Skip to main content
Log in

Partial transposition in a finite-dimensional Hilbert space: physical interpretation, measurement of observables, and entanglement

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

We show that partial transposition for pure and mixed two-particle states in a discrete N-dimensional Hilbert space is equivalent to a change in sign of a “momentum-like” variable of one of the particles in the Wigner function for the state. This generalizes a result obtained for continuous-variable systems to the discrete-variable system case. We show that, in principle, quantum mechanics allows measuring the expectation value of an observable in a partially transposed state, in spite of the fact that the latter may not be a physical state. We illustrate this result with the example of an “isotropic state”, which is dependent on a parameter r, and an operator whose variance becomes negative for the partially transposed state for certain values of r; for such rs, the original states are entangled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steane, A.: Quantum computing. Rep. Prog. Phys. 61, 117 (1998)

    Article  MathSciNet  Google Scholar 

  2. Band, Y.B., Avishai, Y.: Quantum Mechanics with Applications to Nanotechnology and Information Science. Academic Press (Elsevier), Oxford (2013)

    MATH  Google Scholar 

  3. Horodecki, M.L.: Entanglement measures. Quantum Inf. Comput. 1, 3 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7, 1 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: is there a ”bound” entanglement in Nature? Phys. Rev. Lett. 80, 5239 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Simon, R.: Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

    Article  Google Scholar 

  9. Werner, R.F., Wolf, M.M.: Bound entangled Gaussian states. Phys. Rev. Lett. 86, 3658 (2001)

    Article  Google Scholar 

  10. Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mello, P.A., Revzen, M.: Wigner function and successive measurements of position and momentum. Phys. Rev. A 89, 012106 (2014)

    Article  Google Scholar 

  12. Mann, A., Mello, P.A., Revzen, M.: A family of Weyl–Wigner transforms for discrete variables defined in a finite-dimensional Hilbert space. Quantum Stud. Math. Found. 4, 89 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gross, D.: Hudson’s theorem for finite-dimensional quantum systems. J. Math. Phys. 47, 122107 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gross, D.: Diploma Thesis: Finite Phase Space Methods in Quantum Information. University of Potsdam, Berlin (2005)

    Google Scholar 

  15. Revzen, M.: Radon transform in finite Hilbert space. Europhys. Lett. 98, 10001 (2012)

    Article  Google Scholar 

  16. de la Torre, A.C., Goyeneche, D.: Quantum mechanics in finite-dimensional Hilbert space. Am. J. Phys. 71, 49 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schwinger, J.: Unitary Operator Bases. Proc. Natl. Acad. Sci. USA 46, 570 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schwinger, J.: Unitary transformations and the action principle. Proc. Natl. Acad. Sci. USA 46, 883 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  19. Durt, T., Englert, B.-G., Bebgtsson, I., Zyczkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8, 535 (2010)

    Article  MATH  Google Scholar 

  20. Wootters, W.K.: A Wigner-function formulation of finite-state quantum mechanics. Ann. Phys. (N.Y.) 176, 1 (1987)

    Article  MathSciNet  Google Scholar 

  21. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. (N.Y.) 191, 363 (1989)

    Article  MathSciNet  Google Scholar 

  22. Ivanovic, I.D.: Geometrical description of quantum state determination. J. Phys. A 14, 3241 (1981)

    Article  MathSciNet  Google Scholar 

  23. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  Google Scholar 

  24. Arunachalam, S., Johnston, N., Russo, V.: Is absolute separability determined by the partial transpose? arXiv:1405.5853v3 [quant-ph] (2015)

Download references

Acknowledgements

PAM acknowledges support by DGAPA, under Contract No. IN109014; he is also grateful to the Ben-Gurion University, Beer Sheva, Israel, where this research was started, for its kind hospitality. YBB acknowledges support from the DFG through the DIP program (FO703/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier A. Mello.

Appendices

A Schwinger operators for one particle

We consider an N-dimensional Hilbert space spanned by N distinct states \(|q\rangle \), with \(q=0,1, \ldots ,(N-1)\), which are subject to the periodic condition \(|q+N\rangle =|q\rangle \). These states are designated as the “reference basis” of the space. We follow Schwinger [17, 18] and introduce the unitary operators \({\hat{X}}\) and \({\hat{Z}}\), defined by their action on the states of the reference basis by the equations:

$$\begin{aligned} {\hat{Z}}|q\rangle= & {} \omega ^q \, |q\rangle , \quad \omega =e^{2 \pi i/N}, \end{aligned}$$
(60)
$$\begin{aligned} {\hat{X}}|q\rangle= & {} |q+1\rangle . \end{aligned}$$
(61)

The operators \({\hat{X}}\) and \({\hat{Z}}\) fulfill the periodicity condition:

$$\begin{aligned} {\hat{X}}^N = {\hat{Z}}^N = \hat{{\mathbb {I}}}, \end{aligned}$$
(62)

\(\hat{{\mathbb {I}}}\) being the unit operator. These definitions lead to the commutation relation:

$$\begin{aligned} {\hat{Z}}{\hat{X}}=\omega \, {\hat{X}}{\hat{Z}}. \end{aligned}$$
(63)

The two operators \({\hat{Z}}\) and \({\hat{X}}\) form a complete algebraic set, in that only a multiple of the identity commutes with both [17, 18]. As a consequence, any operator defined in our N-dimensional Hilbert space can be written as a function of \({\hat{Z}}\) and \({\hat{X}}\). We also introduce (i.e., define) the Hermitian operators \({\hat{p}}\) and \({\hat{q}}\), which play the role of “momentum” and “position”, through the equations [16, 19]:

$$\begin{aligned} {\hat{X}}= & {} \omega ^{-{\hat{p}}} = e^{-\frac{2\pi i}{N}{\hat{p}}} \; , \end{aligned}$$
(64)
$$\begin{aligned} {\hat{Z}}= & {} \omega ^{{\hat{q}}} =e^{\frac{2\pi i}{N}{\hat{q}}}. \end{aligned}$$
(65)

What we defined as the reference basis can thus be considered as the “position basis”. With (63) and definitions (64), (65), the commutator of \({\hat{q}}\) and \({\hat{p}}\) in the continuous limit [16, 19] is the standard one, \([{\hat{q}},{\hat{p}}]=i\).

B Proof of Eq. (3)

The joint probability distribution of the two momenta \(p_1, p_2\) in the state \({\hat{\rho }}\) is given by

$$\begin{aligned} {{\mathcal {P}}}_{{\hat{\rho }}}\left( p_1,p_2\right)= & {} {\mathrm {Tr}} \left( {\hat{\rho }} \; {\mathbb {P}}_{p_1} \otimes {\mathbb {P}}_{p_2}\right) \end{aligned}$$
(66)
$$\begin{aligned}= & {} \sum _{n_1 n_2 n_1'n_2'} \left\langle n_1, n_2 | {\hat{\rho }} | n_1', n_2' \right\rangle \left\langle n_1', n_2'| {\mathbb {P}}_{p_1} \otimes {\mathbb {P}}_{p_2}|n_1, n_2 \right\rangle \end{aligned}$$
(67)
$$\begin{aligned}= & {} \frac{1}{N^2}\sum _{n_1 n_2 n_1'n_2'} \left\langle n_1, n_2 | {\hat{\rho }} | n_1', n_2' \right\rangle \omega ^{p_1\left( n_1'-n_1\right) } \omega ^{p_2\left( n_2'-n_2\right) }. \end{aligned}$$
(68)

The joint probability distribution of the two momenta \(p_1, p_2\) for the PT operator \({\hat{\rho }}^{T_1}\) is given by

$$\begin{aligned} {{\mathcal {P}}}_{{\hat{\rho }}^{T_1}}\left( p_1,p_2\right)= & {} {\mathrm {Tr}} \left( {\hat{\rho }}^{T_1} {\mathbb {P}}_{p_1} \otimes {\mathbb {P}}_{p_2}\right) \end{aligned}$$
(69)
$$\begin{aligned}= & {} \sum _{n_1 n_2 n_1'n_2'} \left\langle n_1, n_2 | {\hat{\rho }}^{T_1} | n_1', n_2' \right\rangle \left\langle n_1', n_2'| {\mathbb {P}}_{p_1} \otimes {\mathbb {P}}_{p_2}|n_1, n_2 \right\rangle \end{aligned}$$
(70)
$$\begin{aligned}= & {} \frac{1}{N^2}\sum _{n_1 n_2 n_1'n_2'} \left\langle n_1, n_2 | {\hat{\rho }} | n_1', n_2' \right\rangle \omega ^{-p_1\left( n_1'-n_1\right) } \omega ^{p_2\left( n_2'-n_2\right) } \end{aligned}$$
(71)
$$\begin{aligned}= & {} {{\mathcal {P}}}_{{\hat{\rho }}}\left( -p_1,p_2\right) . \end{aligned}$$
(72)

This proves Eq. (3). The above proof applies for \(N>2\), since, for \(N=2\), \(| p\rangle = |-p\rangle \).

For the case of only one particle, the above result reduces to that of Eq. (1).

C Proof of Eqs. (2) and (4)

We define the Wigner function for the density operator \({\hat{\rho }}\) as in Ref. [12], as

$$\begin{aligned} W_{{\hat{\rho }}}\left( q_1,q_2,p_1,p_2\right) = {\mathrm {Tr}}\left[ {\hat{\rho }}\left( {\hat{P}}_{q_1 p_1}\otimes {\hat{P}}_{q_2 p_2}\right) \right] \; , \end{aligned}$$
(73)

where \({\hat{P}}_{q_i p_i}\) is the “line operator” for particle i, also defined in the above reference. Explicitly, we find

$$\begin{aligned} W_{{\hat{\rho }}}\left( q_1,q_2,p_1,p_2\right) = \sum _{q_1' q_2' q_1'' q_2''} \left\langle q_1', q_2'| {\hat{\rho }} |q_1'', q_2'' \right\rangle \delta _{q_1''+q_1',2q_1} \omega ^{p_1 \left( q_1''-q_1'\right) } \delta _{q_2''+q_2',2q_2} \omega ^{p_2 \left( q_2''-q_2'\right) }. \end{aligned}$$
(74)

By definition, the Wigner function after \(\hbox {PT}_{1}\) is then

$$\begin{aligned} W_{{\hat{\rho }}^{T_1}}\left( q_1,q_2,p_1,p_2\right)= & {} \sum _{q_1' q_2' q_1'' q_2''} \left\langle q_1'', q_2'| {\hat{\rho }} |q_1', q_2'' \right\rangle \delta _{q_1''+q_1',2q_1} \omega ^{p_1 \left( q_1''-q_1'\right) } \delta _{q_2''+q_2',2q_2} \omega ^{p_2 \left( q_2''-q_2'\right) } \end{aligned}$$
(75)
$$\begin{aligned} \left( q_1'\Leftrightarrow q_1''\right)= & {} \sum _{q_1' q_2' q_1'' q_2''} \left\langle q_1', q_2'| {\hat{\rho }} |q_1'', q_2'' \right\rangle \delta _{q_1'+q_1'',2q_1} \omega ^{-p_1 \left( q_1''-q_1'\right) } \delta _{q_2''+q_2',2q_2} \omega ^{p_2 \left( q_2''-q_2'\right) } \end{aligned}$$
(76)
$$\begin{aligned}= & {} W_{{\hat{\rho }}}\left( q_1,q_2,-p_1,p_2\right) . \end{aligned}$$
(77)

This proves Eq. (4).

For the case of only one particle, the above result reduces to that of Eq. (2).

D Proof of Eqs. (56), (57), and (58)

From the properties of one-particle Schwinger operators summarized in Appendix A, one can prove the following identities:

$$\begin{aligned} \frac{1}{N}{\hbox {Tr}}\left[ ({\hat{X}}^m{\hat{Z}}^l)\left( {\hat{X}}^{m'}{\hat{Z}}^{l'}\right) ^{\dagger }\right]= & {} \delta _{mm'}\delta _{ll'} \; , \end{aligned}$$
(78)
$$\begin{aligned} \frac{1}{N}{\hbox {Tr}}\left[ ({\hat{X}}^m{\hat{Z}}^l)\left( X^{m'}{\hat{Z}}^{l'}\right) ^{\dagger } \left( {\hat{X}}^m{\hat{Z}}^l \right) ^{\dagger }({\hat{X}}^{m'}{\hat{Z}}^{l'})\right]= & {} \omega ^{ml'-m'l}. \end{aligned}$$
(79)

We write the PT of the state of Eq. (47) as

$$\begin{aligned} {\hat{\rho }}_r^{T_1}= & {} \frac{r}{N} \sum _{q,q'} |q'q\rangle \langle q q'| + \frac{1-r}{N^2} \sum _{q_1,q_2} |q_1 q_2\rangle \langle q_1 q_2|, \end{aligned}$$
(80)
$$\begin{aligned}\equiv & {} r {\hat{\rho }}' +(1-r){\hat{\rho }}^{''}. \end{aligned}$$
(81)

For the first moment of \({\hat{{\varOmega }}}\), we then find

$$\begin{aligned} \hbox {Tr}({\hat{{\varOmega }}} {\hat{\rho }}')= & {} \frac{1}{N} \sum _{q,q'm,l} x_{ml} \times \left\langle q\left| {\hat{X}}_1^m {\hat{Z}}_1^l \right| q'\right\rangle {_{_1}} \times \left\langle q'\left| \left( {\hat{X}}_2^m {\hat{Z}}_2^l\right) ^{\dagger } \right| q \right\rangle _2 \nonumber \\= & {} \frac{1}{N} \sum _{q,q'm,l} x_{ml} \left\langle q\left| {\hat{X}} ^m {\hat{Z}}^l \right| q'\right\rangle \left\langle q'\left| ({\hat{X}}^m {\hat{Z}}^l)^{\dagger } \right| q\right\rangle \nonumber \\= & {} \frac{1}{N} \sum _{m,l} x_{ml}\; \hbox {Tr}\left[ ({\hat{X}}^m {\hat{Z}}^l)({\hat{X}}^m {\hat{Z}}^l)^{\dagger }\right] \nonumber \\= & {} \sum _{m,l} x_{ml} \end{aligned}$$
(82)
$$\begin{aligned} \hbox {Tr}({\hat{{\varOmega }}} {\hat{\rho }}{''})= & {} \frac{1}{N^2}\sum _{m,l} x_{ml} \hbox {Tr}\left[ \left( \hat{X_1}^m\hat{Z_1}^l\right) \left( \hat{X_2}^m\hat{Z_2}^l\right) ^{\dagger }\right] \nonumber \\= & {} \sum _{m,l} x_{ml} \delta _{m0}\delta _{l0} =x_{00}. \end{aligned}$$
(83)

We used the identity (78) to obtain Eq. (83). Equations (82) and (83) are used to prove Eq. (56) in the text.

For the second moment of \({\hat{{\varOmega }}}\), we have

$$\begin{aligned}&\hbox {Tr}({\hat{{\varOmega }}} {\hat{{\varOmega }}}^{\dagger } {\hat{\rho }}') \end{aligned}$$
(84)
$$\begin{aligned}&\quad = \sum _{m,l,m',l'} x_{ml} x_{m'l'}^* \frac{1}{N}\sum _{qq'} \left\langle q \left| ({\hat{X}}_1^m{\hat{Z}}_1^l)\left( {\hat{X}}_1^{m'}{\hat{Z}}_1^{l'}\right) ^{\dagger } \right| q'\right\rangle _1 \times \left\langle q'\left| \left( {\hat{X}}_2^m {\hat{Z}}_2^l\right) ^{\dagger }({\hat{X}}_2^{m'}{\hat{Z}}_2^{l'})\right| q\right\rangle _2 \nonumber \\&\quad = \sum _{m,l,m',l'} x_{ml} x_{m'l'}^* \frac{1}{N}\sum _{qq'} \left\langle q \left| ({\hat{X}}^m{\hat{Z}}^l)\left( {\hat{X}}^{m'}{\hat{Z}}^{l'}\right) ^{\dagger } \right| q'\right\rangle \left\langle q'\left| \left( {\hat{X}}^m {\hat{Z}}^l\right) ^{\dagger }({\hat{X}}^{m'}{\hat{Z}}^{l'})\right| q\right\rangle \nonumber \\&\quad = \sum _{m,l,m',l'} x_{ml}x_{m'l'}^* \frac{1}{N}{\hbox {Tr}}\left[ ({\hat{X}}^m{\hat{Z}}^l) \left( {\hat{X}}^{m'}{\hat{Z}}^{l'}\right) ^{\dagger } \left( {\hat{X}}^m{\hat{Z}}^l \right) ^{\dagger }({\hat{X}}^{m'}{\hat{Z}}^{l'}) \right] , \nonumber \\&\quad =\sum _{m,l,m',l'} x_{ml} x_{m'l'}^* \; \omega ^{ml'-m'l}. \end{aligned}$$
(85)
$$\begin{aligned} {\hbox {Tr}}({\hat{{\varOmega }}} {\hat{{\varOmega }}}^{\dagger } {\hat{\rho }}'')= & {} \sum _{m,l,m',l'} x_{ml} x_{m'l'}^* \frac{1}{N} {\hbox {Tr}_1}\left[ \left( {\hat{X}}_1^m{\hat{Z}}_1^l\right) \left( {\hat{X}}_1^{m'}{\hat{Z}}_1^{l'}\right) ^{\dagger }\right] \frac{1}{N} {\hbox {Tr}}_2\left[ \left( {\hat{X}}_2^{m}{\hat{Z}}_2^{l}\right) ^{\dagger }\left( {\hat{X}}_2^{m'}{\hat{Z}}_2^{l'}\right) \right] \nonumber \\= & {} \sum _{m,l,m',l'} x_{ml} x_{m'l'}^* \delta _{mm'} \delta _{ll'} = \sum _{m,l} |x_{ml}|^2 \end{aligned}$$
(86)

To obtain Eq. (85), we made use of the identity (79), and to obtain Eq. (86), we made use of the identity (78). Equations (85) and (86) are used to prove Eq. (57) in the text.

From Eqs. (57) and (56), we find Eq. (58) for the variance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Band, Y.B., Mello, P.A. Partial transposition in a finite-dimensional Hilbert space: physical interpretation, measurement of observables, and entanglement. Quantum Stud.: Math. Found. 5, 177–188 (2018). https://doi.org/10.1007/s40509-017-0120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-017-0120-3

Keywords

Navigation