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Abstract We investigate the power ofweakmeasurements in the framework of quantum state discrimination. First,
we define and analyze the notion of weak consecutive measurements. Our main result is a convergence theorem
wherebywe demonstratewhen and howa set of consecutiveweakmeasurements converges to a strongmeasurement.
Second, we show that for a small set of consecutive weak measurements, long before their convergence, one can
separate close states without causing their collapse. We thus demonstrate a tradeoff between the success probability
and the bias of the original vector towards collapse.Next, we use post-selectionwithin the two-state vector formalism
and present the non-linear expansion of the expectation value of the measurement device’s pointer to distinguish
between two predetermined close vectors.

Keywords Weak measurements · Quantum state discrimination · Two-state vector formalism

1 Introduction

Weak measurement [1] has already been proven to be very helpful in several experimental tasks [2–5], as well
as in revealing fundamental concepts [6–10]. Tasks traditionally believed to be self-contradictory by nature such
as determining a particle’s state between two measurements prove to be perfectly possible with the aid of this
technique. Within the framework of the two-state vector formalism (TSVF), weak measurements reveal several new
and sometime puzzling phenomena. For a general discussion on weak measurements see [1,11–14]. In this paper,
we analyze the strength of weak measurements by addressing the question of quantum state discrimination.

There are several knownmethods for quantum state discrimination, i.e., for the task of deciding which vector was
chosen out of a predetermined set of (possibly close) state vectors (for a general review see [15]). Discriminating
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38 B. Tamir et al.

between predetermined non-orthogonal vectors can be seen as quantum hypothesis testing [15]. Suppose we use
projective measurements, then the question is what are the best projections to choose so that the error probability
would be as small as possible. This was first discussed byHelstrom in [16] for the case of two predetermined vectors.
The density matrix version of the problem was developed by Osaki in [17]. A different scheme was presented by
Ivanovic [18] where the discrimination is error free, but there is a probability for obtaining a non-conclusive result,
i.e., a ‘don’t know’ result. A variant of this scheme was suggested in [19,20] where the inconclusive outcomes have
a fixed rate. Recently, Zilberberg et al. [21] have presented a new method, based on partial measurements followed
by post-selections. The problem of state discrimination and the problem of cloning are deeply connected. A recent
paper of Yao et al. [22] discusses approximate cloning and probabilistic cloning. Weak measurements were also
proposed for the task of discrimination between two very close states [23]. The scheme we suggest here in Sect. 2 is
similar, yet somewhat more general, while the schemewe use at Sect. 1, based on an sequential weakmeasurements,
is quite different. The advantages and disadvantages of each method will be discussed.

In Sect. 1, we discuss the orbit of a two-dimensional state vector under the set of transformations induced byweak
measurements. This process can be described as a biased Gaussian random walk on the unit circle. The probability
amplitude that govern the next step (the ‘coin’ probability amplitude) is changing with each step. In this, our walk is
similar to the one presented in [24], but differs from the quantum random walk presented in [25]. We thereby rotate
two different vectors in opposite directions (therefore, in a non-unitary way), where we can use a single (strong)
projective measurement to distinguish between them. We show that using enough weak measurements (the number
of which is a function of the weak coupling), the overall success probability converges to the known optimal result
for discrimination by projective measurements [16].

Next, we use a different approach; we reduce the number of measurements, thus compromising the success
probability, however, gaining an advantage by avoiding the collapse.

In Sect. 2, we apply the TSVF of weak measurements. By choosing the right Hermitian operator and a proper
post-selection, we can get imaginary weak values. Imaginary weak values are best suited for the analysis of the
coordinate variable of the measurement space. We apply a non-linear expansion of the weak value and use it
to compute the first and second moments of such a variable. These moments of the coordinate variable change as
functions of the initial vector.We then pick two state vectorsmaximizing the difference between the two distributions
of the coordinate variable.

2 A cloning protocol using iterative weak measurements

In this Section, we shall perform consecutive weak measurements (without post-selection) to show that it is pos-
sible in principle to differentiate between two non-orthogonal vectors. Suppose Alice is sending Bob one of two
predetermined state vectors of a two-dimensional system S:

|ψ1〉 = cosφ|0〉 + sin φ|1〉
|ψ2〉 = sin φ|0〉 + cosφ|1〉
where |0〉 and |1〉 are the eigenvalues of Sz and π

2 > φ > π
4 . Let θ be the angle between the two vectors:

〈ψ1|ψ2〉 = cos θ,

therefore, the two vectors have the same angle θ
2 with respect to the vector 1√

2

(|0〉 + |1〉) (see Fig. 1). We assume
Alice is sending each of the vectors with the same probability. It is well known by [16] that the maximal success
probability is:

PS(opt) = 1

2

(
1 +

√
1 − 4λ1λ2|〈ψ1|ψ2〉|2

)

where Alice is sending |ψ1〉 (resp. |ψ2〉) with probability λ1 (resp. λ2). Since, we are using λ1 = λ2 = 1/2 we can
write:

PS(opt) = 1 + sin θ

2
= cos2 φ (1)
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On the power of weak measurements in separating quantum states 39

Fig. 1 The choice of axes, vectors and angles that is used throughout the paper

Below we shall show that one can reach the same limit using the following weak measurement protocol. By a
series of weak measurements Bob will be able to ‘rotate’ the initial vector towards the direction of |0〉 or |1〉. Bob
will stop the rotations after a predetermined number of iterations, by then he can assume with high probability that
the vector would have crossed |0̃〉 or |1̃〉 which are close to the axes |0〉 or |1〉. He will then strongly measure the
final ‘rotated’ vector in the standard Sz basis to get the result |0〉 or |1〉. If the result is |1〉, he can conclude the initial
vector was |ψ1〉, otherwise it was |ψ2〉.

The error probability has two factors; the first originates from the weak ‘rotations’, i.e., the probability that the
weak ‘rotations’ will take |ψ1〉 (resp. |ψ2〉) to |0̃〉 (resp. |1̃〉). The second factor originates from the strong final
measurement, i.e., the probability that having ‘rotated’ |ψ1〉 (resp. |ψ2〉) in the correct direction towards |1〉 (resp.
|0〉) the strong measurements will produce |0〉 (resp.|1〉) results.

Below we start by describing the process of weak measurement. Then, we describe the protocol in details.

2.1 A Gaussian-type random walk induced by weak coupling

Let S denote our two-dimensional system to be measured. Let Ŝz be the Pauli spin matrix on the system S. Let
|ψ〉 = α|0〉 + β|1〉 be a state vector in the eigenbasis |0〉 and |1〉 of Ŝz .

Let |φ〉 denote the wave function of a quantum measurement device. Then,

|φ〉 = |φ(x)〉 =
∫

x
φ(x)|x〉dx (2)

where X̂ |x〉 = x |x〉 is the position operator of the measuring needle. Suppose |φ(x)|2 is normally distributed around
0 with variance σ 2:

φ(x) = (2πσ 2)−1/4e−x2/4σ 2

The function φ(x) represents the device’s ‘needle’ distribution amplitude. Let P̂ be the momentum conjugate
operator of the measuring device, such that [X̂ , P̂] = i h̄.

We shall start the measuring process with the vector:

|ψ〉 ⊗ |φ(x)〉
in the tensor product space of the two systems. We will now couple the two systems by the interaction Hamiltonian
Ĥint:

Ĥ = Ĥint = g(t)Ŝz ⊗ P̂ (3)

where g(t) is the coupling function satisfying:
∫ T

0
g(t)dt = g,

and T is the coupling time. We will use g = 1 throughout this section for simplicity.
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40 B. Tamir et al.

Following the weak coupling the system and the measuring device are entangled:
∫

x
[α|0〉 ⊗ φ(x − 1) + β|1〉 ⊗ φ(x + 1)]|x〉dx (4)

where the above functions φ(x ± 1) are two normal functions with high variance, overlapping each other.
We can write the entangled (unnormalized) state of the measured vector and the measurement device as:

∫

x

[
e− (x−1)2

4σ2 α|0〉 ⊗ |x〉 + e− (x+1)2

4σ2 β|1〉 ⊗ |x〉
]
dx . (5)

We will now strongly measure the needle. Suppose the needle collapses to the vector |x0〉, then our system is now
in the state:
[
e− (x0−1)2

4σ2 α|0〉 + e− (x0+1)2

4σ2 β|1〉
]

⊗ |x0〉. (6)

The eigenvalue x0 could be anywhere around −1 or 1, or even further away, especially if σ is big enough, i.e., when
the measurement is very weak. Note that the collapse of the needle biases the system’s vector. However, if σ is very
large with respect to the difference between the eigenvalues of Ŝz then the bias will be very small and the resulting
system’s vector will be very similar to the original vector.

Note that, the projective measurement on the outer needle’s space induces a unitary evolution on the inner space
of the composite system. Thus, we control the evolution of the state by weak measurements. This resembles an
adiabatic evolution of a state vector by strong measurements (see [26]).

Consider now the orbit of the initial state vector under the series of weak measurements. We couple the particle
to the measuring device and then measure the needle. Next, we couple the biased vector to another measuring device
and measure its needle. We repeat this process over and over again. The measuring needle is re-calibrated after each
measurement, while the particle’s state accumulates the successive biases one by one. The series of biased vectors
describes an asymmetric random walk on the circle.

Note that, the random walk is continuous and ‘weighted’ in the sense that the distribution function for the next
sampling step is changing as a function of the location on the circle. Near the axes |0〉 and |1〉 it looks like a Gaussian
random walk. The following protocol goes through such a random walk trying to identify the point of start.

2.2 Distinguishing by consecutive iterations of weak measurements

Bobwill perform a series of weakmeasurements to rotate the initial vector |ψ〉 towards |0〉 or |1〉.We use a numerical
simulation to investigate the random walk. The vectors |0̃〉 and |1̃〉 are very close to |0〉 and |1〉, respectively, and
they will define the ‘collapse’.

First, we address the task of quantifying the number of weak measurements needed to ‘collapse’ the initial
vector as a function of the standard error σ of the needle. We simulate the probability distribution of the number
of weak measurements needed to collapse the initial vector 1√

2
(|0〉 + |1〉) (see Appendix). We start with σ = 20.

The probability distribution is best fitted (R2 > 0.99) by a log-normal distribution with μ̃ = 2.8 and σ̃ = 0.71,
see Fig. 2. When examining the form of qm in the Appendix, and applying the Central Limit Theorem under weak
dependence, the success of the fit turns obvious: qm can be described approximately as an exponent of a normally
distributed random variable and hence behaves like a log-normal random variable.

Next, we look at the median of the above results (which distribute log-normally) as a function of σ , see Fig. 3.
By changing σ we observe a quadratic relation between the median and σ . In other words, Bob needs O(σ 2)

steps before he knows the vector had ‘collapsed’ to |0̃〉 or |1̃〉 with high probability. In this simulation, we chose
|0̃〉 = cos(10◦)|0〉 + sin(10◦)|1〉 ; |1̃〉 = cos(80◦)|0〉 + sin(80◦)|1〉. The result is independent of the initial vector.
Rotating |0̃〉 and |1̃〉 toward the axes will only multiply the number of steps needed for the collapse by a constant
factor.
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On the power of weak measurements in separating quantum states 41

Fig. 2 Distribution of the
number of measurements
until the collapse, given a
fixed σ
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Fig. 3 Average number of
measurements until the
collapse as a function of σ
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Second, we address the error probability in determining the vector’s original identity. Having started with |ψ1〉,
the error probability Err(|ψ1〉) is:
Err(|ψ1〉) = Pw(|ψ1〉 → |0̃〉)Ps(|0̃〉 → |0〉) + Pw(|ψ1〉 → |1̃〉)Ps(|1̃〉 → |0〉).
The error probability for |ψ1〉 is the probability that the series of weak measurement iterations will take |ψ1〉 to |0̃〉
and the strong measurement will take |0̃〉 to |0〉, plus the probability that the weak process will take |ψ1〉 correctly
to |1̃〉, but the strong measurement will take |1̃〉 to |0〉.

In the next simulation, we compute the probability Pw(|ψ1〉 → |1̃〉) and Pw(|ψ2〉 → |0̃〉) for a set of initial
vectors |ψi 〉 where |0̃〉 = cos 1◦|0〉 + sin 1◦|1〉 and |1̃〉 = cos 89◦|0〉 + sin 89◦|1〉. Figure 4 presents the success
probability as a function of θ . The simulation was performed 1000 times (see the pseudo-code in the appendix)
where each time we followed the trajectory of the random walk until it crossed the boundaries defined by |0̃〉 and
|1̃〉. The success probabilities are higher than the best separation value in [16]. However, these simulations disregard
the possible error in the strong measurements. As we increase the angle between |0̃〉 and |1̃〉, we reduce the error of
the strong measurement and the success probabilities of the weak process approach the limit in [16] from above.

The following conclusion is only natural:
Err(|ψ1〉) = sin2 α.
We can demonstrate the conjecture by extending the angle between |0̃〉 and |1̃〉.
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42 B. Tamir et al.

Fig. 4 The success
probability Pw(|ψ1〉 → |1̃〉)
as a function of θ . The solid
curve describes the optimal
success probability for
projective measurements,
Ps(|ψ1〉 → |1〉). Note that
the success probabilities are
with respect to different
outcome vectors
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Fig. 5 Success probability
for hypothesis testing with
low number of weak
measurements. The solid
curve describes the optimal
success probability for
projective measurement (see
Eq. 1 above)
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2.3 Hypothesis testing with weak measurements

So far, we have used the weak measurements to iteratively produce small biases of the initial vector to shift it
towards one of the axes. The results we got for the pointer of the weak measurement apparatus were so far ignored.
Suppose now we use a very small number of weak measurements. We could use the pointers’ readings as samples
from the vector’s distribution. Moreover, we can average over the few values and use the result as a statistic. Notice,
however, that we are sampling from a distribution that is changing following each pointer’s reading. The advantage
of such a protocol lies in the fact that the vector has not collapsed; if the standard error of the weak measurement
is large and the number of weak measurement is small then the resulting vector is still in the neighborhood of
the original one. We will show that the distributions of the averages behave as a function of the initial vector and,
therefore, could be used to distinguish between the two.

In the next simulation (Fig. 5) we weakly measured the vectors for 5, 10, and 20 times, using σ = 3. This
simulation was performed 5,000 times for several different angles θ (as in Fig. 1). It is expected that the average
value (of weak measurements) for |ψ1〉 (resp. |ψ2〉 should be below 0 (resp. above 0). The success probability was
computed by the number of times the average value did not cross 0.

Figure 6 describes the cumulative distribution function for the above average values (denoted by x) for the
initial angle θ = 50◦ and initial vector |ψ2〉. It can be seen that the graphs are similar to a shifted cumulative
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On the power of weak measurements in separating quantum states 43

Fig. 6 Cumulative
distribution function for the
average of weak values for
the initial angle θ = 50◦
and initial vector |ψ2〉
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distribution function of a normal random variable. Moreover, the median is fixed regardless of the number of weak
measurements. This median is supposed to coincide with the theoretical ‘strong’ one when σ becomes lower.

In practice, if we use such a protocol to distinguish between two vectors (separated by an angle θ , as in Fig. 1)
we should be aware of two types of errors. The first comes from the fact that the vector is changing with each weak
measurement. It could possibly drift following the first measurement towards the other vector, thereafter staying in
that neighborhood for long. Thus, our readings will identify the wrong vector. The second type of error comes from
hypothesis testing. The sample of the average could be very close to 0 making the decision tougher. The simulation
above does not distinguish between the two types of errors. It only matches the true vector with the average value
of weak measurements, to give an overall success probability.

3 State discrimination with post-selection: the non-linear computation

In this Section, we will use the TSVF of weak measurements to perform a non-linear analysis of quantum state
discrimination for a general coupling strength. We will show that for the rare events where the post-selection is
successful we have a high probability to identify the vector. The motivation for utilizing post-selection was already
verified in many precision measurements [2–4], hence it is natural to examine it for this application.

In the pre- and post-selected set of weakmeasurement (see below), we will look at the distribution of the pointer’s
coordinate variable X̂fin. The moments of X̂fin are functions of the pre-selected state |ψin〉, the post- selected state
|ψfin〉, and the operator A.Wewill show that it is possible to pick two initial vectors |ψ i

in〉 such that the corresponding
distributions of X̂fin are easily distinguished (possibly by one sample). In particular, for one of the initial vectors
X̂fin will be distributed around 0 with standard error σ while for the other initial vector X̂fin will be distributed
around σ with very low standard error (almost 0). This will make it easy to differentiate between the two cases.

InSect.3.1we compute the expansion of theweakvalue 〈ψfin|e−ig Â X̂/h̄ |ψin〉using all terms in Â and X̂ . In Sect.3.1
we show how to pick two initial vectors that maximizes the difference between the corresponding distributions of
X̂fin. Our derivation is based on [27].

3.1 The non-linear approximation of weak values

Suppose Â is an Hermitian operator on the principle system S. Let |ψ〉 denote a state vector for that system. Let

h̄ = 1. We will also assume Â2 = 1, this will make it easy to write e−ig Â X̂/h̄ as a power series. Assume also that:
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44 B. Tamir et al.

〈 Â〉w = 〈ψfin| Â|ψin〉
〈ψfin|ψin〉 = ib

Let |φ〉 denote the wave function of a quantum measurement device. Then,

|φ〉 = |φ(x)〉 =
∫

x
φ(x)|x〉dx (7)

where X̂ |x〉 = x |x〉 is the position operator of the measuring needle. We will also assume that |φ(x)|2 is normally
distributed around 0 with variance σ 2:

φ(x) = (2πσ 2)−1/4e−x2/4σ 2

The function φ(x) represents the device’s ‘needle’ amplitude distribution. We will now couple the principle system
and the measurement system by the interaction Hamiltonian Ĥint:

Ĥ = Ĥint = g(t) Â ⊗ X̂ (8)

(we used the operator X̂ instead of P̂ since we need imaginary weak values [28]). Here, g(t) is a coupling function
satisfying:
∫ T

0
g(t)dt = g,

where T is the coupling time.
We shall start the measuring process with the vector:

|ψ〉 ⊗ |φ(x)〉
in the tensor product of the two systems. Then, we apply the Hamiltonian:

e−i Â X̂/h̄ |ψ〉 ⊗ |φ(x)〉.
Let

|
fin(x)〉 = 〈ψfin|e−ig Â X̂/h̄ |ψin〉|φ(x)〉
be the wave function of the needle following the coupling and the post-selection. For an observable M̂ on the
needle’s space |φ(x)〉, let:

〈M̂〉in = 〈φ|M̂|φ〉
〈φ|φ〉 ,

〈M̂〉fin = 〈
fin|M̂|
fin〉
〈
fin|
fin〉 .

Since Â2 = 1 we can write 〈ψfin|e−ig Â X̂ |ψin〉 as
∞∑

n=0

(−ig X̂)2n

(2n)! 〈ψfin|ψin〉 +
∞∑

n=0

(−ig X̂)2n+1

(2n + 1)! 〈ψfin| Â|ψin〉 (9)

= 〈ψfin|ψin〉[cos(gX̂) − i〈 Â〉w sin(gX̂)]
where

〈 Â〉w = 〈ψfin| Â|ψin〉
〈ψfin|ψin〉 .

Consider now the average bias of the needle:

〈X̂〉fin = 〈
fin|X̂ |
fin〉
〈
fin|
fin〉 = 〈X̂ | cos(gX̂) − i〈 Â〉w sin(gX̂)|2〉in

〈| cos(gX̂) − i〈 Â〉w sin(gX̂)|2〉in
.
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Recall 〈 Â〉w = ib, and let a+ = 1+b2
2 and a− = 1−b2

2 , then [29]

〈X̂〉fin = a+〈X̂〉in + a−〈X̂ cos(2gX̂)〉in + b〈X̂ sin(2gX̂)〉in
a+ + a−〈cos(2gX̂)〉in + b〈sin(2gX̂)〉in

(10)

Now since the needle is symmetric (normally distributed) we can write:

〈X̂ cos(2gX̂)〉in = 〈sin(2gX̂)〉in = 〈X̂〉in = 0.

Hence

〈X̂〉fin = b〈X̂ sin(2gX̂)〉in
a+ + a−〈cos(2gX̂)〉in

. (11)

We shall now use the parametrization b = cot( η
2 ), (a− = − cos(η)

2 sin2( η
2 )

and a+ = 1
2 sin2( η

2 )
), therefore:

〈X̂〉ηfin = sin(η)〈X̂ sin(2gX̂)〉in
1 − cos(η)〈cos(2gX̂)〉in

. (12)

Since the needle is Gaussian, we can write

〈cos(2gX̂)〉in = e−2(gσ)2

and

〈X̂ sin(2gX̂)〉in = 2gσ 2e−2(gσ)2 ,

[30] and therefore,

〈X̂〉ηfin = sin(η)2gσ 2

e2(gσ)2 − cos(η)
. (13)

The above ratio has maximal value at cos(η) = e−2(gσ)2 which is [31]:

〈X̂〉max
fin = 2gσ 2

√
e4(gσ)2 − 1

. (14)

If the measurement is weak, i.e., g · σ 	 1, then

2gσ
√
e4(gσ)2 − 1

∼ 1,

hence

〈X̂〉max
fin ∼ σ. (15)

This will be true for η close to 0. However, if η = 0 then 〈X̂〉ηfin = 0 for all g �= 0.
To sum-up, 〈X̂〉ηfin is a function of two variables η and g. If the two variables are correlated such that cos(η) =

e−2(gσ)2 then for g small enough such that g · σ 	 1 we can get 〈X̂〉ηfin to be very close to σ . But if we fix g

(however, small) and let η go to 0, we can decrease 〈X̂〉ηfin to 0. The variable η is a function of the weak values of
Â. This means that we can tune η such that for η1 the expectation value 〈X̂〉η1fin will be close to σ , and for η2 the
expectation value 〈X̂〉η2fin will close to 0.

To compute the variance of the needle after the post-selection note that:

〈X̂2〉fin = a+〈X̂2〉in + a−〈X̂2 cos(2gX̂)〉in + b〈X̂2 sin(2gX̂)〉in
a+ + a−〈cos(2gX̂)〉in + b〈sin(2gX̂)〉in

(16)
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Since the needle is normally distributed it is easy to see that

〈X̂2 cos(2gX̂)〉in = σ 2e−2(gσ)2 [1 − 4g2σ 2], (17)

[32] and, therefore,

〈X̂2〉fin = σ 2

{
a+ + a−e−2(gσ)2 [1 − 4g2σ 2]

a+ + a−e−2(gσ)2

}

. (18)

For small enough gσ the value of 1− 4g2σ 2 will be close to 1 and, therefore, 〈X̂2〉fin will be close to σ 2. Note that
〈X̂2〉fin does not depend on the weak value since the needle has symmetric distribution.

3.2 Distinguishing between two non-orthogonal vectors

We can now pick two small angles η1 and η2 such that the difference between 〈X̂〉η1fin and 〈X̂〉η2fin is almost σ . Since
η1 and η2 correspond to two initial vectors, we can distinguish between the two vectors by estimating the value of
〈X̂〉ηfin. In particular, consider
|ψ i

in〉 = αi |0〉 − βi |1〉
for i = 1, 2. Also

|ψfin〉 = 1√
2
(|0〉 + |1〉)

Let Â be the Hermitian operator:

Â =
(
0 −i
i 0

)
.

Then, Â2 = 1. It is easy to see that:

〈 Â〉iw = i
αi + βi

αi − βi

Let:

η1 = arcos
(
e−2(gσ)2

)
.

Then, we can choose |ψ1
in〉 = α1|0〉 − β1|1〉 such that:

α1 = 1√
2

(
cos

η1

2
+ sin

η1

2

)

β1 = 1√
2

(
cos

η1

2
− sin

η1

2

)

and therefore
α1 + β1

α1 − β1
= cot

(η1

2

)
.

Also, for η2 close to 0 we can choose |ψ2
in〉 = α2|0〉 − β2|1〉 such that:

α2 = 1√
2

(
cos

η2

2
+ sin

η2

2

)

β2 = 1√
2

(
cos

η2

2
− sin

η2

2

)
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Fig. 7 Illustration of the
normal distribution of the
pointer’s first moment for
each of the two initial
vectors
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hence
α2 + β2

α2 − β2
= cot

(η2

2

)
.

Therefore, the difference between 〈X̂〉η1fin and 〈X̂〉η2fin will be close to σ .
The final variance of the needle in case |ψin〉 = |ψ1

in〉 is
〈X̂2〉fin − 〈X̂〉η1fin

2 ≈ σ 2 − σ 2 = 0,

and, therefore, the needle is normally distributed around σ with very low standard error.
The final variance of the needle in case |ψin〉 = |ψ2

in〉 is
〈X̂2〉fin − 〈X̂〉η2fin

2 ≈ σ 2 − 0 = σ 2,

hence the needle is normally distributed around 0 with standard error σ .
We can now easily distinguish between the two alternative distributions, possibly with a single sample using

standard hypothesis testing (see for example the illustration in Fig. 7).
The success of the protocol depends solely on the post-selection probability, which is:

|〈ψfin|ψ i
in〉|2 =

∣∣∣∣
αi − βi√

2

∣∣∣∣

2

=
∣∣∣sin

ηi

2

∣∣∣
2
.

This probability will be low since each of the initial vectors is almost orthogonal to the final vector.

To sum-up, having post-selected the final vector, the probability to correctly guess the right vector could be high.
Initially, the probability to post-select is low and, therefore, the complexity of the protocol depends mainly on the
post-selection.

In the above example, the two initial states were represented in the same bases. Including an additional linear
transformation in the scheme, we can generalize it to the case of two states chosen from two different mutually
unbiased bases. This scheme might be suitable for quantum cryptography, and indeed, very recently a method based
on sequential weak measurements was suggested for secure key distribution [33].

4 Discussion

Weak measurement theory challenges some of the most basic principles of quantum theory. In a nutshell, it allows
the accumulation of information regarding the state vector without forcing its collapse. As we have shown in
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Sect. 1, when performed many times, weak measurements are equivalent to a single strong one, thus approaching
the well-known optimal success probability for discrimination performed by projective measurement. However,
when performed only a limited number of times, they do not collapse the vector, but only rotate it. In such a case,
we can still get some weak information about the state by reading (collapsing) the needle of the weak measurement
apparatus. Moreover, when followed by post-selection, weak measurements can reveal underlying properties of the
initial vector, allowing one to perform quantum state discrimination in retrospect as discussed in Sect. 2.

The gradual process of ‘getting information while determining the state’ which was demonstrated in Sect. 1
is strictly connected to the old measurement problem [34]. By weakly measuring the initial unknown vector we
slowly collapse it, creating a continuous tradeoff between our knowledge and its superposition. This process can
be thought of as a step-by-step decoherence in which the measured system ‘leaks’ through a small hole (the weak
coupling to the measurement device) into the environment. As opposed to traditional decoherence this process is
rigidly controlled and can be stopped at every stage, thus enablingmuch liberty to the experimenter. Therefore, weak
measurement’s important contribution is its flexibility. With weak measurement one controls the tradeoff between
success rate and collapse rate by choosing the strength of the coupling and the number of weak measurement.
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supported by Israel Science Foundation Grant No. 1311/14.

Appendix: A pseudo-code describing the weak orbit

Wewish to find the pointer final position qm (the expectation of its distribution) when performingm successive weak
measurements on a single particle prepared (for example) in the initial state 1√

2
(|0〉 + |1〉). Let q0 be distributed

according to N (1, σ 2) with probability 1/2 and according to N (−1, σ 2) with probability 1/2. One can take σ =
m  1. Now let q1 be distributed according to N (1, σ 2) with probability:

exp
[
(q0 + 1)2/2σ 2

]

exp
[
(q0 + 1)2/2σ 2

] + exp
[
(q0 − 1)2/2σ 2

]

and according to N (−1, σ 2) with probability:

exp
[
(q0 − 1)2/2σ 2

]

exp
[
(q0 + 1)2/2σ 2

] + exp
[
(q0 − 1)2/2σ 2

] .

Let q2 be distributed according to N (1, σ 2) with probability:

exp
[
((q0 + 1)2 + (q1 + 1)2)/2σ 2

]

exp
[
((q0 + 1)2 + (q1 + 1)2)/2σ 2

] + exp
[
((q0 − 1)2 + (q1 − 1)2)/2σ 2

]

and according to N (−1, σ 2) with probability:

exp
[
((q0 − 1)2 + (q1 − 1)2)/2σ 2

]

exp
[
((q0 + 1)2 + (q1 + 1)2)/2σ 2

] + exp
[
((q0 − 1)2 + (q1 − 1)2)/2σ 2

] .

Then, qm is distributed according to N (1, σ 2) with probability:

exp
[(∑m−1

i=0 (qi + 1)2
)

/2σ 2
]

exp
[(∑m−1

i=0 (qi + 1)2
)

/2σ 2
]

+ exp
[(∑m−1

i=0 (qi − 1)2
)

/2σ 2
]

and according to N (−1, σ 2) with probability:

exp
[(∑m−1

i=0 (qi − 1)2
)

/2σ 2
]

exp
[(∑m−1

i=0 (qi + 1)2
)

/2σ 2
]

+ exp
[(∑m−1

i=0 (qi − 1)2
)

/2σ 2
] .
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