Skip to main content

Advertisement

Log in

MicroRNAs as targets for engineering biofuel feedstock Sorghum

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Sorghum is a highly efficient C4 crop, with enormous potential as a biofuel feedstock. Fermentable sugars that accumulate in sorghum stalks, high biomass, drought tolerance and adaptability to diverse climates are some of the key attributes of sorghum. However, sustainable production of renewable fuels through large scale plantation of sorghum needs targeted research efforts at several fronts. One of the promising areas is manipulating gene expression to engineer traits-of-interest. In the recent past, microRNAs have emerged as important targets for engineering complex agronomical traits, including biomass yields, sugar accumulation, flowering time, drought tolerance, disease resistance, micronutrient homeostasis, etc., in several crop plants. Both homology-based bioinformatics, and experimental approaches viz. miRNA microarrays and small RNA sequencing have been utilised to gain insights into the role of miRNAs in regulating bioenergy-related traits in sorghum. Through this review, we provide a comprehensive overview of the information available till date about the miRNA-related research in sorghum and propose the prospective directions for future endeavours in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Achkar, N. P., Cambiagno, D. A., & Manavella, P. A. (2016). miRNA Biogenesis: A dynamic pathway. Trends in Plant Science, 21(12), 1034–1044.

    Article  CAS  PubMed  Google Scholar 

  • Alptekin, B., Akpinar, B. A., & Budak, H. (2017). A comprehensive prescription for plant miRNA identification. Frontiers in Plant Science, 7, 2058.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anami, S. E., Zhang, L. M., Xia, Y., Zhang, Y. M., Liu, Z. Q., & Jing, H. C. (2015). Sweet sorghum ideotypes: Genetic improvement of the biofuel syndrome. Food and Energy Security, 4(3), 159–177.

    Article  Google Scholar 

  • Axtell, M. J. (2013). Classification and comparison of small RNAs from plants. Annual Review of Plant Biology, 64, 137–159.

    Article  CAS  PubMed  Google Scholar 

  • Baxter, H. L., Mazarei, M., Dumitrache, A., Natzke, J. M., Rodriguez, M, Jr., Gou, J., et al. (2017). Transgenic miR156 switchgrass in the field: growth, recalcitrance and rust susceptibility. Plant Biotechnology Journal. https://doi.org/10.1111/pbi.12747.

    PubMed Central  Google Scholar 

  • Bedell, J. A., Budiman, M. A., Nunberg, A., Citek, R. W., Robbins, D., Jones, J., et al. (2005). Sorghum genome sequencing by methylation filtration. PLoS Biology, 3(1), e13. https://doi.org/10.1371/journal.pbio.0030013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Budak, H., Kantar, M., Bulut, R., & Akpinar, B. A. (2015). Stress responsive miRNAs and isomiRs in cereals. Plant Science, 235, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Calviño, M., Bruggmann, R., & Messing, J. (2011). Characterization of the small RNA component of the transcriptome from grain and sweet sorghum stems. BMC Genomics, 12(1), 356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvino, M., & Messing, J. (2012). Sweet sorghum as a model system for bioenergy crops. Current Opinion in Biotechnology, 23(3), 323–329. https://doi.org/10.1016/j.copbio.2011.12.002.

    Article  CAS  PubMed  Google Scholar 

  • Calvino, M., & Messing, J. (2013). Discovery of MicroRNA169 gene copies in genomes of flowering plants through positional information. Genome Biology Evolution, 5(2), 402–417. https://doi.org/10.1093/gbe/evt015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuck, G., Cigan, A. M., Saeteurn, K., & Hake, S. (2007). The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genetics, 39(4), 544–549.

    Article  CAS  PubMed  Google Scholar 

  • Dai, X., & Zhao, P. X. (2011). psRNATarget: A plant small RNA target analysis server. Nucleic Acids Research, 39(Suppl_2), W155–W159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, Y., Tao, Y., & Zhu, C. (2013). Emerging roles of microRNAs in the mediation of drought stress response in plants. Journal of Experimental Botany, 64(11), 3077–3086.

    Article  CAS  PubMed  Google Scholar 

  • Du, J., Wu, Y., Fang, X., Cao, J., Zhao, L., & Tao, S. (2010). Prediction of sorghum miRNAs and their targets with computational methods. Chinese Science Bulletin, 55(13), 1263–1270. https://doi.org/10.1007/s11434-010-0035-4.

    Article  CAS  Google Scholar 

  • El Sanousi, R. S., Hamza, N. B., Abdelmula, A. A., Mohammed, I. A., Gasim, S. M., & Sanan-Mishra, N. (2016). Differential expression of miRNAs in Sorghum bicolor under drought and salt stress. American Journal of Plant Sciences, 07(06), 870–878. https://doi.org/10.4236/ajps.2016.76082.

    Article  Google Scholar 

  • Ferreira, T., Gentile, A., Vilela, R., Costa, G., & Dias, L. (2012). microRNAs associated with drought response in the bioenergy crop sugarcane. PloS One, 7(10), e46703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-Zorrilla, J. M., Valli, A., Todesco, M., Mateos, I., Puga, M. I., Rubio-Somoza, I., et al. (2007). Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 39(8), 1033–1037.

    Article  CAS  PubMed  Google Scholar 

  • Fu, C., Sunkar, R., Zhou, C., Shen, H., Zhang, J. Y., Matts, J., et al. (2012). Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnology Journal, 10(4), 443–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorthy, S., Narasu, L., Gaddameedi, A., Sharma, H. C., Kotla, A., Deshpande, S. P., et al. (2017). Introgression of shoot fly (Atherigona soccata L. Moench) resistance QTLs into elite post-rainy season Sorghum varieties using marker assisted backcrossing (MABC). Frontiers. Plant Science, 8, 1494. https://doi.org/10.3389/fpls.2017.01494.

    Google Scholar 

  • Griffiths-Jones, S., Grocock, R. J., Van Dongen, S., Bateman, A., & Enright, A. J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic acids research, 34(Suppl_1), D140–D144.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, P. K. (2015). MicroRNAs and target mimics for crop improvement. Current Science, 108(9), 1624–1633.

    Google Scholar 

  • Hackenberg, M., Shi, B. J., Gustafson, P., & Langridge, P. (2013). Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biology, 13(1), 214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamza, N. B., Sharma, N., Tripathi, A., & Sanan-Mishra, N. (2016). MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expression Patterns, 20(2), 88–98. https://doi.org/10.1016/j.gep.2016.01.001.

    Article  CAS  PubMed  Google Scholar 

  • Hewezi, T., Piya, S., Qi, M., Balasubramaniam, M., Rice, J. H., & Baum, T. J. (2016). Arabidopsis miR827 mediates post-transcriptional gene silencing of its ubiquitin E3 ligase target gene in the syncytium of the cyst nematode Heterodera schachtii to enhance susceptibility. Plant Journal, 88, 179–192.

    Article  CAS  PubMed  Google Scholar 

  • Hong, Y., & Jackson, S. (2015). Floral induction and flower formation—the role and potential applications of miRNAs. Plant Biotechnology Journal, 13(3), 282–292.

    Article  CAS  PubMed  Google Scholar 

  • Kassahun, B., Bidinger, F., Hash, C., & Kuruvinashetti, M. (2010). Stay-green expression in early generation sorghum [Sorghum bicolor (L.) Moench] QTL introgression lines. Euphytica, 172(3), 351–362.

    Article  Google Scholar 

  • Katiyar, A., Smita, S., Chinnusamy, V., Pandey, D. M., & Bansal, K. (2012). Identification of miRNAs in sorghum by using bioinformatics approach. Plant Signaling & Behavior, 7(2), 246–259. https://doi.org/10.4161/psb.18914.

    Article  CAS  Google Scholar 

  • Katiyar, A., Smita, S., Muthusamy, S. K., Chinnusamy, V., Pandey, D. M., & Bansal, K. C. (2015). Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Frontiers Plant Science, 6, 506. https://doi.org/10.3389/fpls.2015.00506.

    Article  Google Scholar 

  • Kozomara, A., & Griffiths-Jones, S. (2013). miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42(D1), D68–D73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, W.-X., Oono, Y., Zhu, J., He, X.-J., Wu, J.-M., Iida, K., et al. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post transcriptionally to promote drought resistance. The Plant Cell, 20(8), 2238–2251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Zhang, Y., Shi, D., Liu, X., Qin, J., Ge, Q., et al. (2013). Spatial-temporal analysis of zinc homeostasis reveals the response mechanisms to acute zinc deficiency in Sorghum bicolor. New Phytologist, 200(4), 1102–1115. https://doi.org/10.1111/nph.12434.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Cheng, X., Liu, P., & Sun, J. (2017a). miR156-targeted SBP-Box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiology, 174(3), 1931–1948.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Wang, K., Li, D., Yan, J., & Zhang, W. (2017). Enhanced cold tolerance and tillering in switchgrass (Panicum virgatum L.) by heterologous expression of Osa-miR393a. Plant and Cell Physiology. https://doi.org/10.1093/pcp/pcx157.

    PubMed Central  Google Scholar 

  • Loqué, D., Scheller, H. V., & Pauly, M. (2015). Engineering of plant cell walls for enhanced biofuel production. Current Opinion in Plant Biology, 25, 151–161.

    Article  PubMed  Google Scholar 

  • Ma, C., Burd, S., & Lers, A. (2015). miR408 is involved in abiotic stress responses in Arabidopsis. The PlantJournal, 84(1), 169–187.

    CAS  Google Scholar 

  • Mathur, S., Umakanth, A. V., Tonapi, V. A., Sharma, R., & Sharma, M. K. (2017). Sweet sorghum as biofuel feedstock: Recent advances and available resources. Biotechnology for Biofuels, 10, 146. https://doi.org/10.1186/s13068-017-0834-9.

    Article  PubMed  PubMed Central  Google Scholar 

  • McKinley, B., Rooney, W., Wilkerson, C., & Mullet, J. (2016). Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor. Plant Journal, 88(4), 662–680. https://doi.org/10.1111/tpj.13269.

    Article  CAS  PubMed  Google Scholar 

  • Mullet, J., Morishige, D., McCormick, R., Truong, S., Hilley, J., McKinley, B., et al. (2014). Energy sorghum–a genetic model for the design of C4 grass bioenergy crops. Journal of Experimental Botany, 65(13), 3479–3489. https://doi.org/10.1093/jxb/eru229.

    Article  PubMed  Google Scholar 

  • Murray, S. C., Sharma, A., Rooney, W. L., Klein, P. E., Mullet, J. E., Mitchell, S. E., et al. (2008). Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Science, 48(6), 2165. https://doi.org/10.2135/cropsci2008.01.0016.

    Article  Google Scholar 

  • Pasini, L., Bergonti, M., Fracasso, A., Marocco, A., & Amaducci, S. (2014). Microarray analysis of differentially expressed mRNAs and miRNAs in young leaves of sorghum under dry-down conditions. Journal of Plant Physiology, 171(7), 537–548.

    Article  CAS  PubMed  Google Scholar 

  • Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., et al. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature, 457(7229), 551–556. https://doi.org/10.1038/nature07723.

    Article  CAS  PubMed  Google Scholar 

  • Paul, S., Datta, S. K., & Datta, K. (2015). miRNA regulation of nutrient homeostasis in plants. Frontiers in Plant Science, 6, 232. https://doi.org/10.3389/fpls.2015.00232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pei, L., Jin, Z., Li, K., Yin, H., Wang, J., & Yang, A. (2013). Identification and comparative analysis of low phosphate tolerance-associated microRNAs in two maize genotypes. Plant Physiology and Biochemistry, 70, 221–234.

    Article  CAS  PubMed  Google Scholar 

  • Pilon, M. (2017). The copper microRNAs. New Phytologist, 213(3), 1030–1035. https://doi.org/10.1111/nph.14244.

    Article  CAS  PubMed  Google Scholar 

  • Rai, K. M., Thu, S. W., Balasubramanian, V. K., Cobos, C. J., Disasa, T., & Mendu, V. (2016). Identification, characterization, and expression analysis of cell wall related genes in Sorghum bicolor (L.) Moench, a food, fodder, and biofuel crop. Frontiers Plant Science, 7, 1287. https://doi.org/10.3389/fpls.2016.01287.

    Google Scholar 

  • Ram, G., & Sharma, A. D. (2013). In silico analysis of putative miRNAs and their target genes in sorghum (Sorghum bicolor). International Journal of Bioinformatics Research and Applications, 9(4), 349–364.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, P. S., Jogeswar, G., Rasineni, G. K., Maheswari, M., Reddy, A. R., Varshney, R. K., et al. (2015). Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiology and Biochemistry, 94, 104–113.

    Article  PubMed  Google Scholar 

  • Reichel, M., & Millar, A. A. (2015). Specificity of plant microRNA target MIMICs: Cross-targeting of miR159 and miR319. Journal of Plant Physiology, 180, 45–48.

    Article  CAS  PubMed  Google Scholar 

  • Samad, A. F. A., Sajad, M., Nazaruddin, N., Fauzi, I. A., Murad, A. M. A., Zainal, Z., et al. (2017). MicroRNA and transcription cactor: Key players in plant regulatory network. Frontiers in Plant Science, 8, 565. https://doi.org/10.3389/fpls.2017.00565.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnippenkoetter, W., Lo, C., Liu, G., Dibley, K., Chan, W. L., White, J., et al. (2017). The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum. Plant Biotechnology Journal, 15, 1387–1396. https://doi.org/10.1111/pbi.12723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sha, A., Zhao, J., Yin, K., Tang, Y., Wang, Y., Wei, X., et al. (2014). Virus-based microRNA silencing in plants. Plant Physiology, 164(1), 36–47.

    Article  CAS  PubMed  Google Scholar 

  • Shukla, S., Felderhoff, T. J., Saballos, A., & Vermerris, W. (2017). The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor (L.) Moench). Field Crops Research, 203, 181–191. https://doi.org/10.1016/j.fcr.2016.12.004.

    Article  Google Scholar 

  • Srivastava, P. K., Moturu, T. R., Pandey, P., Baldwin, I. T., & Pandey, S. P. (2014). A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC Genomics, 15(1), 348.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stepien, A., Knop, K., Dolata, J., Taube, M., Bajczyk, M., Barciszewska-Pacak, M., et al. (2017). Posttranscriptional coordination of splicing and miRNA biogenesis in plants. Wiley Interdisciplinary Reviews: RNA, 8(3), e1403. https://doi.org/10.1002/wrna.1403.

    Article  Google Scholar 

  • Swapna, M., & Kumar, S. (2017). MicroRNAs and their regulatory role in sugarcane. Frontiers in Plant Science, 8, 997. https://doi.org/10.3389/fpls.2017.00997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, J., & Chu, C. (2017). MicroRNAs in crop improvement: Fine-tuners for complex traits. Nature Plants, 3, 17077.

    Article  PubMed  Google Scholar 

  • Taylor, R. S., Tarver, J. E., Foroozani, A., & Donoghue, P. C. (2017). MicroRNA annotation of plant genomes–Do it right or not at all. BioEssays. https://doi.org/10.1002/bies.201600113.

    PubMed  Google Scholar 

  • Thiebaut, F., Grativol, C., Carnavale-Bottino, M., Rojas, C. A., Tanurdzic, M., Farinelli, L., et al. (2012). Computational identification and analysis of novel sugarcane microRNAs. BMC Genomics, 13, 290. https://doi.org/10.1186/1471-2164-13-290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, T., You, Q., Zhang, L., Yi, X., Yan, H., Xu, W., Su Z. (2016). SorghumFDB: Sorghum functional genomicsdatabase with multidimensional network analysis. Database (Oxford). https://doi.org/10.1093/database/baw099.

    Google Scholar 

  • Trumbo, J. L., Zhang, B., & Stewart, C. N., Jr. (2015). Manipulating microRNAs for improved biomass and biofuels from plant feedstocks. Plant Biotechnology Journal, 13(3), 337–354. https://doi.org/10.1111/pbi.12319.

    Article  CAS  PubMed  Google Scholar 

  • Várallyay, É., Válóczi, A., Ágyi, Á., Burgyán, J., & Havelda, Z. (2010). Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. The EMBO Journal, 29(20), 3507–3519.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Feng, J., Jia, W., Fan, P., Bao, H., Li, S., et al. (2017). Genome-wide identification of Sorghum bicolor laccases reveals potential targets for lignin modification. Frontiers in Plant Science, 8, 714. https://doi.org/10.3389/fpls.2017.00714.

    Article  PubMed  PubMed Central  Google Scholar 

  • Warthmann, N., Chen, H., Ossowski, S., Weigel, D., & Hervé, P. (2008). Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE, 3(3), e1829.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolabu, T. W., Zhang, F., Niu, L., Kalve, S., Bhatnagar-Mathur, P., Muszynski, M. G., et al. (2016). Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum. New Phytologist, 210(3), 946–959.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Yang, Z., Wang, Y., Zheng, L., Ye, R., Ji, Y., et al. (2015). Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. Elife, 4, e05733.

    PubMed Central  Google Scholar 

  • Yu, H., Cong, L., Zhu, Z., Wang, C., Zou, J., Tao, C., et al. (2015). Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum. Gene, 571(2), 221–230. https://doi.org/10.1016/j.gene.2015.06.056.

    Article  CAS  PubMed  Google Scholar 

  • Zanca, A. S., Vicentini, R., Ortiz-Morea, F. A., Del Bem, L. E., da Silva, M. J., Vincentz, M., et al. (2010). Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane. BMC Plant Biology, 10, 260. https://doi.org/10.1186/1471-2229-10-260.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, B., & Wang, Q. (2015). MicroRNA-based biotechnology for plant improvement. Journal of Cell Physiology, 230(1), 1–15. https://doi.org/10.1002/jcp.24685.

    Article  Google Scholar 

  • Zhang, Z., Yu, J., Li, D., Zhang, Z., Liu, F., Zhou, X., et al. (2010). PMRD: Plant microRNA database. Nucleic Acids Research, 38(Database issue), D806–D813. https://doi.org/10.1093/nar/gkp818.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y.-C., Yu, Y., Wang, C.-Y., Li, Z.-Y., Liu, Q., Xu, J., et al. (2013). Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nature Biotechnology, 31(9), 848–852.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Zheng, Y., Jagadeeswaran, G., Li, Y., Gowdu, K., & Sunkar, R. (2011). Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum. Genomics, 98(6), 460–468. https://doi.org/10.1016/j.ygeno.2011.08.005.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, M., Ding, H., Zhu, J. K., Zhang, F., & Li, W. X. (2011). Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytologist, 190(4), 906–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, B., Ge, L., Liang, R., Li, W., Ruan, K., Lin, H., et al. (2009). Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Molecular Biology, 10(1), 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, L. L., & Qu, L. H. (2015). Application of microRNA gene resources in the improvement of agronomic traits in rice. Plant Biotechnology Journal, 13(3), 329–336.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., Deng, K., Cheng, Y., Zhong, Z., Tian, L., Tang, X., et al. (2017). CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Frontiers in Plant Science, 8, 1598.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support by Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (ECR/2016/001581) is gratefully acknowledged. N.D. acknowledges the SERB-National Post-Doctoral fellowship. We thank Dr. Manoj K. Sharma for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Sharma.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaka, N., Sharma, R. MicroRNAs as targets for engineering biofuel feedstock Sorghum. Ind J Plant Physiol. 22, 484–492 (2017). https://doi.org/10.1007/s40502-017-0332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0332-x

Keywords

Navigation