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Abstract: In this study, models are proposed to analyze the combined effect of surface microgeometry and 

adhesion on the load–distance dependence and energy dissipation in an approach–separation cycle, as well as 

on the formation and rupture of adhesive bridges during friction. The models are based on the Maugis–Dugdale 

approximation in normal and frictional (sliding and rolling) contacts of elastic bodies with regular surface relief. 

For the normal adhesive contact of surfaces with regular relief, an analytical solution, which takes into account 

the mutual effect of asperities, is presented. The contribution of adhesive hysteresis into the sliding and rolling 

friction forces is calculated for various values of nominal pressure, parameters of microgeometry, and adhesion. 
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1  Introduction 

Adhesive interactions play a very important role in 

surface friction, particularly at micro and nanoscale 

levels [1, 2]. It was established experimentally and 

theoretically that at these scale levels, the contact 

characteristics and friction forces depend on the 

mechanical properties of the interacting bodies, their 

surface energy, and surface microgeometry. 

Theoretical models that have been developed to 

analyze the adhesion during contact of deformable 

bodies differ in constitutive equations for solids, models 

of adhesive interaction, and description of the geometry 

of contacting surfaces. The commonly used models of 

adhesive interaction include the classical JKR [3] and 

DMT [4] theories, Maugis–Dugdale model [5], exact 

form of the Lennard–Jones potential [6] as well as its 

approximations by various analytical functions [7], 

double-Hertz approximation [8], and piecewise-constant 

approximation [9]. The geometry of interacting surfaces 

can be described as a set of asperities of determined 

configuration, or it can be modeled by statistical or 

fractal approaches. All these models and approaches 

being combined in the formulation of a contact problem 

have generated a large number of theoretical works, 

each having a specific limit and applicability area. 

The normal adhesive contact between rough elastic 

bodies was first studied by Johnson [10] and Fuller and 

Tabor [11], who employed exponential and Gaussian 

distributions of heights of asperities, respectively, and 

the JKR model of adhesion. It was shown that large 

diversity of heights of asperities leads to low adhesion 

between the surfaces, because high asperities coming 

into contact can cause elastic forces of repulsion 

between the surfaces. The DMT model of adhesion 

was generalized for the case of a rough surface with  

a specified distribution of heights in Ref. [12]. The 

method suggested by Fuller and Tabor [11] was applied 

in Ref. [13] to describe a rough contact with the use of 

the Maugis–Dugdale model. The adhesion of rough 

elastic bodies with arbitrary nominal geometry at 

macrolevel was modeled in Ref. [14] by applying a 

statistical description of roughness at microlevel and 

the JKR and DMT models of adhesion. The models  

of adhesive contact developed by Rumpf [15] and 

Rabinovich et al. [16] consider rigid rough surfaces  
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having hemispherical asperities, whose centers lie on 

the surfaces (small asperities superimposed on large 

asperities), and both models use the Derjaguin 

approximation for adhesive interaction [17] (see the 

discussion on Derjaguin approximation in Ref. [18]). 

There were several studies that considered normal 

contact between rough surfaces with adhesion by using 

a fractal approach. Following are several examples.  

A contact problem between self-affine fractal surfaces 

was studied using a method of dimensionality 

reduction in Ref. [19]. The fractal approach was also 

employed in Ref. [20] for studying adhesive contact 

between rough surfaces. An approach similar to fractal 

surface roughness description was used by Persson and 

Tossati with the JKR [21, 22] and DMT [23] models of 

adhesion. A model for adhesion between self-affine 

rough surfaces based on the JKR theory was suggested 

by Ciavarella [24] for a contact close to saturation.  

A numerical simulation of adhesion for self-affine 

rough surfaces was carried out in Ref. [25]. The results 

of this simulation and the applicability area of the 

DMT approximation in rough adhesive contacts were 

discussed in Refs. [26, 27]. A simplified model for 

adhesion between elastic rough solids with Gaussian 

multiple scales of roughness was suggested in Ref. [28]. 

The limitations of the fractal approach to describe the 

roughness of real surfaces were discussed by Borodich 

et al. [29, 30]. 

To analyze the effect of the shape of asperities and 

their mutual arrangement, it is necessary to consider 

contact problems for surfaces with regular relief. 

Periodic formulations of contact problems often allow 

a closed-form solution, which takes into account the 

mutual effect of contact spots through the elastic 

body. Two-dimensional contact problems for a rough 

surface with periodic relief and an elastic half-plane 

were solved [31–33] for various models of adhesion. 

For a 3D case, the adhesive contact between a periodic 

system of asperities and elastic half-space was 

modeled in Ref. [34] by using the Maugis–Dugdale 

approximation and by considering the shape of 

asperities and mutual effect of contact spots. 

According to the classical approach [35], the sliding 

friction force is the sum of two components: mechanical 

component and adhesive component. The adhesive 

component is assumed to be equal to the force required 

for plastic shear to occur on the microcontacts. This 

approach to modeling the adhesion component of the 

friction force was developed in Refs. [36–38]. However, 

it is known that adhesion can contribute to the friction 

force even in the absence of plastic deformation, e.g., 

at very small loads. To model the adhesion friction 

force in this case, an approach is developed by 

considering the adhesion contact as opening and 

closing cracks [39]. It was established experimentally 

that the value of the friction force between two solids 

correlates with the value of adhesion hysteresis in an 

approach–separation cycle of these solids [40–42]. 

Models relating adhesion friction force to adhesion 

hysteresis were suggested for a cylinder [43] and a 

periodic rough surface [44] sliding on an elastic body. 

Adhesion hysteresis was taken into account as the 

difference in the surface energy before and after the 

moving contact zone. Another approach was suggested 

by Heise and Popov [45], who calculated the sliding 

friction force between two rough surfaces as a result 

of adhesion hysteresis in the approach–separation 

cycle for asperities. They used the JKR model of 

adhesion and random distribution of heights of 

asperities. In Ref. [46], the adhesion component of the 

sliding friction force was modeled by calculating the 

energy dissipation in the formation and rupture of 

the adhesive contacts between asperities of rough 

surfaces in sliding. In this model, rough surfaces had 

regular relief and the Maugis–Dugdale model of 

adhesion was used, making it possible to apply the 

solution in a wide range of geometric and adhesive 

characteristics. 

Adhesive interactions also contribute into the 

rolling resistance [1]. The adhesive component of the 

rolling resistance was calculated in Ref. [1] based on 

the assumption that each approach and separation of 

molecules is accompanied by an energy loss. In Ref. 

[47], the rolling resistance was accounted for by the 

attraction of separating parts of the surfaces owing to 

the opposite electrical charges arising between them. 

The adhesive component of the rolling resistance was 

calculated in Ref. [48] based on the energy dissipation 

mechanism in the approaching and separation of 

asperities of contacting surfaces in the process of 

rolling. 

The present study focuses on the analysis of the 

effect of adhesive interaction modeled by the Maugis– 

Dugdale approximation in normal and frictional (sliding 
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and rolling) contacts of elastic bodies with regular 

surface relief. The combined effect of adhesion and 

surface microgeometry on the load–distance dependence 

and energy dissipation in the approach–separation 

cycle, as well as on the formation and rupture of 

adhesive bridges during friction is analyzed. For the 

normal adhesive contact of surfaces with regular 

relief, an analytical solution that takes into account 

the mutual effect of asperities is presented. 

2 Normal contact of a rough surface with 

elastic half-space in the presence of 

adhesion 

2.1 Model of adhesion 

The adhesive force per unit area 
a
( )p z  is approximated 

by a piecewise constant function known as the 

Maugis–Dugdale model [5]: 

0 0
a

0

0
( )

0

p z h
p z

z h







   


 
           (1) 

In this case, the work of adhesion w is defined by 

a 0 0

0

( )dw p z z p h


                (2) 

For a spherical punch in contact with an elastic half- 

space, the model of adhesion as defined by Eqs. (1)–(2), 

provides a closed-form solution [5]. Unlike the classical 

models of adhesion, i.e., the JKR [3] and DMT [4] 

models, the Maugis–Dugdale model is applicable to 

solids of arbitrary stiffness in a wide range of adhesion 

parameters. 

2.2 Problem formulation 

We consider the interaction of two solids with 

nominally flat surfaces (Fig. 1). Solid 1 is rigid and is 

covered with rigid hemispherical asperities of equal 

radius R, while solid 2 is an elastic half-space with a 

smooth surface. We assume that the asperities are   

in the nodes of a hexagonal lattice with a lattice 

spacing l. The origin of the local cylindrical system of 

coordinates ( , , )r z  coincides with the point at which 

an asperity touches the undeformed half-space. The 

z-axis is directed into the half-space. In this system of  

 

Fig. 1 Contact scheme between a rigid rough surface and an elastic 
half-space in the presence of adhesion. 

coordinates, the shape of each asperity is described 

by the function 2( ) / (2 )f r r R .  

Solid 1 is acted upon by a uniform nominal 

pressure p. The distributions of pressure and elastic 

displacement of the boundary of the half-space are 

assumed to be axisymmetric near each asperity. The 

gap between the contacting surfaces near an asperity 

can be represented as 

( ) ( ) ( ) ( ) ( )h r f r f a u r u a            (3) 

where u(r) is the elastic displacement of the boundary 

of the half-space in the z direction, and a is the radius 

of the contact spot.  

To take into account the adhesive attraction between 

the surfaces, we use the Maugis–Dugdale model 

defined by Eqs. (1)–(2) and assume that a negative 

pressure 
0

( )p  is applied to the elastic half-space in 

the ring-shaped region a r b   around each asperity. 

From Eq. (2), we obtain the relation for the gap at r = b: 

0

( )
w

h b
p

                 (4) 

The values of the work of adhesion w and adhesive 

pressure 
0

p  are assumed to be known.  

The problem is solved by the method of localization 

[49]. In accordance to this method, to determine the 

stress–strain state near a contact spot, one should 

replace the effect of the remaining contact spots by 

the action of an averaged pressure in the region 

eff
r R . The solution to this problem was established 

in Ref. [34] for a system of asperities, whose shape is 

described by the power-law function of an even 

degree. We will use the results obtained in Ref. [34] 

for the case of asperities of hemispherical shape. 

If the surfaces are in contact, the following relations 
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for the nominal pressure p and distance d between 

the surfaces are valid: 
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   (6) 

The contact radius a and the external radius of the 

region of adhesion b are related by the equation that 

follows from Eqs. (3)–(4) and has the form 


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where ( ), ( , )E x E x  are complete and incomplete 

elliptic integrals of the second kind, respectively. In 

Eqs. (5)–(7), we use the notation * 2/ (1 )E E   , 

where E and   are the Young’s modulus and Poisson’s 

ratio of the elastic half-space, respectively, and 
1 2

eff
( 3 (2π))R l . 

If the surfaces are not in contact and they interact 

only by adhesive forces, the nominal pressure and 

distance are defined by 

  
        
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2 2
0
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2 π3

p b b b b w
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(8) 

The solution specified by Eqs. (5)–(8) is applicable 

for l > b. 

If q is the normal force acting on each asperity, then 

from the geometry of the problem it follows that 


2

2

3

q
p

l
                 (9) 

From Eqs. (5)–(7), by taking into account Eq. (9) and 

setting l  , we obtain the solution to the contact 

problem for an individual hemispherical asperity of 

radius R acted upon by a normal load q and an elastic 

half-space: 
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Eqs. (9)–(10) coincide with the solution obtained by 

Maugis [5]. 

For the case where an individual asperity interacts 

with the elastic half-space without contact, from  

Eqs. (8) and (9) for l   we have 

2
2

0 0*
0

4

2 π

b w
q b p d p b

R pE
            (12) 

2.3 Parametrization  

For convenience in the calculation and analysis     

of results, we use the following parametrization by 

introducing a dimensionless nominal pressure p* and 

dimensionless distance between the surfaces d* in 

accordance with the following relations: 

1/3
*22
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The solution to the problem depends on the following 

two dimensionless parameters: 

1 3
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A parameter similar to   was first used in Ref. [5]; 

this parameter specifies the characteristics of adhesive 
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interaction of elastic spheres. The adhesion parameter 

  is related to the parameter 
T

  introduced by 

Tabor [50] as 

T T2/ 3 1/2 1/3

16
1.1

9 3 (2π)
            (16) 

The parameter L characterizes the mutual effect of 

the asperities. For large values of L, the mutual effect 

is insignificant.  

2.4 Results of calculations  

For the calculations, we use Eqs. (5)–(8) with the 

parametrization given by Eqs. (13)–(15), which allow 

us to prescribe the values of the parameters λ and L. 

These are used to calculate the dimensionless distance 

d* between the interacting surfaces for various values 

of the dimensionless nominal pressure p*. The results 

obtained are shown in Fig. 2. 

The results are presented in the domain of negative 

values of the nominal pressure, because in this domain, 

the effect of the adhesive forces is very significant. 

The results indicate that the adhesion parameter λ 

significantly affects the dependence of the nominal 

pressure on the distance. An increase in the parameter 

λ leads to a considerable increase in the values of 

negative nominal pressures at which the surfaces can 

be in contact. A decrease in the parameter L, which 

characterizes the distance between asperities, leads to 

an increase in the pull-off pressure (maximum absolute 

value of the negative pressure at which the contact  

 

Fig. 2 Dimensionless nominal pressure vs distance in normal 
approach and separation of rough surfaces. 

exists) and a shift of this value to the direction of 

smaller distances between the interacting bodies. Thus, 

surfaces with asperities located closer to each other 

can sustain higher values of negative pressure in 

contact. 

In an adhesive contact of elastic bodies, the work 

required to separate contacting surfaces from each 

other is in general, higher than the work done in 

approaching the surfaces from infinity to the initial 

distance. Thus, hysteresis takes place in the approach– 

separation cycle. This follows from the ambiguity of 

the curves of the nominal pressure vs distance, which 

can be observed for sufficiently large values of the 

adhesion parameter λ. When the surfaces move away 

from each other, the contact breaks at point A with  

a jump to point B. When the surfaces approach each 

other, a jump in contact occurs from C to D. The 

difference between the values of the work in the 

approach and separation of the surfaces is equal to 

the dashed area in Fig. 2; it can be calculated in 

accordance with the relation 

( )d
ABCD

w p d d                (17) 

Graphs of the dimensionless energy dissipation in the 

approach–separation cycle vs the adhesion parameter 

λ are shown in Fig. 3. The energy dissipation per unit 

area is calculated in dimensionless form: 

 
    

 

1/ 32 *2
*

5 5 4

4
.

π3 3

l E
w w

w R
 

 

Fig. 3 Energy dissipation per unit area in the approach–separation 
cycle of rough surfaces. 
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The results indicate that the energy dissipation 

tends to approach zero as 0   and to a constant 

value as   .  An increase in the contact density 

leads to an increase in the energy dissipation per unit 

area of the interacting surfaces.  

Note that for two single elastic asperities, the 

analysis of the energy dissipation in an approach– 

separation cycle vs adhesion parameter was first carried 

out in Ref. [51] based on an analytical representation 

of the contact problem solution for the Maugis– 

Dugdale model of adhesion and power-law shapes of 

asperities. In Ref. [52], the effect of the Tabor parameter 

on the hysteretic loss was numerically studied for 

two elastic spheres interacting with the Lennard–Jones 

potential. The results of both these studies indicate 

that for smooth bodies, the dependence of the energy 

dissipation on the adhesion parameter is similar to 

that presented in Fig. 3 for a rough solid. 

The obtained calculation results of the energy dissi-

pation in the approach–separation cycle can be used 

to estimate the contribution of adhesion in the friction 

force in sliding and rolling contacts of rough surfaces. 

3 Adhesion in sliding of rough surfaces 

Consider the mutual sliding of two rough surfaces of 

regular shape. It is assumed that the upper and lower 

surfaces have the same period of roughness l (Fig. 4). 

Let surface 1 covered with asperities of radius 
1

R  

be at rest, while surface 2, covered with asperities  

of radius 
2

R , moves in the tangential direction along 

the x-axis, with the vertical distance between the 

surfaces   (along the z-axis) being constant. Each 

pair of asperities does not interact with each other 

initially; then, they come into contact and experience 

mutual sliding until the contact breaks.  

To calculate the contribution of adhesive hysteretic 

losses into the total friction force, we assume that  

 
Fig. 4 Sliding scheme of two regular rough surfaces. 

there is no shear stress within each contact spot. It 

should be also mentioned that here and in subsequent 

sections, the interaction of each pair of asperities is 

modeled separately; thus, the mutual effect of asperities 

is not taken into account similar to what was done in 

Section 2. 

Because the asperities have spherical shapes, the 

force of interaction between them acts along the line 

1 2
O O  passing through the centers of the spheres. The 

tangential stresses are assumed to be zero; hence, the 

contact problem for two asperities is axisymmetric 

with respect to the line 
1 2

O O  at each instant of time. 

The force of interaction q as a function of the distance 

between two asperities d is defined by Eqs. (10) and 

(11) for the case involving contact between asperities 

and by Eq. (12) for the case with no contact. The force 

q can be divided into normal n and tangential   

components: 

1 2

2 2

1 2

( )

( )

q R R
n

R R x





 


  
, 

2 2

1 2
( )

qx

R R x





  
 (18) 

where x is the tangential displacement of surface 1 

with respect to surface 2.  

Graphs of the dimensionless normal */ (π )n R w  

and tangential */ (π )R w  forces acting on an asperity 

of surface 1 during sliding along the x-axis are shown 

in Fig. 5. The results are obtained for the following 

values of the parameters characterizing the elastic and 

adhesive properties of the surfaces: *

0
/ ( ) 0.1w p R   

and *

0
/ 0.5p E  . Here, *R  and *E  are the reduced 

radius of the asperities and elastic modulus, 

respectively: 

 
*

1 2

1 1 1

R R R
, 

  
 1 2

*
1 2

1 11
.

E E E
 

The ratio of the reduced radius of the asperities to the 

distance between them is taken as * / 0.3R l  . The 

curves shown in Figs. 5(a) and 5(b) correspond to the 

dimensionless vertical distance between the surfaces 
*/ 0.1R    and */ 0.3R   , respectively. The 

results indicate that in the process of sliding, the 

tangential force   changes its sign from positive 

(acting in the direction of sliding) to negative (acting in 

the direction opposite to sliding). Based on the obtained 

relations from Eqs. (10)–(12) and (18), we calculate the 
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average normal and tangential forces acting on a unit 

area of surface 1 from surface 2: 

/2

/2

1
( )d

l

l

T s s
l




  ,  


 
/ 2

/ 2

1
( )d .

l

l

P n s s
l

 

The mean tangential force T is not equal to zero because 

of the energy dissipation occurring in the approach– 

separation cycle of asperities. This force, which is 

associated with the energy losses in the formation and 

breaking of adhesive bonds, can be called the adhesive 

component of the friction force. The coefficient of 

friction is defined by the relation 

  .
T

P
 

Graphs of the coefficient of friction   vs the di-

mensionless nominal pressure * 2/(π )P E l  are shown 

in Fig. 6 for various values of the dimensionless 

reduced radius of asperities */R l  for *

0
/ ( ) 0.1w p R    

 

Fig. 6 Coefficient of friction vs nominal pressure. 

and *

0
/ 1p E  . It is observed that the coefficient of 

friction increases with decreasing nominal pressure, 

and it attains considerably high values at very small 

pressures. This behavior is a characteristic of the 

adhesive component of the friction force. An increase 

in the radius of the surface asperities leads to an 

increase in the coefficient of friction.  

4 Adhesive resistance to rolling of rough 

bodies 

Consider a rigid rough cylinder of radius R rolling  

on the boundary of an elastic half-space (Fig. 7). The 

cylinder is acted upon by a normal force P and is 

rolling with an angular velocity  .  The surface of the 

cylinder is covered with a periodic system of rigid 

asperities located in the nodes of the rectangular lattice 

with spacing l. The height distribution of the asperities 

is described by the function ( ).t  All asperities have 

the same radius 0 .R   

 

Fig. 7 Rolling scheme of a rough cylinder on an elastic half-space. 

Fig. 5 Normal and tangential forces between two asperities in the sliding of two rough surfaces. 
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The problem is considered in the moving system  

of coordinates, whose z-axis passes through the axis 

of the cylinder and is directed in the half-space. 

Meanwhile, the x-axis coincides with the undeformed 

surface of the elastic half-space and is directed in the 

direction of motion of the cylinder. The value of the 

gap between the surfaces of the rough cylinder and 

the elastic half-space is defined by the expression 

  ( , ) ( , ) ( , ) ,h x y u x y f x y  

where ( , )u x y  is the elastic displacement of the 

surface of the half-space in the z direction, ( , )f x y  is 

a function describing the shape of the surface of the 

rough cylinder, and   is the normal distance between 

the cylinder and the half-space. 

The cylinder and the half-space are in contact over 

the areas of real contact 
i

A , in which the condition of 

contact is satisfied: 

 ( , ) 0, ( , ) .ih x y x y A  

The tangential stresses on the real areas of contact 

are assumed to be zero. The surfaces of the cylinder 

and half-space are attracted to each other owing to 

adhesion. The adhesion attraction takes place in the 

areas 
i

B , which are either ring-shaped surrounding 

the real contact areas 
i

A , or circular for asperities that 

are not in contact with the half-space. The dependence 

of the adhesive force on the gap between the surfaces 

is described by the piecewise constant function defined 

by Eq. (1). Thus, the adhesive pressure 
a
( , )p x y  on the 

surface of the elastic half-space is defined by 

 
  

0 0

a
0

, ( , )
( , ) , ( , ) .

0, ( , ) i

p h x y h
p x y x y B

h x y h
 

The work of adhesion is defined by Eq. (2).  

During rolling, each i-th asperity approaches the 

surface of the elastic half-space beginning from a 

distance  , at which surfaces do not attract, to a 

minimum distance 
0

i , which occurs in the point of 

maximum loading of the nominal contact area. 

Afterward, the asperity moves away from the surface 

of the half-space up to the distance  . It was shown 

in Section 2 that in the approach–separation cycle of 

an asperity and the elastic half-space, energy dissipation 

occurs (dashed region in Fig. 2). For an asperity that 

passes through the contact zone in the rolling of a 

rough cylinder, the energy dissipation is calculated as 

sep

app

app sep( ) ( ) d
i i

w q q




               (19) 

where app( )
i

q   is the force–distance dependence in the 

approach (branch BCD in Fig. 2) and sep( )
i

q   is the 

force–distance dependence in the separation (branch 

DAB in Fig. 2). The energy dissipation as defined by 

Eq. (19) differs from zero under the condition that the 

minimum distance between the surfaces is smaller 

than the distance at which they come into contact 

(point C in Fig. 2). This value is denoted as  app .  

As the cylinder makes a full revolution, the energy 

dissipation will be equal to 
1

wN , where 
1

N  is the 

number of asperities for which the minimum distance 

to the half-space for a full revolution of the cylinder 

is smaller than  app .  It is assumed that this energy 

loss is equal to the work of the moment of rolling 

resistance per one revolution 2π .M  Then, the moment 

of rolling resistance can be expressed as 


 1 .

2π

wN
M  

For a model of a rough cylinder having N asperities 

of the same height in the cross-section, the number 

1
N  is defined by the following stepwise function: 

  


app

1 app

,
.

0,

N c c
N

c c
 

We can also consider a case where the asperities have 

a statistical distribution of heights: 




 1 ( )d .
c

N N t t  

where ( )t  is the density of distribution, for example, 

according to the Gauss law: 







2

2

1

21
( ) e .

2π

t

t  

The graphs of the dimensionless moment of rolling 

resistance 
* 3

M

E R
 vs the dimensionless distance bet-
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ween the cylinder and the half-space are shown in 

Fig. 8 for the one-level roughness model (curve 1) 

and Gaussian distribution of heights of asperities 

(curve 2). The results are obtained for 
0 0

0.1
w

p R
 , 

0

*
0.1

p

E
 , 0 0.01

R

R
 , and  10,000N ; the mean square 

deviation for the case of a Gaussianian height 

distribution is 0.01
R


 . The results indicate that as the 

distance between the surfaces decreases (the indenta-

tion of the cylinder into the half-space increases), the 

rolling resistance increases sharply in the case of one- 

level roughness and smoothly in the case of height 

distribution. At large indentations of the cylinder 

into the elastic half-space, the rolling resistance 

tends to approach a constant value that depends on 

the geometrical characteristics of the cylinder, elastic 

properties of the half-space, and characteristics of 

adhesion. 

The results obtained indicate also that the moment 

of rolling resistance 
* 3

M

E R
 increases as the work of 

adhesion w increases. This is illustrated by the graphs 

shown in Fig. 9, which are obtained for 0

*
0.1

p

E
 , 

 10,000N , and various radii of curvature of 

asperities 0 0.01
R

R
  (curve 1) and 0 0.012

R

R
  (curve 2) 

for the case of asperities of the same height and when 

the distance between the cylinder and the half-space 

is smaller than app . It is evident that the moment of 

rolling resistance tends to approach a constant value 

as the work of adhesion increases, which is the result 

 

Fig. 8 Moment of rolling resistance vs dimensionless distance 
between a cylinder and elastic half-space. 

 

Fig. 9 Moment of rolling resistance vs dimensionless work of 
adhesion. 

of using the simplified Maugis–Dugdale model as 

defined by Eq. (1), to describe the adhesive interac-

tion of the surfaces instead of the full Lennard–Jones 

form. It also follows from the results that the adhesive 

losses of energy and hence, the rolling resistance, are 

higher for asperities with larger radius 
0

R . 

5 Conclusion 

In this study, an approach is developed to investigate 

the combined effect of the parameters of adhesive 

interaction and surface microgeometry on the contact 

characteristics and energy dissipation in an approach– 

separation cycle of elastic bodies with regular surface 

relief, as well as in their mutual sliding and rolling.  

The load–distance dependence and the energy 

dissipation in the approach–separation cycle are 

calculated for two elastic bodies, one of which is 

covered with a periodic system of asperities of spherical 

shape, by taking into account the forces of both elastic 

compression and adhesive attraction between the 

surfaces. The mutual effect of microcontacts was 

taken into account, making it possible to establish the 

dependence of the characteristics in question on the 

shape and density of the asperities and the parameters 

of adhesion. 

A method is developed to calculate the adhesive 

component of the friction force in the conditions of 

mutual sliding and rolling of elastic bodies with 

regular surface microgeometry. The method is based 

on the determination of the energy dissipation in the 
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approach–separation cycle of asperities. Based on the 

model calculations performed, the dependencies of 

the coefficient of friction on the nominal pressure 

are established for various values of the parameters 

of roughness and adhesion. 

The results obtained can be applied for controlling 

the microgeometric parameters of dry surfaces to attain 

the required frictional characteristics on specified 

regimes of interaction. 
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