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Abstract The Shapley value is defined as the average marginal contribution of a
player, taken over all possible ways to form the grand coalition N when one starts
from the empty coalition and adds players one by one. The authors have proposed in a
previous paper an allocation scheme for a general model of coalition formation where
the evolution of the coalition of active players is ruled by a Markov chain, and need
not finish at the grand coalition. The aim of this note is to develop some explanations
in the general context of time discrete stochastic processes, exhibit new properties of
the model, correct some inaccuracies in the original paper, and give a new version of
the axiomatization.
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1 Introduction

The Shapley value is a well-known allocation scheme for both TU- and NTU-games
with numerous applications. It is defined as the average marginal contribution of a
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player, taken over all possible ways to form the grand coalition N when one starts
from the empty coalition and adds players one by one.

In real situations, however, there is no a priori reason for a process of cooperation
to end with the grand coalition, nor are all ways of forming the grand coalition nec-
essarily feasible. This explains why the Shapley value can produce counterintuitive
results in some cases, as pointed out by, e.g., (Roth 1980; Shafer 1980; Scafuri and
Yannelis 1984).

Guided by these considerations, the authors have proposed an allocation scheme for
a general model of coalition formation (Faigle and Grabisch 2012) where the evolution
of the coalition of active players is ruled by a Markov chain. The classical Shapley
value appears then as the particular case where the only transitions possible consist
of the addition of a single player to the present coalition and all these transitions are
equiprobable.

The aim of this note is to develop some explanations in the even more general context
of time discrete stochastic processes that are not necessarily Markovian, exhibit new
properties of the model and correct some inaccuracies in the original paper (Faigle
and Grabisch 2012). In particular, we give a new version of the axiomatization. We
restrict our exposition to the minimum, and refer the reader to the original paper for
examples and further details on the Markovian model.

2 Coalition processes and values

We consider a finite set of players N , with |N | = n. By a scenario S = S0, S1, S2, . . .

we mean a sequence of coalitions St ⊆ N starting with the empty set S0 = ∅. No
particular property is assumed on the sequence (there could be repetitions for example).
In this note, however, we will restrict ourselves to scenarios of finite length. We call any
two-element subsequence St , St+1 in S a transition in S and denote it by St → St+1.

A scenario S arises from the observation of the status of cooperation along (discrete)
time t = 0, 1, 2, . . .. We assume that a process of cooperation among players in N
starts formally from the empty coalition S0 = ∅ (no player is active), then coalition
S1 is observed, then S2, etc. Coalition St is the set of active players (those engaged in
cooperation or ready to cooperate) at time t . A finite scenario S = S0, S1, . . . , Sτ is
said to be of length τ with Sτ being the final state of cooperation. Note that we do not
necessarily assume Sτ = N .

Example 1 Letting N = {1, 2, 3, 4}, consider the scenario

S = ∅, 1, 14, 1, 123, 34

with the convention that 123 denotes {1, 2, 3}, etc. At time t = 1, player 1 becomes
active and enters the current coalition. Then player 4 enters and is active at time t = 2
but becomes inactive at time t = 3 and leaves the current coalition. Next, the players 2
and 3 enter at the same time, while in the last time step τ = 4, 1 and 2 leave and 4 enters.
So, players 3 and 4 finally cooperate while the other players abstain from the game.
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A note on values for Markovian coalition processes 113

The example illustrates how our model captures the original idea of Shapley
and generalizes it (see Faigle and Grabisch 2012 for real examples from exchange
economies of and Hart and Kurz 1983; Scafuri and Yannelis 1984).

We assume that scenarios are produced by some stochastic process, ruling the possi-
ble transitions between coalitions. In Faigle and Grabisch (2012), we have considered
a Markov chain defined by a 2n × 2n transition matrix U := [uS,T ]S,T ⊆N , where uS,T

is the probability of the transition S → T to occur if S is the currently active coalition.
Therefore, the probability of a scenario S = ∅, S1, . . . , Sτ to occur is simply

Pr(S) =
τ∏

k=1

uSi−1,Si ,

with S0 = ∅. In general, we have probability distributions pt on 2N with pt (S) being
the probability that S is the active coalition at time t . pt can be viewed as the state of
the coalition formation process at time t . Convergence to a limit state can be obtained
by standard results in Markov chain theory.

We define an allocation scheme (value) for a general cooperation formation frame-
work as follows. First, for any given scenario S = ∅, S1, . . . , Sτ , we define what
we call a scenario value, that is, an allocation scheme for the considered scenario:
ψS : G(N ) → R

n , where G(N ) is the set of TU-games on N . Then, the value ψ is
the family (ψ(τ)) of the expectations of the scenario values at time τ :

ψ(τ)(v) =
∑

S∈Sτ

Pr(S)ψS(v),

where Sτ denotes the collection of all scenarios of length τ . Therefore, it suffices
to concentrate on the definition of a suitable scenario value. In Faigle and Grabisch
(2012), we have introduced the so-called Shapley II value as follows.

Consider a scenario S = ∅, S1, . . . , Sτ , and a particular transition St → St+1 in
S. The players in the symmetric difference St�St+1 = (St \ St+1) ∪ (St+1 \ St ) are
active at time t in St → St+1 as they either leave or enter the current coalition St . The
Shapley II value for player i is the sum of marginal contributions of i in each transition
where i is active. We clarify this notion in more detail.

Suppose that i ∈ St�St+1 is active. If i is the only active player at time t , the
marginal contribution is simply v(St+1)−v(St ) because i’s activity causes this change
in v. If |St�St+1| ≥ 2, the Shapley II value decomposes St → St+1 into elementary
transitions (i.e., transitions such that only one player enters or leaves) and considers
all possibilities of doing so. For example, the transition 2 → 13, where player 2 leaves
and players 1, 3 enter, can be decomposed into 3! = 6 different ways (so-called paths)
corresponding to all permutations of players 1, 2, 3:

2 → ∅ → 1 → 13

2 → ∅ → 3 → 13

2 → 12 → 1 → 13
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2 → 12 → 123 → 13

2 → 23 → 3 → 13

2 → 23 → 123 → 13

In each path, the marginal contribution is computed as the difference v(T ′)−v(T ),
where i is active in the elementary transition T → T ′. For example, the marginal
contribution of player 1 is v(1) − v(∅) in the first path, v(13) − v(3) in the second,
while the marginal contribution of player 2 is v(∅)−v(2) for these two paths. Averaging
on all paths, we obtain the following marginal contributions for transition 1 → 23:

φ1→23
1 (v) = 1

6
v(1)+ 1

3
(v(13)− v(3))+ 1

3
(v(12)− v(2))+ 1

6
(v(123)− v(23))

φ1→23
2 (v) = −1

3
v(2)+ 1

6
(v(1)− v(12))+ 1

3
(v(13)− v(123))+ 1

6
(v(3)− v(23))

φ1→23
3 (v) = 1

6
v(3)+ 1

3
(v(13)− v(1))+ 1

6
(v(123)− v(12))+ 1

3
(v(23)− v(2)).

In summary, the Shapley II scenario value is computed as follows:

φS
i (v) =

∑

t |i∈St�St+1

φ
St →St+1
i (v) (1)

with

φ
St →St+1
i (v) = 1

|St�St+1|!
∑

P from St to St+1

(v(S′
P)− v(SP)) (2)

where “P from S to T ” is any path from S to T in 2N , and (SP, S′
P) is the unique edge

(transition) of P such that either {i} = SP \ S′
P or {i} = S′

P \ SP.
Notice that the computation of the marginal contribution in a transition S → T

resembles the computation of the classical Shapley value relative to the set S�T of
active players. We formalize this idea. Consider a transition S → T . It is convenient
to introduce the mapping

�S,T : S�T → ŜT , K 	→ K�S,

where ŜT is the collection of sets in S∪T containing S∩T (observe that K�S always
contains S∩T ). The inverse mapping�−1 : ŜT → S�T is simply K 	→ K�S again,
and we have a bijection between S�T and ŜT .

Next we introduce the local game vS,T on the set of active players S�T , defined by

vS,T (K ) = v(�(K ))− v(S) = v(K�S)− v(S), K ⊆ S�T .

Also v(K ) = vS,T (K�S)+ v(S) on ŜT .
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A note on values for Markovian coalition processes 115

Observe that if i is entering, then we have {i} = S′
P \ SP in the above notation. So

the marginal contribution in φS→T
i is v(SP ∪ i) − v(SP). Since i �∈ S, the marginal

contribution is vS,T ((SP�S)∪i)−vS,T (SP�S). If i is leaving, the marginal contribu-
tion in φS→T

i is v(SP\ i)− v(SP). Since i ∈ S, however, the marginal contribution in
terms of the local game is still vS,T ((SP�S)∪ i)−vS,T (SP�S), which is a term of the
classical Shapley value of i in vS,T , denoted by φSh

i (vS,T ). Since � is a bijection, the
computation of φS→T

i (v) amounts to the computation of φSh
i (vS,T ). We have shown:

φS→T (v) = φSh(vS,T ). (3)

where φSh is the classical Shapley value.

3 Axiomatization of the Shapley II value

We denote by ψ : G → R
n×S a scenario value, where S is the set of finite sequences

of coalitions (not necessarily starting with ∅).
Two sequences S = S1, . . . , Sq , S

′ = S′
1, . . . , S′

r are said to be concatenable if
Sq = S′

1, in which case their concatenation is the sequence

S ⊕ S′ := S1, . . . , Sq , S′
2, . . . , S′

r .

Concatenation (C): Let S, S′ be two concatenable sequences. Then

ψS⊕S′ = ψS + ψS′
.

Axiom (C) allows us to restrict our attention to transitions. Indeed,

ψS =
t−1∑

k=0

ψ Sk→Sk+1

holds for every sequence S = S0, S1, . . . , St .

Inactive players in transitions (IP): If i is inactive in S → T , then ψ S→T
i (v) = 0

for any game v.

Efficiency for transitions (E): For any transition S → T and game v, we have

∑

i∈N

ψ S→T
i (v) = v(T )− v(S).

Linearity for transitions (L): v 	→ ψ S→T (v) is a linear operator for any transition
S → T .

Symmetry for transitions (S): For any i ∈ N , any transition S → T and any
permutation σ on N , one has

ψ S→T
i (v) = ψ

σ(S)→σ(T )
σ (i) (v ◦ σ−1).
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We introduce the signature of a transition S → T as the parameter

τ(S → T ) := (|S \ T |, |T \ S|, |S ∩ T |).

As shown in Faigle and Grabisch (2012), the signature is invariant under permuta-
tions, and moreover, two scenarios are equal up to a permutation of the players if and
only if they have the same signature.

i ∈ N is a null player for v if v(S ∪ i) = v(S) for all S ⊆ N \ i .

Null axiom for transitions (N): Every null player i obtains ψ S→T
i (v) = 0 relative to

every transition S → T .
Two players i, j are antisymmetric if v(K ∪{i, j}) = v(K ) for every K ⊆ N \{i, j}.

Antisymmetry for entering/leaving players (ASEL): If i ∈ S \ T and j ∈ T \ S are
antisymmetric for v, then ψ S→T

i (v) = ψ S→T
j (v).

Antisymmetric players have in some sense a counterbalancing effect: they annihilate
each other when entering together a coalition, which can be interpreted by saying that
they bring the same contribution but of opposite sign. Therefore, if one is leaving and
the other entering, their contribution in the scenario becomes equal and of same sign.

Theorem 1 A scenario value satisfies (C), (L), (IP), (E), (S), (N) and (ASEL) if and
only if it is the Shapley II scenario value (see Proof in Appendix).

An important point to note is that, in contrast to the classical case, two symmetry
axioms are present. Relative to the transition S → T , the first one, axiom (S), says
that set of players can be freely permuted provided they all belong to one of the groups
S \ T , T \ S, S ∩ T , or N \ (S ∪ T ). Now (IP) implies that we do not have to bother
about players in S ∩ T and N \ (S ∪ T ). The second symmetry axiom (ASEL) tells
us how to exchange players between S \ T and T \ S. Interestingly, however, both
axioms can be deduced from the application of the classical symmetry axiom to the
local game vS,T . Indeed, consider two symmetric players i, j ∈ S�T for vS,T , i.e.,
vS,T (K ∪ i) = vS,T (K ∪ j) holds for any K ⊆ (S�T )\{i, j}. In the case i, j ∈ S \T ,
this yields

v((K�S) \ i) = v((K�S) \ j),

or, setting K ′ = (K�S) \ {i, j}, v(K ′ ∪ i) = v(K ′ ∪ j), which means symmetry of
i, j for v for sets in ŜT \ {i, j}. If i, j ∈ T \ S, we have

v((K�S) ∪ i) = v((K�S) ∪ j)

which also exhibits symmetry of i, j for those sets. In the case i ∈ S \T and j ∈ T \ S,
we obtain

v((K�S) \ i) = v((K�S) ∪ j),

or, setting K ′ = (K�S) \ i , v(K ′) = v(K ′ ∪ {i, j}), for every K ′ ⊆ ŜT \ {i, j}. But
this is precisely antisymmetry.
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A note on values for Markovian coalition processes 117

In the original paper, antisymmetric players were defined as players i, j satisfying

v(K ∪ i)− v(K ) = v(K ∪ {i, j})− v(K ∪ i)

v(K ∪ j)− v(K ) = v(K ∪ {i, j})− v(K ∪ j)

for any K ⊆ N \ i, j . Then two such antisymmetric players i, j satisfy ψ S→T
i (v) =

−ψ S→T
j (v) for any sequence S → T with i ∈ S \ T and j ∈ T \ S. It can be checked

that Shapley II does have this antisymmetric property. However, it is too weak to
ensure uniqueness of the scenario value.

Another interesting property is the following one, which was not mentioned in
Faigle and Grabisch (2012).

Changing Role (CR): For any S, T ⊆ N , for any i ∈ N \ (S ∪ T ), and any game v,
we have ψ S∪i→T

i (v) = −ψ S→T ∪i
i (v).

Consider a transition S → T where player i is not participating (i.e., i �∈ S ∪ T ).
Suppose now that player i joins T , that is, i becomes an entering player in the transition
S → T ∪ i , then i is active in this transition and has some marginal contribution, say
α. In contrast, assume now that player i joins S and leaves during the transition, i.e.,
we consider the transition S ∪ i → T . Then i is active in this transition and has some
marginal contribution, say β. Note that (S ∪ i)�T = S�(T ∪ i), which means that the
set of active players is the same, only the rôle of i has been switched from entering to
leaving, and the rest is left unchanged. Under these conditions, axiom (CR) says that
the marginal contributions of i in these two transitions are opposite, i.e., β = −α.

We claim that Shapley II satisfies (CR). To establish the claim, we consider a
transition S → T with S ∪ T �= N , and i ∈ N \ (S ∪ T ). We know that for any v

φS→T ∪i
i (v) = φSh

i (vS,T ∪i ), φS∪i→T
i (v) = φSh

i (vS∪i,T ).

Setting 
 = |(S ∪ i)�T | = |S�(T ∪ i), |K | = k, we find:

φSh
i (vS∪i,T ) =

∑

K⊆((S∪i)�T )\i

(
− k − 1)!k!

! (vS∪i,T (K ∪ i)− vS∪i,T (K ))

=
∑

K⊆S�T

(
− k − 1)!k!

! (v(K�S)− v((K�S) ∪ i))

φSh
i (vS,T ∪i ) =

∑

K⊆(S�(T ∪i))\i

(
− k − 1)!k!

! (vS,T ∪i (K ∪ i)− vS,T ∪i (K ))

=
∑

K⊆S�T

(
− k − 1)!k!

! (v((K�S) ∪ i)− v(K�S)),

which proves the claim. However, it can be demonstrated that the axiomatization of
Shapley II fails if (CR) replaces (ASEL).

Acknowledgments We wish to thank Jean-François Caulier and Agnieszka Rusinowska for fruitful dis-
cussions on the axiomatization.
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Appendix: Proof of Theorem 1

(⇐) We check that (ASEL) is satisfied by Shapley II, the rest is left to the reader. It
suffices to establish the antisymmetry property for a transition S → T . Let us argue
that i, j being antisymmetric for v implies that i, j are symmetric in the classical sense
for vS,T , i.e., vS,T (K ∪ i) = vS,T (K ∪ j) holds for all K in S�T \ {i, j}. Indeed, this
would yield φS→T

i (v) = φSh
i (vS,T ) = φSh

j (vS,T ) = φS→T
j (v), the desired result.

Now, v(K ∪ {i, j}) = v(K ) for any K ⊆ ŜT \ {i, j} is equivalent to

vS,T ((K�S) ∪ {i, j}) = vS,T (K�S)

or

vS,T (K
′ ∪ j) = vS,T (K

′ ∪ i)

with K ′ = (K�S) \ i , which proves the claim.
(⇒) Since (C) is satisfied, it suffices to derive an expression for transitions. Under

(L), (S), (N), it is shown in Faigle and Grabisch (2012, Prop. 2) that the value takes
the form:

ψ S→T
i =

⎧
⎪⎨

⎪⎩

∑
K⊆N\i aτ(S→T ),τ (S→T |K∪i)(v(K ∪ i)− v(K )), if i ∈ S \ T

∑
K⊆N\i bτ(S→T ),τ (S→T |K∪i)(v(K ∪ i)− v(K )), if i ∈ T \ S

0, otherwise,

where τ(S → T |K ) := (|(S \ T ) ∩ K |, |(T \ S) ∩ K |, |S ∩ T ∩ K |, |K \ (S ∪ T )|),
and aτ(S→T ),τ (S→T |K∪i) and bτ(S→T ),τ (S→T |K∪i) are real coefficients. Then axioms
(IP) and (E) imply:

∑

i∈N

ψ S→T
i (v) = v(T )− v(S)

=
∑

i∈S\T

∑

K⊆N\i

aτ(S→T ),τ (S→T |K∪i)(v(K ∪ i)− v(K ))

+
∑

i∈T \S

∑

K⊆N\i

bτ(S→T ),τ (S→T |K∪i)(v(K ∪ i)− v(K ))

=
∑

K⊆N

v(K )
(
klaτ,kl ,kr ,kc,k0 + kr bτ,kl ,kr ,kc,k0

− (l − kl)aτ,kl+1,kr ,kc,k0 − (r − kr )bτ,kl ,kr +1,kc,k0

)
,

with the following notations: τ(S → T ) =: τ , |S \ T | =: l, |T \ S| =: r , |S ∩ T | =: c,
|K | = k, τ(S → T |K ) = (kl , kr , kc, k0), with kl = |(S \T )∩ K |, kr = |(T \ S)∩ K |,
kc = |S ∩ T ∩ K |, and k0 = k − kl − kr − kc = |K \ (S ∪ T )|. Let us drop also the
subindex τ since it is present everywhere. This gives by identification:

lal,0,c,0 − rbl,1,c,0 = −1 (4)
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−la1,r,c,0 + rb0,r,c,0 = 1 (5)

klakl ,kr ,kc,k0 + kr bkl ,kr ,kc,k0 − (l − kl)akl+1,kr ,kc,k0

−(r − kr )bkl ,kr +1,kc,k0 = 0, ∀K �= S, T . (6)

Note that 1 ≤ kl ≤ l for akl ,kr ,kc,k0 , 1 ≤ kr ≤ r for bkl ,kr ,kc,k0 , and in (6) the
configurations (kl , kr , kc, k0) = (l, 0, c, 0) and (0, r, c, 0) are excluded.

1. Suppose that S ⊂ T holds, i.e., τ = (0, t − s, s). Then l = kl = 0, r = t − s,
c = s, and (4), (5) yield b0,1,s,0 = 1

t−s and b0,r,s,0 = 1
t−s , and the remaining equations

become:

kr b0,kr ,kc,k0 − (r − kr )b0,kr +1,kc,k0 = 0, ∀K �= S, T .

If K ∩ T \ S = ∅, this reduces to

b0,1,kc,k0 = 0, ∀kc, k0 (7)

except the case (kc = s, k0 = 0), which corresponds to S. Similarly, K ⊇ T \ S
yields

b0,t−s,kc,k0 = 0, ∀kc, k0, (8)

except in the case (kc = s, k0 = 0), which corresponds to T .
So it remains to examine the case where all K satisfy K ∩ (T \ S) �= ∅ and

K �⊇ T \ S (i.e., 0 < kr < t − s). We prove by induction that b0,kr +1,kc,k0 = 0 holds
for all 0 < kr < t − s and kc, k0, except for kc = s, k0 = 0, i.e., for K = S ∪ L with
∅ �= L ⊂ T \ S, where

b0,kr +1,s,0 = kr !
(t − s) · · · (t − s − kr )

.

For kr = 1, we have

b0,1,kc,k0 − (r − 1)b0,2,kc,k0 = 0.

From (7) we get b0,1,kc,k0 = 0 except if (kc = s, k0 = 0), which entails b0,2,kc,k0 =
0 for all kc, k0 except b0,2,s,0 = 1

(t−s)(t−s−1) , the expected result. Assume that the
assumption is true up to kr and compute the case kr + 1, assuming kr + 1 < t − s.
We find

(kr + 1)b0,kr +1,kc,k0 − (r − kr − 1)b0,kr +2,kc,k0 = 0

By the assumption, the first term vanishes for all kc, k0, except for kc = s and k0 = 0.
This implies the second term to vanish except when
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120 U. Faigle, M. Grabisch

b0,kr +2,s,0 = (kr + 1)!
(t − s) · · · (t − s − kr )(t − s − kr − 1)

.

Therefore, the expression of ψ S→T
i becomes

ψ S→T
i (v) =

∑

K⊇S
K⊆T \i

(t − s − kr − 1)!kr !
(t − s)! (v(K ∪ i)− v(K )),

which is the expression of the Shapley value for a game on the set T \ S.
2. The case T ⊂ S is analyzed similarly.
3. It remains to settle the case where S\T �= ∅ and T \S �= ∅ hold. Take any i ∈ S\T

and j ∈ T \S and suppose that they are antisymmetric for v, i.e., v(K ∪{i, j}) = v(K )
for any K ⊆ N \ {i, j}. This yields

ψ S→T
i (v) =

∑

K⊆N\i

akl+1,kr ,kc,k0(v(K ∪ i)− v(K ))

=
∑

K⊆N\i
K� j

akl+1,kr ,kc,k0(v(K \ j)− v(K ))

+
∑

K⊆N\i
K �� j

akl+1,kr ,kc,k0(v(K ∪ i)− v(K ))

=
∑

K⊆N\{i, j}

(
v(K )(akl+1,kr +1,kc,k0 − akl+1,kr ,kc,k0)+ v(K ∪ i)akl+1,kr ,kc,k0

+v(K ∪ j)(−akl+1,kr +1,kc,ko)
)
.

Similarly,

ψ S→T
j (v) =

∑

K⊆N\ j
K�i

bkl ,kr +1,kc,k0(v(K \ i)− v(K ))

+
∑

K⊆N\ j
K ��i

bkl ,kr +1,kc,k0(v(K ∪ j)− v(K ))

=
∑

K⊆N\{i, j}

(
v(K )(bkl+1,kr +1,kc,k0 −bkl ,kr +1,kc,k0)

+v(K ∪ i)(−bkl+1,kr +1,kc,k0)+ v(K ∪ j)bkl ,kr +1,kc,ko

)
.

Since ψ S→T
i (v) = ψ S→T

j (v) for any such game we deduce the system

akl+1,kr +1,kc,k0 − akl+1,kr ,kc,k0 = bkl+1,kr +1,kc,k0 − bkl ,kr +1,kc,k0

akl+1,kr ,kc,k0 = −bkl+1,kr +1,kc,k0

akl+1,kr +1,kc,k0 = −bkl ,kr +1,kc,k0 ,
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for 0 ≤ kl ≤ l − 1, 0 ≤ kr ≤ r − 1, 0 ≤ kc ≤ c, and 0 ≤ k0 ≤ n − |S ∪ T |, with the
above conventions. Remark that the first line is redundant. Substituting in (4), (5) we
obtain

al,0,c,0 = − 1

l + r
, a1,r,c,0 = − 1

l + r
. (9)

Substitution into (6) leads to

(kl + r − kr )akl ,kr ,kc,k0 − (kr + l − kl)akl+1,kr ,kc,k0 = 0 (10)

with the restriction 1 ≤ kl ≤ l − 1, 1 ≤ kr ≤ r − 1. For the remaining cases, we get:

− (l + kr )a1,kr ,kc,k0 + (r − kr )a1,kr +1,kc,k0 = 0, kl = 0, 0 ≤ kr ≤ r (11)

(kl + r)akl ,0,kc,k0 − (l − kl)akl+1,0,kc,k0 = 0, 1 ≤ kl ≤ l − 1, kr = 0 (12)

klakl ,r,kc,k0 − (l − kl + r)akl+1,r,kc,k0 = 0, 1 ≤ kl ≤ l − 1, kr = r (13)

(l + r − kr )al,kr ,kc,k0 − kr al,kr −1,kc,k0 = 0, kl = l, 0 ≤ kr ≤ r , (14)

where in (11) the case (kr = r, kc = c, k0 = 0) is excluded, and in (14) the case
(kr = 0, kc = c, k0 = 0) is excluded.

We claim that all coefficients corresponding to K \ (S ∪ T ) �= ∅ (i.e., k0 > 0) or
K �⊇ (S ∩ T ) (i.e., kc < c) vanish. Suppose then that k0 > 0 and kc < c is given.
From (14) with kr = 0, we deduce al,0,kc,k0 = 0. Substitution in (12) with kl = l − 1
yields al−1,0,kc,k0 = 0. Successive application of (12), again with kl = l − 2, . . . , 1,
yields

akl ,0,kc,k0 = 0, 1 ≤ kl ≤ l.

Since al,0,kc,k0 is also present in (14) with kr = 1, we have al,1,kc,k0 = 0. Now, in (10),
al,1,kc,k0 is present with (kl = l − 1, kr = 1), which yields al−1,1,kc,k0 = 0. Applying
again (10) with kl = l − 2, . . . , 1 we deduce

akl ,1,kc,k0 = 0, 1 ≤ kl ≤ l.

al,1,kc,k0 is present also in (14) with kr = 2. Proceeding as above we get

akl ,2,kc,k0 = 0, 1 ≤ kl ≤ l.

This can be done until kr = r in (14), which gives al,r,kc,k0 = 0. Then (13) has to be
used with kl = l − 1 and so on. This yields

akl ,r,kc,k0 = 0, 1 ≤ kl ≤ l.

In summary, akl ,kr ,kc,k0 = 0 holds for 1 ≤ kl ≤ l, 0 ≤ kr ≤ r , 0 ≤ kc < c and
0 < k0 ≤ n − |S ∪ T |, and our claim is proved.
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Substituting into (10) to (14), we find

(kl + r − kr )akl ,kr ,c,0 − (kr + l − kl )akl+1,kr ,c,0 = 0, 1 ≤ kl ≤ l − 1, 1 ≤ kr ≤ r − 1

(15)

−(l + kr )a1,kr ,c,0 + (r − kr )a1,kr +1,c,0 = 0, 0 ≤ kr ≤ r − 1 (16)

(kl + r)akl ,0,c,0 − (l − kl )akl+1,0,c,0 = 0, 1 ≤ kl ≤ l − 1 (17)

klakl ,r,c,0 − (l − kl + r)akl+1,r,c,0 = 0, 1 ≤ kl ≤ l − 1 (18)

(l + r − kr )al,kr ,c,0 − kr al,kr −1,c,0 = 0, 1 ≤ kr ≤ r . (19)

Observe that the system (16) together with a1,r,c,0 = − 1
l+r is a triangular system

of r + 1 equations in r + 1 variables a1,0,c,0, . . . , a1,r,c,0. It has therefore a unique
solution. The same observation applies to the systems (17) with al,0,c,0 = − 1

l+r , (18)

with a1,r,c,0 = − 1
l+r , and (19) with al,0,c,0 = − 1

l+r , which determines in a unique
way the variables a1,0,c,0, . . . , al,0,c,0, a1,r,c,0, . . . , al,r,c,0, and al,0,c,0, . . . , al,r,c,0,
respectively.

Substituting into the system (15), we find a system of (l − 1)(r − 1) equations
in the (l − 1)(r − 1) variables a2,1,c,0, . . . , a2,r−1,c,0, a3,1,c,0, . . . , a3,r−1,c,0, . . .,
al−1,1,c,0, . . . , al−1,r−1,c,0, which is triangular and consequently has a unique solu-
tion. Since we know that the coefficients of the Shapley II scenario value satisfy (15)
to (19), it is the unique solution.
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