valued function of system state x. If x

Table 1 Evaluation level corresponding to failure rate

Evaluation level Failure rate (1/year)

Good 0–0.2

Normal 0.2–0.8

Poor 0.8–1.0

Serious Outage

Table 2 Results of SVDD classification

Actual/evaluation Good Normal Poor Serious Total

Good 39 7 4 0 50

Normal 5 42 2 1 50

Poor 0 1 26 3 30

Serious 0 2 1 27 30

Total 44 51 35 130
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indicates the failure state, then If is equal to 1,

otherwise 0.

EDNS denotes the average shortage of power supply per

year (MW/year).

LEDNS ¼
X

x2X

IfðxÞLCðxÞPðxÞ; ð17Þ

where LCðxÞ represents the minimum load loss for recovery

in the outage state x.

4 Case study

4.1 Component failure risk mapping

The condition assessment of transformers is used as an

example to illustrate the procedures for calculating com-

ponent failure risks. For other components, the procedures

can be performed in a similar manner. As discussed pre-

viously, the overall assessment of a component can be

expressed as a set of evaluation grades, then component

failure rates can be derived in association with the SVDD

evaluation levels. For illustration purposes, Table 1 lists

the corresponding relationships between evaluation levels

and failure rates. For example, based on historical statistics

or operation experience, the failure rate of a component is

0.14 per year, and then the SVDD evaluation level of this

component is graded as ‘good’.

Table 1 only gives reference values for illustration pur-

poses, and in practice, this table may be modified based on

operation situations and historical statistics analysis. It is

defined that the SVDD evaluation grade, that is ‘serious’,

‘poor’, ‘normal’ or ‘good’, with the maximum value is

treated as the final evaluation grade of a component. Using

this mapping table, the failure rate kc can be derived by the

proposed SVDD approach. Likewise, the repair rates lc can

G

G

G

G

G

G

G

BUS 18BUS 17

BUS 16

BUS 15

BUS 14

BUS 21

BUS 19 BUS 20

BUS 23

BUS 24

BUS 3

BUS 1

G

BUS 2

BUS 4

BUS 11

BUS 9

G

BUS 13

BUS 6

BUS 8
BUS 5

BUS 12

Cable

BUS 10

G

BUS 22
G

230 kV

138 kV

Fig. 4 IEEE RTS-79 test system
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be defined similarly. In the meantime, kline and lline can be

derived from historical statistic data, and finally the outage

probability of components can be calculated by using (8).

4.2 SVDD-based component failure risk evaluation

In this paper, 260 sets of transformer monitoring data

sample are adopted. These samples are acquired from the

DGA monitoring of transformers. Thereinto, 130 sets are

used for training (50 sets are in good condition, 50 sets are

normal, 30 set are poor and 30 sets are serious) and others

are used for testing. By adopting the SVDD approach, the

evaluation results are listed in Table 2.

In the evaluation results, the total accuracy is about

84%. The accuracy of ‘good’, ‘normal’, ‘poor’ and ‘seri-

ous’ are 78%, 84%, 87% and 90%, respectively.

Based on the mapping relations listed in Table 1, the

failure rate of a component can be generated randomly

between the areas. However, the mapping relation is only

for illustrating reference values, those values can be

defined based on the practice or experience.

4.3 System risk assessment: Case I

In this case study, the IEEE RTS-79 system is employed

as the test system [15] as shown in Fig. 4. In the IEEE RTS-

79 test system, the load model gives hourly loads for one year

on a per unit basis, expressed in chronological fashion so that

daily, weekly and seasonal patterns can be modeled. The

generating system contains 32 units, ranging from 12 to

400 MW. The transmission system contains 24 load/gener-

ation buses connected by 38 lines or autotransformers at two

voltage levels, i.e. 138 kV and 230 kV. The transmission

system includes cables, lines on a common right of way, and

lines on a common tower. The transmission system data

include the line length, impedance, ratings, and reliability

data.

In MC simulations different sampling frequencies lead

to different convergences, therefore the sampling fre-

quencies of the MC simulation are set with different val-

ues. As a result, the derived risk index values at different

sampling frequencies are presented in Table 3.

It is assumed that all the transformers in the system are

operated under a ‘normal’ condition, and the component

failure rates are set as a random value between 0.2 and 0.8

randomly according to Table 1.

Compared with the results without considering compo-

nent risks the LOLP and EDNS have rarely increased.

4.4 System risk assessment: Case II

In Case II, the component failure rates are set higher

than that of Case I and all system components are assumed

to be operated under a ‘poor’ condition. The component

failure risks are generated between 0.8 and 1.0 mapping to

the ‘poor’ level for each line. Different sampling fre-

quencies are also compared, as shown in Table 4.

In Case II, it is clear that when evaluation levels of all

transformers are changed from ‘normal’ to a worse level

like ‘poor’, LOLP increases significantly. Compared with

these of Case I, LOLP considering component risks

increases nearly by 15%, while ENDS considering com-

ponents is raised by 6%.

4.5 System risk assessment: Case III

In this case, only the component between BUS 3 and BUS

24 is set as outage, while other components in the system are

considered as ‘normal’. According to Table 1, the proba-

bility of the outage component is 100%, and failure rates of

other components are between 0 and 0.2. Different sampling

frequencies are applied and its results concerning LOLP and

ENDS are listed in Table 5. Compared with Case II, LOLP

and EDNS are 8 and 3% more than those of Case I, which

indicates that when a transformer is working under a ‘seri-

ous’ condition, the overall system risk increases. However,

the risks are less than those in Case II, which indicates that

when failure risks of several components change from

‘normal’ to a ‘poor’ or ‘serious’ grade, the risk values

Table 3 Case I: LOLP and ENDS results at different sampling

frequencies

Sampling

times

LOLP

(%)

LOLP

considering

component

EDNS

(MW/

year)

EDNS

considering

component

10,000 8.72 9.38 14.29 14.42

20,000 8.69 9.25 14.62 14.39

Table 4 Case II: LOLP and ENDS results at different sampling

frequencies

Sampling

times

LOLP considering

component

EDNS considering

component

10,000 12.01 16.68

20,000 10.65 15.28

Table 5 Case III: LOLP and ENDS results at different sampling

frequencies

Sampling

times

LOLP considering

component

EDNS considering

component

10,000 9.81 14.70

20,000 9.92 14.82
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increase much more than the situation that only one com-

ponent is in the ‘serious’ grade.

The variation convergence curves of EDNS in three

cases are illustrated in Fig. 5, which shows that when the

sampling frequency is over 20,000 times, the variation

convergence is relatively small under 0.2. It means that, for

three cases the derived coefficients are reliable when the

sampling frequency is over 20,000 times.

5 Conclusion

A new method for transmission system risk assessment

considering component monitoring data is proposed. The

proposed SVDD-based approach can provide a suitable

mechanism to map component evaluation grades to failure

risks based on the probabilistic behaviors of power system

failures. Using the new method, both up-to-date component

condition status and traditional system risk indices can be

processed with the developed outage model. In this study,

transformer DGA data have been used to calculate compo-

nent failure risks. The simulation results indicate that trans-

mission system risks are affected not only by component

operational conditions, but also by historical statistics data. In

case studies, the implementation procedures of component

risk evaluation using SVDD and system risk assessment are

demonstrated.
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