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Abstract Based on nuclear infinite-dimensional algebra of entire functions with a certain exponential growth
condition with two variables, we define a class of operators which gives in particular three semigroups acting
on continuous linear operators, called the quantum Ornstein–Uhlenbeck (O–U) semigroup, the left quantum O–
U semigroup and the right quantum O–U semigroup. Then, we prove that the solution of the Cauchy problem
associated with the quantum number operator, the left quantum number operator and the right quantum number
operator, respectively, can be expressed in terms of such semigroups. Moreover, probabilistic representations of
these solutions are given. Eventually, using a new notion of positive white noise operators, we show that the
aforementioned semigroups are Markovian.

Keywords Space of entire function · Quantum O–U semigroup · Quantum number operator · Cauchy problem ·
Positive operators · Markovain semigroups
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1 Introduction

Piech [25] introduced the number operator N (Beltrami Laplacian) as infinite-dimensional analog of a finite-
dimensional Laplacian. This infinite-dimensional Laplacian has been extensively studied in [18,20] and the refer-
ences cited therein. In particular, Kuo [18] formulated the number operator as continuous linear operator acting on
the space of test white noise functionals. As applications, Kuo [17] studied the heat equation associated with the
number operator N; this solution is related to the Ornstein–Uhlenbeck (O–U) semigroup. Based on the white noise
theory, Kuo formulated the O–U semigroup as continuous linear operator acting on the space of test white noise
functionals; see [18] and references cited therein. In [7], based on nuclear algebra of entire functions, some results
are extended about operator–parameter transforms involving the O–U semigroup.

In this paper, based on nuclear algebra of entire functions with two variables, three semigroups appear naturally:
the quantum, the left quantum and the right quantum O–U semigroups, respectively. We extend some results
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160 H. Rguigui

about these semigroups and their infinitesimal generators called quantum, left quantum and right quantum number
operators, respectively.Moreover, we prove that the solution of the Cauchy problems associatedwith these operators
can be expressed in terms of the O–U semigroups. Such semigroups are shown to be Markovian.

The paper is organized as follows. In Sect. 2, we briefly recall well-known results on nuclear algebras of entire
holomorphic functions. In Sect. 3, we extend some regularity properties about quantum number operator ˜N , left
quantum number operator ˜N1, right quantum number operator ˜N2 and quantum O–U semigroups. In Sect. 4, we
construct semigroups with infinitesimal generator− ˜N ,−˜N1 and−˜N2, respectively. Then, we deduce the solution
of the associated Cauchy problems where its probabilistic representations are given. In Sect. 5, using an adequate
definition of positive operators, we prove that these quantum O–U semigroups are Markovian.

2 Preliminaries

First, we review the basic concepts, notations and some results which will be needed in the present paper. The
development of these and similar results can be found in Refs. [7,11,15,20,21,24].

In mathematics, a nuclear space is a locally convex topological vector space such that for any seminorm p we
can find a larger seminorm q, so that the natural map from Vq to Vp is nuclear. Such spaces preserve many of the
good properties of finite-dimensional vector spaces. As main examples of nuclear spaces we recall the Schwartz
space of smooth functions for which the derivatives of all orders are rapidly decreasing and the space of entire
holomorphic functions on the complex plane with θ−exponential growth. Using a separable Hilbert space and a
positive self-adjoint operator with Hilbert–Schmidt inverse, we can construct a real nuclear space. For i = 1, 2, let
Hi be a real separable (infinite-dimensional) Hilbert space with inner product 〈·, ·〉 and norm | · |0. Let Ai ≥ 1 be a
positive self-adjoint operator in Hi with Hilbert–Schmidt inverse. Then there exist a sequence of positive numbers
1 < λi,1 ≤ λi,2 ≤ · · · and a complete orthonormal basis of Hi ,

{

ei,n
}∞

n=1 ⊆ Dom(Ai ) , such that

Ai ei,n = λi,nei,n ,

∞
∑

n=1

λ−2
i,n =

∥

∥

∥A−1
i

∥

∥

∥

2

H S
< ∞.

For every p ∈ R, we define:

|ξ |2p :=
∞
∑

n=1

〈ξ, ei,n〉2λ2p
i,n = ∣

∣Ap
i ξ
∣

∣

2
0 , ξ ∈ Hi .

The fact that, for λ > 1, the map p 	→ λp is increasing implies that:

(i) for p ≥ 0, the space (Xi )p, of all ξ ∈ Hi with |ξ |p < ∞, is a Hilbert space with norm | · |p and, if p ≤ q, then
(Xi )q ⊆ (Xi )p;

(ii) denoting by (Xi )−p, the | · |−p-completion of Hi (p ≥ 0), if 0 ≤ p ≤ q, then (Xi )−p ⊆ (Xi )−q .

This construction gives a decreasing chain of Hilbert spaces
{

(Xi )p
}

p∈R with natural continuous inclusions iq,p :
(Xi )q ↪→ (Xi )p (p ≤ q). Defining the countably Hilbert nuclear space (see, e.g., [12]):

Xi := projlim p→∞ (Xi )p ∼=
⋂

p≥0

(Xi )p,

the strong dual space X ′
i of Xi is:

X ′
i := indlim p→∞ (Xi )−p ∼=

⋃

p≥0

(Xi )−p

and the triple

Xi ⊂ Hi ≡ H ′
i ⊂ X ′

i (1)
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Quantum O–U semigroups 161

is called a real standard triple [20]. For i = 1, 2, let Ni be the complexification of the real nuclear space Xi . For
p ∈ N, we denote by (Ni )p the complexification of (Xi )p and by (Ni )−p, respectively, N ′

i the strong dual space of
(Ni )p and Ni . Then, we obtain

Ni = proj lim
p→∞(Ni )p and N ′

i = ind lim
p→∞(Ni )−p. (2)

The spaces Ni and N ′
i are, respectively, equipped with the projective and inductive limit topology. For all p ∈ N,

we denote by |.|−p the norm on (Ni )−p and by 〈., .〉 the C−bilinear form on N ′
i × Ni . In the following,H denote

by the direct Hilbertian sum of (N1)0 and (N2)0, i.e., H = (N1)0 ⊕ (N2)0. For n ∈ N, we denote by N̂⊗n
i

the n-fold symmetric tensor product on Ni equipped with the π−topology and by (Ni )
̂⊗n
p the n-fold symmetric

Hilbertian tensor product on (Ni )p.Wewill preserve the notation |.|p and |.|−p for the norms on (Ni )
̂⊗n
p and (Ni )

̂⊗n−p,
respectively.

Let θ be a Young function, i.e., it is a continuous, convex and increasing function defined on R
+ and satisfies

the two conditions: θ(0) = 0 and limr→∞
θ(r)

r
= ∞. Obviously, the conjugate function θ∗ of θ defined by

∀x ≥ 0, θ∗(x) := sup
t≥0

(t x − θ(t)),

is also a Young function. For every n ∈ N, let

(θ)n = inf
r>0

eθ(r)

rn
. (3)

Throughout the paper, we fix a pair of Young function (θ1, θ2). From now on, we assume that the Young functions
θi satisfy

lim
r→∞

θi (r)

r2
< ∞. (4)

Note that, if a Young function θ satisfies condition (4), there exist constant numbers α and γ such that

(θ)n ≤ α

(

2eγ

n

)n/2

(5)

and, for r > 0 such that rγ < 1,

∞
∑

n=0

rnn!(θ)2n < ∞. (6)

For a complex Banach space (C , ‖ · ‖), let H (C ) denotes the space of all entire functions on C , i.e., of all
continuous C-valued functions on C whose restrictions to all affine lines of C are entire on C. For each m > 0, we
denote by Exp(C , θ, m) the space of all entire functions on C with θ−exponential growth of finite type m, i.e.,

Exp(C , θ, m) =
{

f ∈ H (C ); ‖ f ‖θ,m := sup
z∈C

| f (z)|e−θ(m‖z‖) < ∞
}

.

The projective system {Exp((Ni )−p, θ, m); p ∈ N, m > 0} gives the space

Fθ (N ′
i ) := proj lim

p→∞;m↓0
Exp((Ni )−p, θ, m). (7)
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162 H. Rguigui

It is noteworthy that, for each ξ ∈ Ni , the exponential function

eξ (z) := e〈z,ξ〉, z ∈ N ′
i ,

belongs toFθ (N ′
i ) and the set of such test functions spans a dense subspace ofFθ (N ′

i ).
For all positive numbers m1, m2 > 0 and all integers (p1, p2) ∈ N×N, we define the space of all entire functions

on (N1)−p1 ⊕ (N2)−p2 with (θ1, θ2)−exponential growth by

Exp((N1)−p1 ⊕ (N2)−p2 , (θ1, θ2), (m1, m2))

= { f ∈ H ((N1)−p1 ⊕ (N2)−p2); ‖ f ‖(θ1,θ2);(p1,p2);(m1,m2) < ∞}
where H ((N1)−p1 ⊕ (N2)−p2) is the space of all entire functions on (N1)−p1 ⊕ (N2)−p2 and

‖ f ‖(θ1,θ2);(p1,p2);(m1,m2) = sup{| f (z1, z2)|e−θ1(m1|z1|−p1 )−θ2(m2|z2|−p2 )}
for (z1, z2) ∈ (N1)−p1 ⊕ (N2)−p2 . So, the space of all entire functions on (N1)−p1 ⊕ (N2)−p2 with
(θ1, θ2)−exponential growth of minimal type is naturally defined by

Fθ1,θ2(N ′
1 ⊕ N ′

2) = proj lim
p1,p2→∞,m1,m2↓0

Exp((N1)−p1 ⊕ (N2)−p2 , (θ1, θ2), (m1, m2)). (8)

By definition, ϕ ∈ Fθ1,θ2(N ′
1 ⊕ N ′

2) admits the Taylor expansions:

ϕ(x, y) =
∞
∑

n,m=0

〈x⊗n ⊗ y⊗m, ϕn,m〉, (x, y) ∈ N ′
1 × N ′

2 (9)

where for all n, m ∈ N, we have ϕn,m ∈ N̂⊗n
1 ⊗ N̂⊗m

2 and we used the common symbol 〈., .〉 for the canonical
C−bilinear form on (N⊗n

1 × N⊗m
2 )′× N⊗n

1 × N⊗m
2 . So, we identify in the next all test function ϕ ∈ Fθ1,θ2(N ′

1⊕ N ′
2)

by their coefficients of its Taylors series expansion at the origin (ϕn,m)n,m∈N. As important example of elements in
Fθ1,θ2(N ′

1 ⊕ N ′
2), we define the exponential function as follows. For a fixed (ξ, η) ∈ N1 × N2,

e(ξ,η)(a, b) = (eξ ⊗ eη)(a, b) = exp{〈a, ξ 〉 + 〈b, η〉}, (a, b) ∈ N ′
1 × N ′

2.

Let ϕ ∼ (ϕn,m)n≥0 in Fθ1,θ2(N ′
1 ⊕ N ′

2). Then, from [15] for any p1, p2 ≥ 0 and m1, m2 > 0, there exist q1 > p1
and q2 > p2 such that

|ϕn,m |p1,p2 ≤ en+m(θ1)n(θ2)mmn
1mm

2 ‖iq1,p1‖n
H S‖iq2,p2‖m

H S

×‖ϕ‖(θ1,θ2);(q1,q2);(m1,m2). (10)

Denoted byF ∗
θ1,θ2

(N ′
1 ⊕ N ′

2) the topological dual ofFθ1,θ2(N ′
1 ⊕ N ′

2) called the space of distribution on N ′
1 ⊕ N ′

2.
In the particular case where N2 = {0}, we obtain the following identification

Fθ1,θ2(N ′
1 ⊕ {0}) = Fθ1(N ′

1)

and therefore

F ∗
θ1,θ2

(N ′
1 ⊕ {0}) = F ∗

θ1
(N ′

1).

So, the space Fθ1,θ2(N ′
1 ⊕ N ′

2) can be considered as a generalization of the spaceFθ1(N ′
1) studied in [11].

3 Quantum O–U semigroup and quantum number operator

3.1 Quantum O–U semigroup

Let ϕ(y1, y2) = ∑∞
n,m=0〈y⊗n

1 ⊗ y⊗m
2 , ϕn,m〉 ∈ Fθ1,θ2(N ′

1 ⊕ N ′
2). For s, t ≥ 0, let at = √

1 − exp(−2t) and
bt = exp(−t). Then, we define Os,t by
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Quantum O–U semigroups 163

Os,tϕ(y1, y2) =
∫

X ′
1×X ′

2

ϕ(as x1 + bs y1, at x2 + bt y2)dμ1(x1)dμ2(x2),

where μ j is the standard Gaussian measure on X ′
j ( f or j = 1, 2) uniquely specified by its characteristic function

e− 1
2 |ξ |20 =

∫

X ′
j

ei〈x,ξ〉μ j (dx), ξ ∈ X j .

Proposition 1 Let s, t ≥ 0. Then, the operator Os,t is continuous linear from Fθ1,θ2(N ′
1 ⊕ N ′

2) into itself.

Proof Let ϕ ∈ Fθ1,θ2(N ′
1 ⊕ N ′

2). For any p1, p2 ≥ 0 and m1, m2 > 0, there exist p′
1, p′

2 ≥ 0 and m′
1, m′

2 > 0 such
that

∣

∣Os,tϕ(y1, y2)
∣

∣

≤
∫

X ′
1×X ′

2

|ϕ(as x1 + bs y1, at x2 + bt y2)| dμ1(x1)dμ2(x2)

≤ ‖ϕ‖(θ1,θ2);(p′
1,p′

2);(m′
1,m

′
2)

∫

X ′
1

exp

{

θ1

(

1

2
m1|as x1 + bs y1|−p1

)}

dμ1(x1)

×
∫

X ′
2

exp

{

θ2

(

1

2
m2|at x2 + bt y2|−p2

)}

dμ2(x2).

Since, for i = 1, 2, θi are convex, we have

θi

(

1

2
mi |as xi + bs yi |−pi

)

≤ 1

2
θi (mi |as | |xi |−pi

) + 1

2
θi (mi |bs | |yi |−pi

).

Therefore, we obtain
∣

∣Os,tϕ(y1, y2)
∣

∣

≤ ‖ϕ‖(θ1,θ2);(p′
1,p′

2);(m′
1,m

′
2)
exp{θ1(m1 |bs | |y1|−p1) + θ2(m2 |bt | |y2|−p2)}

×
∫

(X1)−p1

exp{θ1(m1 |as | |x1|−p1)}dμ1(x1)
∫

(X2)−p2

exp{θ2(m2 |at | |x2|−p2)}dμ2(x2).

Recall that, for pi > 1 and i = 1, 2, (Hi , (Xi )−pi ) is an abstract Wiener space. Then, under the condition

limr→∞
θi (r)

r2
< ∞, the measure μi satisfies the Fernique theorem, i.e., there exist some αi > 0 such that

∫

(Xi )−pi

exp{αi |xi |2−pi
}dμi (xi ) < ∞. (11)

Hence, in view of (11), we obtain
∣

∣Os,tϕ(y1, y2)
∣

∣ exp{−θ1(m1 |bs | |y1|−p1) − θ2(m2 |bt | |y2|−p2)}
≤ I m1,m2

p1,p2 ‖ϕ‖(θ1,θ2);(p′
1,p′

2);(m′
1,m

′
2)

,

where the constant I m1,m2
p1,p2 is given by

I m1,m2
p1,p2 =

∫

(X1)−p1

exp{θ1(m1 |as | |x1|−p1)}dμ1(x1)

×
∫

(X2)−p2

exp{θ2(m2 |at | |x2|−p2)}dμ2(x2).
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164 H. Rguigui

This follows that

∥

∥Os,tϕ
∥

∥

(θ1,θ2);(p1,p2);(m1,m2)
≤ I m1,m2

p1,p2 ‖ϕ‖(θ1,θ2);(p′
1,p′

2);(m′
1,m

′
2)

.

This completes the proof. ��
Later on, we need the following Lemma for Taylor expansion.

Lemma 1 For s, t ≥ 0 and n, m ∈ N, we have
∫

X ′
1×X ′

2
(as x1 + bs y1)⊗n ⊗ (at x2 + bt y2)⊗mdμ1(x1)dμ2(x2)

=
[n/2]
∑

k=0

[m/2]
∑

l=0

n!m!a2k
s a2l

t bn−2k
s bm−2l

t

(n − 2k)!(m − 2l)!2l+kk!l! (τ
⊗k
1
̂⊗y⊗n−2k

1 ) ⊗ (τ⊗l
2
̂⊗y⊗m−2l

2 ),

where τi is the usual trace on Ni for i=1,2.

Proof Using the following equality,

(ax + by)⊗n =
n
∑

k=0

n!
k!(n − k)! (ax)⊗k

̂⊗(by)⊗n−k,

then, for ξ1 ∈ N1 and ξ2 ∈ N2, we easily obtain
〈

∫

X ′
1×X ′

2

(as x1 + bs y1)
⊗n ⊗ (at x2 + bt y2)

⊗mdμ(x1)dμ(x2), ξ
⊗n
1 ⊗ ξ⊗m

2

〉

=
n
∑

k=0

n!
k!(n − k)!a

k
s bn−k

s

〈

y⊗n−k
1 , ξ⊗n−k

1

〉

∫

X ′
1

〈

x⊗k
1 , ξ⊗k

1

〉

dμ1(x1)

×
m
∑

l=0

m!
l!(m − l)!a

l
t b

m−l
t

〈

y⊗m−l
2 , ξ⊗m−l

2

〉

∫

X ′
2

〈

x⊗l
2 , ξ⊗l

2

〉

dμ2(x2).

We recall the following identity for the Gaussian white noise measure; see [20],

∫

X ′
i

〈x⊗k
i , ξ⊗k

i 〉dμi (xi ) =
⎧

⎨

⎩

(2 j)!
2 j j ! |ξi |20 i f k = 2 j

0 i f k = 2 j + 1
,

from which we deduce that
〈

∫

X ′
1×X ′

2

(as x1 + bs y1)
⊗n ⊗ (at x2 + bt y2)

⊗mdμ(x1)dμ(x2), ξ
⊗n
1 ⊗ ξ⊗m

2

〉

=
[n/2]
∑

k=0

n!a2k
s bn−2k

s

〈

y⊗n−2k
1 , ξ⊗n−2k

1

〉

(2k)!(n − 2k)!
(2k)!|ξ1|2k

2kk!

×
[m/2]
∑

l=0

m!a2l
t bm−2l

t

〈

y⊗m−2l
2 , ξ⊗m−2l

2

〉

(2l)!(m − 2l)!
(2l)!|ξ2|2l

2l l!

=
[n/2]
∑

k=0

[m/2]
∑

l=0

n!m!a2k
s a2l

t bn−2k
s bm−2l

t

(n − 2k)!(m − 2l)!2l+kk!l!

×〈(τ⊗k
1
̂⊗y⊗n−2k

1 ) ⊗ (τ⊗l
2
̂⊗y⊗m−2l

2 ), ξ⊗n
1 ⊗ ξ⊗m

2 〉.

123



Quantum O–U semigroups 165

The above equalities hold for all ξ⊗n
1 and ξ⊗m

2 with ξ1 ∈ N1 and ξ2 ∈ N2; thus, the statement follows by the
polarization identity (see [18,20]). ��

Now, we can use Lemma (1) to represent Os,t by Taylor expansion.

Proposition 2 Let s, t ≥ 0, then for any ϕ ∈ Fθ1,θ2(N ′
1 ⊕ N ′

2) given by ϕ(y1, y2) = ∑∞
n,m=0〈y⊗n

1 ⊗ y⊗m
2 , ϕn,m〉,

we have

(Os,tϕ)(y1, y2) =
∞
∑

n,m=0

〈y⊗n
1 ⊗ y⊗m

2 , gn,m〉,

where gn,m is given by

gn,m = bn
s bm

t

n!m!
∞
∑

k,l=0

(n + 2k)!(m + 2l)!
2l+kk!l! a2k

s a2l
t (τ⊗k

1 ⊗ τ⊗l
2 )̂⊗2k,2lϕn+2k,m+2l

and, for ξ1 ∈ N1, ξ2 ∈ N2,

(τ⊗k
1 ⊗ τ⊗l

2 )̂⊗2k,2l(ξ
⊗n+2k
1 ⊗ ξ⊗m+2l

2 ) = 〈ξ1, ξ1〉k〈ξ2, ξ2〉l(ξ⊗n
1 ⊗ ξ⊗m

2 ).

Proof Consider ϕ(ν1,ν2)(z1, z2) = ∑ν1,ν2
n,m=0〈z⊗n

1 ⊗ z⊗m
2 , ϕn,m〉 as an approximating sequence of ϕ ∈ Fθ1,θ2(N ′

1 ⊕
N ′
2). Then, for any pi ∈ N, i = 1, 2 and mi > 0, there exist M ≥ 0 such that

∣

∣ϕ(ν1,ν2)(z1, z2)
∣

∣ ≤ Meθ1(m1|z1|−p1 )+θ2(m2|z2|−p2 ).

Hence, in view of (11), we can apply the Lebesgue dominated convergence theorem to get

Os,tϕ(y1, y2)

=
∞
∑

n,m=0

∫

X ′
1×X ′

2

〈

(as x1 + bs y1)
⊗n ⊗ (at x2 + bt y2)

⊗m, ϕn,m
〉

dμ1(x1)dμ2(x2).

Then, by Lemma (1),

Os,tϕ(y1, y2) =
∞
∑

n,m=0

[n/2]
∑

k=0

[m/2]
∑

l=0

n!m!a2k
s a2l

t bn−2k
s bm−2l

t

(n − 2k)!(m − 2l)!2l+kk!l!
×
〈

(τ⊗k
1
̂⊗y⊗n−2k

1 ) ⊗ (τ⊗l
2
̂⊗y⊗m−2l

2 ), ϕn,m

〉

.

By changing the order of summation (which can be justified easily), we get

Os,tϕ(y1, y2) =
∞
∑

k,l=0;

∞
∑

n=2k;

∞
∑

m=2l

n!m!a2k
s a2l

t bn−2k
s bm−2l

t

(n − 2k)!(m − 2l)!2l+kk!l!
×
〈

y⊗n−2k
1 ⊗ y⊗m−2l

2 , (τ⊗k
1 ⊗ τ⊗l

2 )̂⊗2k,2lϕn,m

〉

.

Therefore, we sum over n − 2k = j for j ≥ 0 and m − 2l = i for i ≥ 0 to get

Os,tϕ(y1, y2)

=
∞
∑

k,l, j,i=0

( j + 2k)!(i + 2l)!a2k
s a2l

t b j
s bi

t

j !i !2l+kk!l!
〈

y⊗ j
1 ⊗ y⊗i

2 , (τ⊗k
1 ⊗ τ⊗l

2 )̂⊗2k,2lϕ j+2k,i+2l

〉

=
∞
∑

j,i=0

〈

y⊗ j
1 ⊗ y⊗i

2 ,

∞
∑

k,l=0

( j + 2k)!(i + 2l)!a2k
s a2l

t b j
s bi

t

j !i !2l+kk!l! (τ⊗k
1 ⊗ τ⊗l

2 )̂⊗2k,2lϕ j+2k,i+2l

〉

.

This proves the desired statement. ��
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Denoting byL (X,Y) to be the space of continuous linear operators from a nuclear space X to another nuclear
space Y. From the nuclearity of the spaces Fθi (N ′

i ), we have by Kernel Theorem the following isomorphisms:

L (F ∗
θ1

(N ′
1),Fθ2(N ′

2)) � Fθ1(N ′
1) ⊗ Fθ2(N ′

2) � Fθ1,θ2(N ′
1 ⊕ N ′

2). (12)

So, for every  ∈ L (F ∗
θ1

(N ′
1),Fθ2(N ′

2)), the associated kernel � ∈ Fθ1,θ2(N ′
1 ⊕ N ′

2) is defined by

〈〈ϕ,ψ〉〉 = 〈〈�, ϕ ⊗ ψ〉〉, ∀ϕ ∈ F ∗
θ1

(N ′
1), ∀ψ ∈ F ∗

θ2
(N ′

2). (13)

Using the topological isomorphism:

L (F ∗
θ1

(N ′
1),Fθ2(N ′

2)) �  	−→ K  = � ∈ Fθ1,θ2(N ′
1 ⊕ N ′

2), (14)

we can define the quantum O–U semigroup as follows. For the operator Os,t defined in this section, we write

Õs,t = K −1Os,tK ∈ L
(

L (F ∗
θ1

(N ′
1),Fθ2(N ′

2))
)

.

The operator Õt,t , denoted by˜Ot for simplicity, is called the quantum O–U semigroup. The operator Õs,0 is called
the left quantum O–U semigroup and the operator Õ0,t is called the right quantum O–U semigroup.

Recall that the classical O–U semigroup studied in [17,18] is defined by

qtϕ(y) =
∫

X ′
i

ϕ(at x + bt y)dμ(x) , y ∈ N ′
i , ϕ ∈ Fθ (N ′

i ). (15)

Then, we have the following

Proposition 3 Let s, t ≥ 0, then we have

Os,t = qs ⊗ qt ,

where qt is the classical O–U semigroup.

Proof We can easily check that

qt eξi = exp

{

a2
t

2
|ξi |20

}

ebt ξi , for i = 1, 2

and

Os,t e(ξ1,ξ2) = exp

{

a2
s

2
|ξ1|20 + a2

t

2
|ξ2|20

}

e(bsξ1,bt ξ2). (16)

Then, since {e(ξ1,ξ2), ξ1 ∈ N1, ξ2 ∈ N2} spans a dense subspace of Fθ1,θ2(N ′
1 ⊕ N ′

2), we have the result. ��
Theorem 1 Let s, t ≥ 0, then we have

Õs,t () = qsq∗
t ,  ∈ L (F ∗

θ1
(N ′

1),Fθ2(N ′
2)),

where q∗
t is the adjoint operator of qt .

Proof Let  ∈ L (F ∗
θ1

(N ′
1),Fθ2(N ′

2)), φ ∈ F ∗
θ1

(N ′
1) and ϕ ∈ F ∗

θ2
(N ′

2). Then, by Proposition 3, we have

〈〈̃Os,t ()φ, ϕ〉〉 = 〈〈Os,t (K ), ϕ ⊗ φ〉〉
= 〈〈K , (q∗

s ϕ) ⊗ (q∗
t φ)〉〉

= 〈〈q∗
t φ, q∗

s ϕ〉〉
= 〈〈qsq∗

t φ, ϕ〉〉,
which gives the result. ��
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3.2 Quantum number operator

Let ϕ(x, y) =
∑∞

n,m=0
〈x⊗n ⊗ y⊗m, ϕn,m〉 inFθ1,θ2(N ′

1 ⊕ N ′
2), then we define the three following operators by:

N ϕ(x, y) :=
∞
∑

n,m=0;(n,m) �=(0,0)

(n + m)〈x⊗n ⊗ y⊗m, ϕn,m〉. (17)

N1ϕ(x, y) :=
∞
∑

n=1,m=0

n〈x⊗n ⊗ y⊗m, ϕn,m〉, (18)

N2ϕ(x, y) :=
∞
∑

n=0,m=1

m〈x⊗n ⊗ y⊗m, ϕn,m〉. (19)

Proposition 4 N , N1 and N2 are linear continuous operators from Fθ1,θ2(N ′
1 ⊕ N ′

2) into itself.

Proof Let p1,p2 ≥ 0. From (17), we deduce that

|N ϕ(x, y)| ≤
∞
∑

n,m=0;(n,m) �=(0,0)

(n + m)|x |n−p1 |y|m−p2 |ϕn,m |p1,p2 .

Therefore, using the fact that (n + m) ≤ 2n+m and the inequality (10), for q1 > p1, q2 > p2 and m1, m2 > 0, we
have

|N ϕ(x, y)| ≤ ‖ϕ‖(θ1,θ2);(q1,q2);(m1,m2)

×
∞
∑

n,m=0

{2m1e‖iq1,p1‖H S}n|x |n−p1(θ1)n{2m2e‖iq2,p2‖H S}m |y|m−p2(θ2)m .

Then, using (3), for m′
1,m

′
2 > 0, m1,m2 > 0, q1 > p1 and q2 > p2 such that

max

{

2
m1

m′
1

e‖iq1,p1‖H S, 2
m2

m′
2

e‖iq2,p2‖H S

}

< 1,

we get

‖N ϕ‖(θ1,θ2);(p1,p2);(m′
1,m

′
2)

≤ ‖ϕ‖(θ1,θ2);(q1,q2);(m1,m2)cp1,p2,q1,q2

where

cp1,p2,q1,q2 =
{

1 − (2
m1

m′
1

e‖iq1,p1‖H S)

}−1 {

1 − (2
m2

m′
2

e‖iq2,p2‖H S)

}−1

.

Hence, we prove the continuity ofN . Similarly, we complete the proof. ��

Recall that the standard number operator on Fθi (N ′
i ) is given by

Nϕ(x) =
∞
∑

n=1

〈x⊗n, nϕn〉, (20)

where ϕ(x) =
∑∞

n=0
〈x⊗n, ϕn〉 ∈ Fθi (N ′

i ).
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Remark 1 From (17) and (20), we can easily see that N1, N2 and N have the following decompositions

N1 = N ⊗ I, N2 = I ⊗ N , N = N ⊗ I + I ⊗ N ,

respectively.

Definition 1 We define the following operator on L (F ∗
θ1

(N ′
1),Fθ2(N ′

2)) by

˜N1 := K −1(N1)K , ˜N2 := K −1(N2)K , ˜N := K −1N K = ˜N1 + ˜N2.

The operator ˜N1 is called left quantum number operator, ˜N2 is called right quantum number operator and
˜N is called quantum number operator.

Proposition 5 For any  ∈ L (F ∗
θ1

(N ′
1),Fθ2(N ′

2)), we have

˜N1 = N, ˜N2 = N , ˜N  = N + N .

Proof Let  ∈ L (F ∗
θ1

(N ′
1),Fθ2(N ′

2)). Then, for any ψ ∈ F ∗
θ1

(N ′
1) and ϕ ∈ F ∗

θ2
(N ′

2), we have

〈〈 ˜N1ψ, ϕ〉〉 = 〈〈K −1N1Kψ, ϕ〉〉
= 〈〈N1K ,ϕ ⊗ ψ〉〉
= 〈〈K , (Nϕ) ⊗ ψ〉〉
= 〈〈ψ, Nϕ〉〉
= 〈〈Nψ, ϕ〉〉,

which follows that, for any  ∈ L (F ∗
θ1

(N ′
1),Fθ2(N ′

2)),

˜N1 = N.

Similarly, we get 〈〈 ˜N2ψ, ϕ〉〉 = 〈〈Nψ, ϕ〉〉 to obtain ˜N2 = N . Finally, we get

˜N  = ˜N1 + ˜N2 = N + N .

This completes the proof. ��
Note that Definition 1 holds true on L (Fθ1(N ′

1),F
∗
θ2

(N ′
2)).

4 Cauchy problem associated with quantum number operator

First, we will construct a semigroup {˜Qt , t ≥ 0}, {˜Qs,0, s ≥ 0} and {˜Q0,t , t ≥ 0} on L (F ∗
θ1

(N ′
1),Fθ2(N ′

2))

with infinitesimal generator − ˜N , − ˜N1 and − ˜N2, respectively. It reminds constructing a semigroup {Qt , t ≥ 0},
{Qs,0, s ≥ 0} and {Q0,t , t ≥ 0} on Fθ1,θ2(N ′

1 ⊕ N ′
2) with infinitesimal generator −N , −N1 and −N2,

respectively. Observe that symbolically Qs,t = e−sN1−tN2 . Thus, we can define the operator Qs,t as follows. For
ϕ ∼ (ϕn,m), we define

Qs,tϕ(x, y) :=
∞
∑

n,m=0

〈

x⊗n ⊗ y⊗m, e−sn−tmϕn,m
〉

, (21)

and let Qt,t denoted by Qt .

Lemma 2 For any s, t ≥ 0, the linear operator Qs,t is continuous from Fθ1,θ2(N ′
1 ⊕ N ′

2) into itself.
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Proof Let ϕ ∼ (ϕn,m). For any p1,p2 ≥ 0, we have

∣

∣Qs,tϕ(x, y)
∣

∣ ≤
∞
∑

n,m=0

e−sn−tm |x |n−p1 |y|m−p2 |ϕn,m |p1,p2

≤
∞
∑

n,m=0

|x |n−p1 |y|m−p2 |ϕn,m |p1,p2 .

Therefore, using the inequality (10), for q1 > p1, q2 > p2 and m1, m2 > 0, we get
∣

∣Qs,tϕ(x, y)
∣

∣ ≤ ‖ϕ‖(θ1,θ2);(q1,q2);(m1,m2)

×
∞
∑

n,m=0

{m1e‖iq1,p1‖H S}n|x |n−p1(θ1)n{m2e‖iq2,p2‖H S}m |y|m−p2(θ2)m . (22)

Then, using (3), for m′
1,m

′
2 > 0, m1,m2 > 0, q1 > p1 and q2 > p2 such that

max

{

m1

m′
1

e‖iq1,p1‖H S,
m2

m′
2

e‖iq2,p2‖H S

}

< 1,

we get

‖Qs,tϕ‖(θ1,θ2);(p1,p2);(m′
1,m

′
2)

≤ ‖ϕ‖(θ1,θ2);(q1,q2);(m1,m2)K p1,p2,q1,q2 , (23)

where K p1,p2,q1,q2 is given by

K p1,p2,q1,q2 =
{

1 −
(

m1

m′
1

e‖iq1,p1‖H S

)}−1 {

1 −
(

m2

m′
2

e‖iq2,p2‖H S

)}−1

.

This proves the desired statement. ��
Remark 2 Using (21), Lemma 2, Proposition 2 and a similar classical argument used in [18], we can show that
Qs,t = Os,t . Moreover, we see that

˜Qs,t := K −1Qs,tK = ˜Os,t ∈ L (L (F ∗
θ1

(N ′
1),Fθ2(N ′

2)));
in particular, ˜Qt = ˜Ot , ˜Qs,0 = ˜Os,0 and ˜Q0,t = ˜O0,t .

Theorem 2 The families {˜Qt , t ≥ 0}, {˜Qs,0, s ≥ 0} and {˜Q0,t , t ≥ 0} are strongly continuous semigroup of
continuous linear operators from L (F ∗

θ1
(N ′

1),Fθ2(N ′
2)) into itself with the infinitesimal generator − ˜N , −˜N1

and −˜N2, respectively. Moreover, the quantum Cauchy problems
{

d�t
dt = − ˜N �t

�0 =  ∈ L (F ∗
θ1

(N ′
1),Fθ2(N ′

2))
(24)

{

d�s
ds = −˜N1�s

�0 =  ∈ L (F ∗
θ1

(N ′
1),Fθ2(N ′

2))
(25)

{

dϒt
dt = −˜N2ϒt

ϒ0 =  ∈ L (F ∗
θ1

(N ′
1),Fθ2(N ′

2))
(26)

have a unique solutions given respectively by

�t = ˜Qt, �s = ˜Qs,0 and ϒt = ˜Q0,t. (27)
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Proof We start by proving that the family {Qt , t ≥ 0} is a strongly continuous semigroup of continuous linear
operators from Fθ1,θ2(N ′

1 ⊕ N ′
2) into itself with the infinitesimal generator −N and the function U (t, x1, x2) =

Qtϕ(x1, x2) satisfies
{

∂U (t,x1,x2)
∂t = −N U (t, x1, x2),

limt→0+ U (t, x1, x2) = ϕ in Fθ1,θ2(N ′
1 ⊕ N ′

2).

To this end, it is obvious that Qt Qs = Qt+s for any t, s ≥ 0. Thus, we should show the strong continuity of
{Qt , t ≥ 0}. Suppose t ≤ 1, then we can use the inequality |ex − 1| ≤ |x |e|x |, x ∈ R, to obtain

|Qtϕ(x, y) − ϕ(x, y)| ≤
∞
∑

n,m=0

(e−t (n+m) − 1)|x |n−p1 |y|m−p2 |ϕn,m |p1,p2

≤ t
∞
∑

n,m=0

e(n+m)|x |n−p1 |y|m−p2 |ϕn,m |p1,p2 .

Then, similarly to the proof of Lemma 2, for any q1 > p1, q2 > p2 and m1, m2, m′
1, m′

2 > 0 such that

max

{

m1

m′
1

e2‖iq1,p1‖H S,
m2

m′
2

e2‖iq2,p2‖H S

}

< 1,

we get

‖Qtϕ − ϕ‖(θ1,θ2);(p1,p2);(m′
1,m

′
2)

≤ t‖ϕ‖(θ1,θ2);(q1,q2);(m1,m2)

{(

1 −
(

m1

m′
1

e2‖iq1,p1‖H S

))(

1 −
(

m2

m′
2

e2‖iq2,p2‖H S

))}−1

.

This implies the strong continuity of {Qt , t ≥ 0}. To check that −N is the infinitesimal generator of {Qt , t ≥ 0},
let
(

Qtϕ − ϕ

t
+ N ϕ

)

∼ (Qn,m),

where Qn,m is given by

Qn,m =
{

e−t (n+m) + t (n + m) − 1

t

}

ϕn,m,

which follows that, for p1,p2 ≥ 0,

∣

∣Qn,m
∣

∣

p1,p2
≤
∣

∣

∣

∣

∣

e−t (n+m) − 1 + t (n + m)

t

∣

∣

∣

∣

∣

∣

∣ϕn,m
∣

∣

p1,p2
.

Using the obvious inequality |ex − 1 − x | ≤ x2e|x | for all x ∈ R, we get
∣

∣Qn,m
∣

∣

p1,p2
≤ |t |(n + m)2e|t |(n+m)|ϕn,m |p1,p2 .

By using (10) and the inequality (n + m)2 ≤ 22n+2m , we get, for q1 > p1, q2 > p2 and m1, m2 > 0,
∣

∣Qn,m
∣

∣

p1,p2
≤ t‖ϕ‖(θ1,θ2);(q1,q2);(m1,m2)

×(4m1e‖iq1,p1‖H Set )n(4m2e‖iq2,p2‖H Set )m(θ1)n(θ2)m .
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Suppose t ≤ 1. Hence, by (3), for m′
1,m

′
2 > 0, m1,m2 > 0, q1 > p1 and q2 > p2 such that

max

{

4
m1

m′
1

e2‖iq1,p1‖H S, 4
m2

m′
2

e2‖iq2,p2‖H S

}

< 1,

we get
∥

∥

∥

∥

Qtϕ − ϕ

t
+ N ϕ

∥

∥

∥

∥

(θ1,θ2);(p1,p2);(m′
1,m

′
2)

≤ tc3‖ϕ‖(θ1,θ2);(q1,q2);(m1,m2)

where c3 is given by

c3 =
{

1 −
(

4
m1

m′
1

e2‖iq1,p1‖H S

)}−1 {

1 −
(

4
m2

m′
2

e2‖iq2,p2‖H S

)}−1

.

Then, we obtain

lim
t→0+

∥

∥

∥

∥

Qtϕ − ϕ

t
+ N ϕ

∥

∥

∥

∥

(θ1,θ2);(p1,p2);(m′
1,m

′
2)

= 0. (28)

This means that

t−1(Qtϕ − ϕ) −→ −N ϕ in Fθ1,θ2(N ′
1 ⊕ N ′

2),

i.e., −N is the infinitesimal generator of {Qt , t ≥ 0}. Moreover, we can write

Qt+sϕ − Qtϕ

s
= Qs(Qtϕ) − (Qtϕ)

s
.

Since Qtϕ ∈ Fθ1,θ2(N ′
1 ⊕ N ′

2), we can apply (28) to see that the equation

∂U (t, x1, x2)

∂t
= −N U (t, x1, x2)

is satisfied by U (t, x1, x2) = Qtϕ(x1, x2). Then, using the topological isomorphismK , we complete the proof of
the first assertion. Similarly, we complete the proof. ��

Now, we consider two N
′
1 and N

′
2-valued stochastic integral equations:

Ut = x + √
2
∫ t

0
dWs −

∫ t

0
Usds

Vt = y + √
2
∫ t

0
dYs −

∫ t

0
Vsds,

where Wt and Ys are standard N
′
1-valued and N

′
2-valued Wiener process, respectively, starting at 0.

Theorem 3 The solutions of the Cauchy problems (24), (25) and (26) have the following probabilistic representa-
tions:

K (�t )(x, y) = E( f1(Ut )/U0 = x)E( f2(Vt )/V0 = y)

K (�s)(x, y) = E(g2(y)g1(Us)/U0 = x)

K (ϒt )(x, y) = E(h1(x)h2(Vt )/V0 = y)

whereK (�0) = f1⊗ f2,K (�0) = g1⊗g2,K (ϒ0) = h1⊗h2, f1, g1, h1 ∈ Fθ1(N
′
1) and f2, g2, h2 ∈ Fθ2(N

′
2).

123



172 H. Rguigui

Proof Applying the kernel map K to the solution (27) of the Cauchy problem (24), we get

K (�t )(x, y) = Qt (K (�0))(x, y)

= Qt ( f1 ⊗ f2)(x, y)

for K (�0) = f1 ⊗ f2, f1 ∈ Fθ1(N
′
1) and f2 ∈ Fθ2(N

′
2). Then, using Remark 2 and Proposition 3, we obtain

K (�t )(x, y) = qt ( f1)(x)qt ( f2)(y).

On the other hand, it is well known from [18] that

qt ( f1)(x) = E( f1(Ut )/U0 = x), (29)

qt ( f2)(y) = E( f2(Vt )/V0 = y), (30)

for f1 ∈ Fθ1(N
′
1) and f2 ∈ Fθ2(N

′
2). Similarly, we have

K (�s)(x, y) = Qs,0(K (�0))(x, y) = Qs,0(g1 ⊗ g2)(x, y)

K (ϒt )(x, y) = Q0,t (K (ϒ0))(x, y) = Q0,t (h1 ⊗ h2)(x, y).

Then, from Proposition 3, we get

K (�s)(x, y) = qs(g1)(x)q0(g2)(y) = qs(g1)(x)g2(y)

K (ϒt )(x, y) = q0(h1)(x)qt (h2)(y) = h1(x)qt (h2)(y);
hence, from (29) and (30), we obtain

K (�s)(x, y) = E(g1(Us)/U0 = x)g2(y)

K (ϒt )(x, y) = h1(x)E(h2(Vt )/V0 = y),

which completes the proof. ��

5 Markovianity of the quantum O–U semigroups

Recall from [22] that Fθ1,θ2(N
′
1 ⊕ N

′
2) is a nuclear algebra with the involution* defined by

ϕ∗(z, w) := ϕ(z, w), z ∈ N
′
1, w ∈ N

′
2

for all ϕ ∈ Fθ1,θ2(N
′
1 ⊕ N

′
2). Using the isomorphism K , we can define the involution (denoted by the same

symbol*) on L (F ∗
θ1

(N
′
1),Fθ2(N

′
2)) as follows:

∗ := K −1((K ())∗), ∀ ∈ L (F ∗
θ1

(N
′
1),Fθ2(N

′
2))·

Since Fθ1,θ2(N
′
1 ⊕ N

′
2) is closed under multiplication, there exists a unique element ϕ ∈ Fθ1,θ2(N

′
1 ⊕ N

′
2), such

that

ϕ = K (1)K (2).

Then by the topology isomorphism K , there exists  ∈ L (F ∗
θ1

(N
′
1),Fθ2(N

′
2)) such that

K () = K (1)K (2), (31)

which is equivalent to

 = K −1(K (1)K (2))· (32)

123



Quantum O–U semigroups 173

Denoted by  to be the product � between 1 and 2,

 = 1 � 2·
Note that from (31) we see that the product � is commutative. Now, define the following cones

B := {∗ � ;  ∈ L (F ∗
θ1

(N
′
1),Fθ2(N

′
2))}·

Elements in B are said to be B-positive operators. Let S, T ∈ L (F ∗
θ1

(N
′
1),Fθ2(N

′
2)); we say that S ≤ T , if

T − S ∈ B. Denoted by I0 = K −1
(

1Fθ1,θ2 (N
′
1⊕N

′
2)

)

.

Definition 2 A map P :L (F ∗
θ1

(N
′
1),Fθ2(N

′
2)) → L (F ∗

θ1
(N

′
1),Fθ2(N

′
2)) is said to be

(i) positive if P(B) ⊆ B
(ii) Markovian, if it is positive and P() ≤ I0 whenever  = ∗ and  ≤ I0.

A one-parameter semigroup {Pt , t ≥ 0} onL (F ∗
θ1

(N
′
1),Fθ2(N

′
2)) is said to be positive (resp.Markovian) provided

Pt is positive (resp. Markovian) for all t ≥ 0.

Theorem 4 The quantum O–U semigroup {˜Qt , t ≥ 0}, the right quantum O–U semigroup {Q̃0,t , t ≥ 0} and the

left quantum O–U semigroup {Q̃s,0, s ≥ 0} are Markovian.

Proof Let  ∈ B, then there exists S ∈ L (F ∗
θ1

(N
′
1),Fθ2(N

′
2)) such that

 = S∗ � S·
Then, for all t ≥ 0, z ∈ N

′
1 and w ∈ N

′
2 , we have

K ˜Qt ()(z, w) = Qt (K (K −1(K (S∗)K (S))))(z, w)

= Qt ((K (S∗))K (S))(z, w)

= (K (S∗)K (S))(e−t z, e−tw)

= Qt (K (S∗))(z, w)Qt (K (S))(z, w).

Using (32), we get

˜Qt () = K −1(Qt (K (S∗))Qt (K (S)))

= K −1(K (˜Qt (S∗))K (˜Qt (S)))

= ˜Qt (S∗) � ˜Qt (S).

On the other hand, we have

K (˜Qt (S∗)) = Qt (K (S∗))·
But we know that

S∗ = K −1((K (S))∗)·
Then, we get

K (˜Qt (S∗))(z, w) = Qt ((K (S))∗)(z, w)

= (K (S))∗(e−t z, e−tw)

= K (S)(e−t z, e−tw)

= (QtK (S))(z, w)

= (QtK (s))∗(z, w).
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From this we obtain

˜Qt (S∗) = K −1((QtK (S))∗)
= K −1((K ˜Qt (S))∗)
= (˜Qt (S))∗. (33)

Hence, we get

˜Qt () = (˜Qt (S))∗ � Qt (S)·
This proves that ˜Qt () ∈ B for all t ≥ 0, which implies that {˜Qt ; t ≥ 0} is positive. To complete the proof, let
 ∈ L (F ∗

θ1
(N

′
1),Fθ2(N

′
2)) such that  ≤ I0 and  = ∗. This gives I0 −  ∈ B, which means that there exists

T ∈ L (F ∗
θ1

(N
′
1),Fθ2(N

′
2)), such that

I0 −  = T ∗ � T ·
This implies that

(1 − (K ()) = ((K (T ))∗(K (T ). (34)

On the other hand, we have

K (I0 − ˜Qt ())(z, w) = 1 − Qt (K ())(z, w)

= 1 − K ()(e−t z, e−tw)

= (1 − K ())(e−t z, e−tw).

Then, using (34), we get

I0 − ˜Qt () = K −1(Qt ((K (T ))∗)Qt (K (T )))

= K −1({K ˜QtK
−1(K (T ))∗}{K ˜Qt (T )})

= K −1(K (˜Qt (T
∗))K (˜Qt (T )))

= K −1(K (˜Qt (T
∗) � ˜Qt (T )))

= ˜Qt (T
∗) � ˜Qt (T ).

Then, using (33), we obtain

I − ˜Qt () = (˜Qt (T ))∗ � ˜Qt (T )·
This means that

I0 − ˜Qt () ∈ B,

which is equivalent to say that

˜Qt () ≤ I0, ∀t ≥ 0·
This completes the proof of the Markovianity of the quantum O–U semigroup {˜Qt , t ≥ 0}. Similarly, we show the
Markovianity of the others semigroups. ��
Remark 3 Let 1, 2 ∈ L (F ∗

θ1
(N

′
1),Fθ2(N

′
2)), define the following scalar product:

(((1, 2))) :=
∫

X
′
1×X

′
2

K (1)(x, y)K (2)(x, y)dμ1(x)dμ2(y)·

Using Theorem 4, {˜Qt ; t ≥ 0} is a positive semigroup. Let 1, 2 ∈ B, such that 1, 2 �= 0. Then, there exist
S, T ∈ L (F ∗

θ1
(N

′
1),Fθ2(N

′
2)), such that

1 = S∗ � S, 2 = T ∗ � T .
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From this one can get

(((1,˜Qt (2)))) ≥ 0.

But it is important to show that: for all 1, 2 ∈ B, 1, 2 �= 0, there exists t > 0 such that

(((1,˜Qt (2)))) > 0,

i.e., {˜Qt , t ≥ 0} is ergodic, which gives scope for new work.
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