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Abstract

Purpose of Review Artificial intelligence (AI) offers huge potential in infection prevention
and control (IPC). We explore its potential IPC benefits in epidemiology, laboratory
infection diagnosis, and hand hygiene.
Recent Findings AI has the potential to detect transmission events during outbreaks or
predict high-risk patients, enabling development of tailored IPC interventions. AI offers
opportunities to enhance diagnostics with objective pattern recognition, standardize the
diagnosis of infections with IPC implications, and facilitate the dissemination of IPC
expertise. AI hand hygiene applications can deliver behavior change, though it requires
further evaluation in different clinical settings. However, staff can become dependent on
automatic reminders, and performance returns to baseline if feedback is removed.
Summary Advantages for IPC include speed, consistency, and capability of handling
infinitely large datasets. However, many challenges remain; improving the availability
of high-quality representative datasets and consideration of biases within preexisting
databases are important challenges for future developments. AI in itself will not improve
IPC; this requires culture and behavior change. Most studies to date assess performance
retrospectively so there is a need for prospective evaluation in the real-life, often chaotic,
clinical setting. Close collaboration with IPC experts to interpret outputs and ensure
clinical relevance is essential.
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Introduction

Artificial intelligence (AI) is increasingly visible of in our
daily lives and ranges from voice recognition on smart
speakers (e.g., Amazon’s Alexa), to discovering newmusic
from streaming applications that predict new artists for
the listener (e.g., Spotify), and computer detection of
cancer in mammograms [1]. AI uses mathematical tools,
“machine learning,” to iteratively learn patterns within
training data and when these patterns are found in new
data, the AI translates this into a decision, for example,
cancer versus not cancer (Table 1). In recent years, a
subfield of AI, “deep learning,” has delivered a significant
increase in accuracy by using new learning approaches,
specialized hardware, and significantly larger datasets to
find more complex and subtle patterns within the data.

The potential of AI in clinical medicine is wide
ranging and has been driven in recent years by the
increased availability of large health datasets due to
digitization of health records coupled with sharing
of anonymized health data. AI for diagnosis using
imaging data has potential in diverse fields such as
the pathological diagnosis of cancer, diabetic reti-
nopathy and glaucoma screening in primary care,
and self-monitoring of skin lesions by patients. Oth-
er clinical applications include genomic/phenotypic
profile tailored disease management and improved
clinical event prediction to inform preventative pro-

grams from risk factor data or laboratory results [2•,
3••].

In infection prevention and control (IPC), AI applica-
tions offer huge potential for implementation of the
World Health Organization (WHO) core components
[4]. As healthcare IT systems produce vast quantities of
data from disparate sources and become increasingly inte-
grated, AI systemswill be able to detect patterns in the data
accelerating the detection of outbreaks and providing
richer datasets for subsequent analysis. AI can support
the case for system change by identifying the cost of inac-
tion, modeling solutions by simulating the behavior of
different types of agents within a complex system and
supporting change by gathering data and producing ana-
lytics [5]. Social graph analysis can identify “influencers”of
hand hygiene programs and explore patient safety culture
[6, 7]. In IPC education and training programs, AI-based
simulations can provide a bridge to authentic experience
that does not compromise patient safety and provide the
repeated cycles of objective evaluation and feedback that
are key to the learning process [8].

In this paper, we explore the potential benefits of AI
for IPC in three key areas highlighted by the WHO,
namely surveillance of healthcare-associated infection
(HAI), improved laboratory diagnosis to facilitate IPC
interventions, and hand hygiene education and audit.

Table 1. Definitions of artificial intelligence and subdomains

Term Definition
Artificial intelligence (AI) •Computer systems that perform tasks that normally require human intelligence. For example,

visual perception, speech recognition, and decision-making.
•Usually involves pattern recognition then followed by an action or a decision

Machine learning •Subdomain of AI
•The computer uses algorithms to learn from datasets of past examples to make predictions
about new data, as opposed to executing a set of programmed rules.
•In classic machine learning, programmers design and tune these algorithms.

Deep learning •Subdomain of machine learning
•The computer uses a mathematical structure inspired by neural networks to learn from
very large datasets to make predictions about new data.
•The neural network builds the algorithms automatically by finding novel relationships between
inputs and outputs.
•The algorithms cannot be analyzed by humans as they involve 1,000,000 s of small decisions
about data.
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Surveillance of Healthcare-Associated Infection

The essence of an HAI surveillance program is to interpret databases generated
from multiple data sources to prospectively monitor trends, identify clusters
and outbreaks in a timely fashion, track the impact of quality improvement
programs, and predict future trends. An HAI social network generated from
electronic healthcare record (EHR) patient and caregiver contacts was used to
simulate outbreaks of methicillin-resistant Staphylococcus aureus and influenza,
and identify potentially mitigating interventions [9]. Machine learning applica-
tions have been used to predict the risk of nosocomial Clostridioides difficile
infection (CDI) [10•,11,12]. Unlike traditional CDI risk stratification, machine
learning is not limited to known risk factors but can consider a range of
variables within the EHR to validate the application, and thereafter, models
can be developed tailored to a particular healthcare facility or patient popula-
tion. Machine learning applications can also more readily cope with the dy-
namic nature of healthcare than traditional surveillance models, whereby if a
patient’s CDI risk changes during their inpatient stay, the IPC and clinical team
could be alerted accordingly. While prospective studies are required to validate
these publications and study other HAI, this tailored approach has the potential
to transform HAI surveillance and IPC. Timely accurate identification of
patients at high risk of CDI and those at high risk of progression to complicated
CDI could facilitate customized IPC and antimicrobial stewardship strategies
and anti-CDI therapies [10•]. This approach should also be beneficial for
clinical trials of novel anti-CDI therapies whereby patients most at risk of CDI
can be readily identified for recruitment.

In the clinical microbiology laboratory, AI data mining of routine microbi-
ology laboratory results could be used to detect and predict clusters/outbreaks
of multidrug-resistant organism colonization and/or infection events [13]. This
type of analysis could also facilitate detection of potential sources of these
events which is frequently a difficult and time-consuming aspect of epidemio-
logical investigation. Next-generation sequencing (NGS) is being increasingly
used for pathogen identification, antimicrobial resistance (AMR) detection, and
strain typing [14, 15]. AI offers the opportunity for more complex analysis of
NGS-generated data with the potential to integrate and analyze diverse HAI and
AMR data across the healthcare system. This type of integration could help
predict patients most at risk of HAI and AMR events and facilitate timely
detection of outbreaks with molecular analysis of transmission events and
interactions between patients, staff, and the clinical environment in real time.
This will improve our understanding of how cross infection occurs, allow
focused surveillance, earlier diagnosis, and enable targeted IPC interventions
to be developed accordingly.

One of themajor challenges for AI in HAI surveillance is the requirement for
a high-quality representative dataset to develop accurate models for each con-
text in which they are used. A systematic review of machine learning in critical
care noted that many studies use datasets that are too small to assess the full
potential of AI applications and guidelines on methodology and validation of
predictions are required to help translate findings into daily clinical practice
[16]. In addition to size and completeness, preexisting databases may be
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inherently biased by clinical practice and healthcare delivery at that time which
may compromise patient care if these biases were incorporated into a machine
learning model. As with any publication or guideline, the generalizability of
machine learning models for HAI surveillance developed from data in a single
healthcare setting is likely to be limited. For example, in one CDI model, risk
factors for CDI in one setting were protective in another institution, which may
reflect local biases or differences in CDI pathways [12].

More recently, the applications of AI in the novel coronavirus (COVID-19)
outbreak have highlighted its potential for generation of near-real-time infor-
mation for public health and IPC purposes. AI could facilitate decision-making
when large amounts of data were emerging rapidly, by analyzing data from a
variety of sources (e.g., government and national reports, social media, news
outlets) to generate applications such as Healthmap (https://www.healthmap.
org/wuhan/). This can also speed up contact tracing by AI pattern recognition
within the data, in addition to evaluation and optimization of IPC strategies to
prevent further cross infection. Likewise, the AI platform Bluedot (https://
bluedot.global/), which includes air travel data, uses natural language process-
ing and machine learning to process vast unstructured text data, in multiple
languages, to track outbreaks of over 100 different diseases. Bluedot first alerted
on COVID-19 on December 31, 2019, almost a week ahead of national sur-
veillance centers and the WHO. The major advantages of these applications in
global outbreaks will also be true for IPC teams at local level, whereby AI data
analytics enable IPC and public health experts to focus on strategies to mini-
mize cross infection rather than data gathering and organization into reports.

Diagnosis of Infection with IPC Implication

Chest radiography is a fundamental component of tuberculosis (TB) screening
and diagnosis programs in both community and hospital settings. Improve-
ments in TB detection enable timely instigation of anti-TB therapy and appro-
priate IPC precautions. AI offers the opportunity to standardize and improve
this process, especially in TB-prevalent regions with suboptimal access to radi-
ologists. Deep learning with convolutional neural networks has been used to
classify TB on chest radiography with discrepant results reviewed by a radiolo-
gist [17]. This type of process offers opportunities for the developing world and
other regions that lack radiologist expertise, whereby AI could interpret the
majority of investigations with radiologist review of equivocal cases only.

In the clinical microbiology laboratory, machine learning algorithms devel-
oped from population genomics could be used to predict infection risks from
the genomic features of Staphylococcus epidermidis and potentially identify high-
risk genotypes preoperatively to target pre and postoperative HAI preventative
programs [18]. AI-enhanced laboratory microscopy could streamline the rapid
diagnosis of patients with infection and assist AMR prevention programs by
facilitating targeted antimicrobial management and IPC intervention. In one
proof of concept study, a convolutional neural network (a type of AI used to
analyze visual data) was trained to categorize bacteria in blood culture speci-
mens at the gram stain stage with over 90% accuracy [19•]. Gram stain inter-
pretation can be time-consuming, is strongly operator dependent, and requires
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a skilled laboratory scientist for interpretation. AI-assisted microscopy opens
possibilities for areas without clinical microbiologist expertise with the poten-
tial to send images to a central facility for review and appropriate clinical liaison
regarding patient management. Machine learning has also been employed in
the clinical microbiology laboratory for molecular diagnosis of bacterial vagi-
nosis and performed well against traditional gram stain testing [20]. The
concept of AI-basedmicroscopy could therefore be extended to other specimens
that require gram stain interpretation (e.g., CSF of patients with presumed
meningitis), other pathogens such as TB where microscopic diagnosis is an
important element of the IPC pathway and to molecular diagnosis of AMR
pathogens with IPC implications.

Hand Hygiene

Hand hygiene is a fundamental component of an IPC program [4] and
AI applications for hand hygiene education and audit offer opportunities
to improve compliance and streamline IPC processes. The SureWash
system is a commercially available interactive kiosk that uses camera-
based augmented reality and gamified learning to train and assess hand
hygiene technique with resultant improvements in compliance [21]. The
kiosk is mobile and when left in one area can be used independently by
healthcare staff at a time that suits them, to obtain immediate and
individualized performance feedback. More recently the system has been
developed into a smartphone app with similar functionality. A pilot of
an integrated hand hygiene digital framework which included the Sure-
Wash system along with a hand hygiene auditing tool and an activity
monitoring system demonstrated the feasibility of using AI without
impairing clinical workflow [22]. An integrated “risk status” metric based
on live data was presented pictorially in a variety of formats to staff and
included actions required to improve the score. Expansion of this dataset
to include HAI surveillance data could potentially be incorporated into
an AI application to predict future outbreaks and suggest IPC interven-
tions. In an outpatient setting, while machine learning with feedback
was associated with improvements in staff hand hygiene before first
patient contact, concerns regarding accuracy, long-term sustainability,
and user fatigue from repeated notifications were noted [23•].

Computer vision is a branch of AI that studies how to automatically
understand the content of images and video in a human-like manner. In
a simulated clinical environment using computer vision with depth
images (where a person appears as an outline without distinguishing
individual features) for hand hygiene auditing, the system was more
successful in detection of alcohol hand rub dispensing and moment
one, than detection of hand rubbing [24]. The importance of incorpo-
ration of real-time feedback into AI applications to deliver behavior
change has been recently highlighted [25••]. In this study on a surgical
ward, automatic video auditing (sink vision monitors) with feedback
resulted in improvement in the quality and quantity of handwashing.
However performance returned to baseline when feedback was removed.
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Care must therefore be taken when reminders are provided automatical-
ly as staff can become dependent (cognitive offloading); [26] hence, why
when hand hygiene reminders and measurement tools are removed,
performance returns to baseline [25••, 27]. Other issues for vision-
based systems include privacy (limiting the visual data that can be used,
though “edge AI” where the images and identity information are pro-
cessed locally by an AI on the device may circumvent this), challenges
around hospital infrastructure making trajectory prediction and data
association difficult, and the unresolved issue of how best to take
account of people traffic in real life rather than in the quieter simulation
setting [28].

The potential health benefits of wearable technology are being in-
creasingly described in healthcare, and in IPC offer the opportunity to
develop machine learning applications from them to support healthcare
staff IPC education, audits, and potentially behavior change. In one
review of technological behavior monitoring systems, hand hygiene
improvement varied widely from 6 to 54%, though study results were
less clear-cut around sustainability of the improvement [29]. As wearable
technologies require staff to continuously wear the technology, user
attitude, device functionality, and usability are important factors to
consider prior to further development of AI applications around them.
For example, if a device is programmed to give the user an auditory or
visual reminder, then the ability to override this in particular clinical
situations, such as palliative care, is important. Likewise, device design,
size, or weight may be perceived as a barrier to providing patient care,
or indeed an IPC risk itself given most commercially available wearables
which are designed to be worn on the wrist.

Challenges

AI presents many potential advantages for IPC including speed, consis-
tency, and capability of handling infinitely large datasets; however, many
challenges remain. Most studies to date assess performance retrospective-
ly so there is a need for prospective evaluation in the real-life often
chaotic clinical setting. AI is highly dependent on data quality and
completeness, robust reference standards (which frequently do not exist
in IPC), in addition to close collaboration with IPC experts to interpret
outputs and ensure clinical relevance. Otherwise, errors that are intro-
duced during the machine learning training process can result in false
negatives, misclassification, or lack of applicability. IPC practitioners also
need to understand the limitation of AI for a particular application and
context. Depending on how data is collected and the learning algorithms
are designed, machine learning results can poorly classify new data
(under-fitting) or lose the ability to recognize similar patterns in new
data (overfitting). They may also reflect the underlying bias in the
training data.

At present, health data is held in a range of locations both in
hospitals and community settings and on patient devices such as
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smartphones and wearables. In many cases, healthcare facilities and
indeed individual departments have developed their own bespoke data
infrastructure involving multiple merchants. Ideally to achieve a com-
prehensive view, an AI application may require access to data from all
or a variety of these “data silos” both within and across disparate
healthcare organizations [30]. However, most publications on AI in
healthcare do not work across this continuum, rather focus on discrete
more manageable areas. Indeed, IPC and healthcare generally need to
become less fragmented to access these technologies. This is essential to
train AI applications’ appropriate for a particular context and ensures
that the algorithms perform consistently across patient cohorts, especial-
ly those who may not have been adequately represented in the training
set.

Other concerns include data ownership, privacy, and data exploitation
for commercial or political advantage [3••, 2•]. One proposed solution
would be for patients themselves to control their own data and then
provide consent for their data to be used to develop AI applications
[3••]. Public discussion, guidelines, and potential regulation will be re-
quired to guide the safe development, use, and oversight of AI applica-
tions, ensuring that an individual’s privacy is considered alongside access
by the healthcare system to guide public health and IPC interventions.

Conclusion

The potential for AI applications to improve IPC is huge; however, AI in
itself will not improve IPC. Sustainable improvements in IPC require
culture and behavior change supported by appropriate governance struc-
tures. The consideration that “correlation does not imply causation” is
particularly relevant when the use of AIs in healthcare is considered. AIs
are driven by “big data” to find the correlations that may indicate
medically relevant conditions or to identify potential risk factors. How-
ever, AIs can sometimes overlook small clusters that may be clinically
relevant and are currently unable to use deep knowledge of the under-
lying processes to reason about small datasets. Rather than focus on the
AI tools themselves, the focus should be on the IPC problem that needs
to be addressed with development of strategy, goals, and processes to
support this which may include AI. Organizations that have successfully
led digital transformations have used this approach, understanding cul-
ture and drivers first before choosing appropriate technological tools. In
addition, involving insiders that are familiar with the culture, appreciat-
ing that one size does not fit all settings, and adopting a flat hierarchy
to support rapid iterative modifications are important considerations
[31••]. IPC practitioners need to be aware of the limitations and biases
within AI and the tendency of staff to off load tasks on to the AI and be
over confident in its abilities. Issues around privacy and data ownership
require careful consideration; AI applications need to be tested and
integrated into real-life clinical practice and for most healthcare settings,

Using Artificial Intelligence in Infection Prevention Fitzpatrick et al. 141



significant investment in data infrastructure is required to truly realize its
potential.
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