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Abstract Polyunsaturated fatty acids (PUFAs), including
omega-3 (n-3) and omega-6 (n-6) PUFAs, are essential for
human health. Recent research shows n-3 PUFAs and their
mediators can inhibit inflammation, angiogenesis, and cancer
via multiple mechanisms, including reduced release of n-6
fatty acid arachidonic acid from cell membranes, inhibition
of enzymatic activities, and direct competition with arachidon-
ic acid for enzymatic conversions. In this review, we discuss
inflammation-related cancer, anti-inflammatory effects of n-3
PUFA lipid mediators, and antineoplastic activities of n-3
PUFA in vitro and in vivo and present an update on recent
human trials.
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Introduction

The beneficial effects of omega-3 polyunsaturated fatty
acids (n-3 PUFAs) on human health have been known
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for a long time. The idea that dietary PUFAs may be
beneficial in preventing disease has first been suggested
in the 1970s [1-3]. Studies continue to demonstrate the
health benefits of n-3 PUFAs, and in particular, preclinical
and clinical studies accumulated more data on the effects
of n-3 PUFAs on cancer prevention and suppression
[4-10].

The mechanisms of the tumor-suppressing activity of n-3
PUFAs are not yet fully understood. Among other important
functions, suppression and resolution of inflammation by n-3
PUFAs and their lipid mediators (LMs) generated much inter-
est[11ee, 12¢, 13, 14]. Many lines of clinical evidence suggest
that inflammation is a key step in cancer initiation and pro-
gression [15]. Aspirin, a non-steroidal anti-inflammatory drug
(NSAID), has been shown to have a significant protective
effect against cancers by inhibiting inflammation-related en-
zymes, such as cyclooxygenases (COX) and lipoxygenases
(LOX) [16—18]. The enzymatic metabolism of n-6 fatty acid
arachidonic acid (AA) by these same enzymes leads to the
formation of pro-inflammatory and pro-tumorigenic LMs,
which promote tumor formation and progression [19]. Recent
research showed that n-3 PUFAs have potent effects in
inhibiting inflammation, angiogenesis, and cancer via multi-
ple mechanisms, including reduced release of n-6 fatty acid
AA from cell membranes, inhibition of enzymatic activities,
and direct competition with AA for enzymatic conversions
[12¢].

There are still inconsistencies in the literature about the
inhibitory effects of n-3 PUFAs on cancer, some of which
may be due to methodological differences or failing to recog-
nize the importance of n-3 PUFA metabolism [12¢, 20]. In this
review, we will discuss inflammation-related cancer, anti-
inflammatory effects of n-3 PUFA LMs, and antineoplastic
activities of n-3 PUFAs in vitro and in vivo and present an
update on recent human trials.
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Tumor and Inflammation

The concept that chronic inflammation can trigger tumor ini-
tiation and formation was proposed as early as 1863. Virchow
observed that inflammatory cells could infiltrate tumors and
accumulate there and hypothesized that cancer arises from
inflammatory sites [21]. This concept has been supported by
many clinical and research data suggesting that cancers are
initiated by chronic inflammatory disease, although many of
the cellular and molecular mechanisms mediating this cancer
initiation are not fully understood [22].

Inflammation is a beneficial response activated to protect
the body from injury and pathogenic infection. Even though
this response is necessary for enabling an immune reaction, it
may also promote neoplastic diseases. During the cyclically
self-stimulating process of inflammation, immune cells ex-
press and release inflammation-related cytokines and
chemokines such as interleukins (ILs), interferon gamma
(IFNv), and tumor necrosis factor alpha (TNF-«). These me-
diators then stimulate other immune cells to activate inflam-
matory processes. Inflammation has both pro- and anti-
tumorigenic activity [23¢]. In the protective scenario, immune
cells release inflammatory mediators to attract other immune
cells to protect the body from infection and injuries, and these
actions are resolved once the threats are diminished. However,
in the pro-tumor scenario, the process is interrupted and the
balanced control of pro-inflammatory and pro-resolution ac-
tivities is lost. There is a close link between inflammation-
related illness and cancer. In developing countries, probably
due to high incidence of infectious disease, up to 23 % of
cancers are initiated by pathogens, including Helicobacter
pylori (stomach cancer), hepatitis B/C viruses (liver cancer),
and human papillomaviruses (HPV, cervical cancers) [24].
Similar links can also be established for other inflammation
processes, including prostatitis, leading to prostate cancer;
bronchitis, leading to lung cancer; and inflammatory bowel
diseases, leading to colorectal cancer [23¢]. RAS, MYC, and
other oncogenes can cause inflammation-related disease as
well. Oncogenes activate inflammatory pathways inside the
cell and engage and stimulate neighboring inflammatory cells
to create a milieu that weakens anticancer immune defenses
[24].

How is the inflammation process associated with cancer
initiation? Many cancers start from sites of infection and inju-
ry, simply as part of the host reaction for protection. Inflam-
matory leukocytes, including lymphocytes, macrophages, and
neutrophils, migrate to the injured site and produce diverse
reactive oxygen and nitrogen species to protect the host from
infection and injury. Prolonged infections induce chronic in-
flammation, which frequently leads to tissue injury and regen-
eration in the surrounding environment by highly reactive
oxidative species secreted from inflammatory cells; these in
turn impair DNA replication in proliferating epithelium,
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causing point mutations, deletions, or rearrangements, and
subsequently altering the genome [22]. Yamanishi et al. re-
ported that inflammatory oxidative stress induced p53 muta-
tions in exposed skin and inflamed colon and provided mutant
cells in these tissues with a growth advantage [25]. Epidemi-
ological data support the notion that inflammation-related ox-
idative or nitrosative stress plays an important role in prostate
cancer formation, which suggests that the ingestion of dietary
antioxidants reduces prostate cancer risk [26]. As a result of
these inflammatory reactions, the tumor microenvironment
contains innate and adaptive immune cells, cancer cells, and
surrounding stromal cells. These different kinds of cells inter-
act with each other directly by contact or indirectly by means
of cytokine and chemokine production, and regulate tumor
growth. The actions of multiple immune mediators and mod-
ulators and of different cell types in the tumor milieu dictate
the role that inflammation plays, with pro- or antitumor activ-
ity [27]. The pro-tumor activities of inflammatory cells in-
clude releasing growth and survival factors, stimulating
DNA damage, promoting angiogenesis, as well as facilitating
tumor cell invasion by masking tumor cell spreading via lym-
phatics and capillaries, so that they are not detected by the host
defense system [22].

Strong evidence for the involvement of inflammation in
cancer development stems from observations that long-term
use of traditional non-steroidal anti-inflammatory drugs
(NSAIDs) is linked to reduced cancer risk. A clinical cancer
prevention study cohort with 662,424 participants reported
that frequent aspirin use (at least 16 times per month) was
associated with a 40 % reduction in colon cancer-related death
over a 6-year period [28]. In another study, aspirin treatment
after diagnosis of breast cancer was associated with decreased
distant recurrence and mortality due to breast cancer. Com-
pared with the control group, the adjusted relative risks (RRs)
for 1,2 to 5, and 6 to 7 days of aspirin use per week were 1.07
(0.70-1.63,95 % CI), 0.29 (0.16-0.52,95 % CI), and 0.36
(0.24-0.54,95 % CI), respectively [29]. Aspirin can inhibit
both cyclooxygenase isoforms Cox-1 and Cox-2, though it
inhibits Cox-1 in particular [30]. The Cox-1 gene is constitu-
tively expressed in most tissues, while Cox-2, as an
immediate-early response gene, is strongly expressed in many
human malignancies [31]. Genetically modified mice defi-
cient in either Cox-1 or Cox-2 provided us with a tool to
analyze their functions in carcinogenesis. Mutation in the ad-
enomatous polyposis coli (4pc) gene can results in 100 % of
mice having intestinal neoplasia. However, when genetic dis-
ruption of the Apc gene was performed in Cox-1- or Cox-2-
deficient mice, intestinal tumorigenesis was reduced by 80 %,
implying that the inhibition of COX enzymes could be an
alternative anticancer approach [32].

Evidence from human studies also supports the idea that
COXs and LOXs play an important role in PUFA metabolism
and cancer [33-36], as illustrated in Figure 1. The COX
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Fig. 1 Conversion of n-6 and n-3 PUFAs by eicosanoid pathways. n-6
and n-3 PUFA phospholipids are first released from cell membrane by
cytosolic phospholipases A2 (cPLA,). These PUFAs are then converted
to prostaglandins (PG) and thromboxanes (TX) by cyclooxygenases
(Cox1-2) or to leukotrienes (LT) or to hydroxyeicosatetraenoic acids
(HETE) by lipoxygenases (LOX). Aspirin can inhibit COX enzyme
activity

enzyme produces several major prostanoids, including prosta-
glandin D,, prostaglandin E,, prostaglandin F,a, prostaglandin
I, and thromboxane A,. These prostanoids are functionally
involved in various biological processes [37]. Among them,
PGE, is highly expressed in different human cancers, including
breast, lung, colon, and head and neck cancers. The upregula-
tion of PGE2 is linked to poor disease prognosis. In addition,
PGE, is able to suppress immune response locally to exert its
potent pro-tumorigenic activity [23¢]. COX-2 is highly activat-
ed in inflammation; it has been the focus of intensive study and
was suggested as a cancer therapeutic target [37-39]. COX-2-
derived mediators also play an important role in the early re-
sponse of the inflammatory reaction and the resolution of in-
flammation. NSAIDs, such as aspirin, downregulate prosta-
glandin levels by inhibiting COX enzymes, to exert their anti-
inflammatory and antitumor activity [23¢].

Antineoplastic Activities of n-3 PUFAs

Total fat consumption and the n-6/n-3 PUFA ratio (the ratio of
n-6 to n-3 fatty acids) in the Western diet have increased dra-
matically since the Industrial Revolution [40]. Diets rich in n-
6 PUFA induce macrophage infiltration and activate
inflammation-related pathway, such as TNF-«, PGE,, NF-kf3,
and Wnt signaling, and lead to an increased risk of tumorigen-
esis [41]. The consumption of high-fat food has been associ-
ated with increased incidence of certain types of cancer such
as colon, breast, prostate, and pancreatic cancers. n-3 PUFA
should not be included in this high-fat category, since diets
rich in n-3 PUFA have a protective effect against colon,

prostate, and breast cancer in a number of experimental sys-
tems [4, 8, 42—47]. Most of the epidemiological studies, in-
cluding correlational and migrational studies on the associa-
tion of n-3 PUFAs and cancer, suggest that n-3 PUFAs have a
protective and n-6 PUFAs have a promoting effect on cancer
development. However, some reviews suggested differently
[48, 49]. Several confounding factors could contribute to the
inconsistent results about the effects of n-3 PUFAs on prostate
cancer. Population-based studies mostly rely on data from
self-reported dietary fat consumption or from assessments
based on national dietary habits, and these evaluations can
be poorly correlated to real fatty acid composition in patient
samples by direct measurements. In addition, the actual
amount of n-3 PUFA consumption may be too low to have a
protective effect in some cases. Similarly, the ratio of n-6 to n-
3 fatty acids may be more important than the absolute amount
of n-3 PUFA, as suggested by animal and human studies [8].
Using a phosphatase and tensin homolog (Pten)-null mouse
prostate cancer orthotopic model, we demonstrated that when
the ratio of n-6 to n-3 is equal to or less than 5, n-3 PUFAs
were effective in slowing cancer progression [44].
DiNicolantonio et al. evaluated the effects of long-term fish
oil consumption on cancer risk and proposed several conclu-
sions in support of their original hypothesis that a diet rich in
EPA/DHA reduces the risk of various adenocarcinomas by
blocking PGE, production and activity and does not increase
the risk of vascular health like COX-2-specific NSAIDs do
[50].

Dietary PUFAs can alter the structure of
glycerophospholipids in cell membranes by switching fatty
acids. The sn-1 position on the glycerol backbone of
glycerophospholipids in mammals is mainly committed to a
saturated fatty acid such as stearic acid (SA, 18:0), while the
sn-2 position is devoted to an n-6 PUFA, such as AA. Providing
animals or cultured cells with n-3 PUFAs can substitute n-6
with n-3 fatty acids at the sn-2 position of glycerophospholipids.
The n-6 to n-3 fatty acid switch can be considered as a diet-
driven sn-2 fatty acid moiety change [51-53]. Dietary PUFAs
not only change the sn-2 fatty acid moiety but can also influence
the fatty acid composition of glycerophospholipids in cell mem-
branes. We have found that approximately 25 % of input fatty
acids conjugated with albumin is incorporated into
glycerophospholipids in prostate cancer cells within 48 h. This
shows that dietary PUFAs can influence the fatty acid compo-
sition of glycerophospholipids in cell membranes [51].

A common fate of unsaturated lipids released from the
membrane is oxidation. n-6 PUFA AA is released from phos-
pholipids by phospholipase A,, an enzyme that can be acti-
vated by inflammation. The free AA is then processed through
a series of enzymatic reaction by several enzymes belonging
to the COX and LOX families as well as cytochrome P450, to
generate prostaglandins (PGs), thromboxanes, leukotrienes
(LTs), hydroxyeicosatetraenoic, and epoxyeicosatrienoic acid,
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respectively. These eicosanoids are potent mediators of in-
flammation [54-56].

Although the metabolism of n-3 PUFAs is not yet fully
understood, studies of n-3 PUFA-derived lipid mediators
have been initiated a long time ago. Bang et al. first asso-
ciated the diet rich in fish of Greenland Eskimos with their
lower mortality rate from coronary heart disease and lower
prevalence of inflammation-related diseases, such as in-
flammatory bowel disease, rheumatoid arthritis, psoriasis,
asthma, and other autoimmune diseases [57, 58]. With a
modern lipidomics approach, Serhan and colleagues dis-
covered and named the EPA-derived resolvins of E series
(RvE1l and RvE2), DHA derived resolvins of D series
(RvD1 and RvD2) and (neuro-)protectin (PD1) from re-
solving exudates of mice fed with n-3 PUFAs or treated
with aspirin [59]. The E series resolvins are endogenously
expressed lipid mediators with anti-inflammatory and pro-
resolving functions [60]. With their anti-inflammatory ca-
pacity, RvE1 and RvE2 have shown their protective char-
acter in various animal models of disease. For example,
RVE1 acted as a protector to resolve inflammation of peri-
odontal disease trigged by bacterial infection [61] and to
prevent oxygen-induced retinal angiogenesis [62]. The D
series resolvins, another family of endogenously expressed
lipid mediators, are also heavily involved in the resolution
of inflammation [60, 63].

Not only functioning as precursors to eicosanoids and other
metabolites, n-3 PUFAs can also exert their function by directly
inhibiting the biosynthesis of n-6 series eicosanoids. As men-
tioned earlier, when n-3 PUFAs are integrated into membrane
phospholipids, they take the place of AA at the sn-2 position on
the glycerophospholipid backbone and thereby reduce the
amount of AA available for cell metabolism. Since n-3 and n-
6 PUFAs are metabolized by the same enzymes, such as
desaturases, elongases, COXs, and LOXs, n-3 PUFAs compete
with n-6 PUFAs for these enzymes and inhibit biosynthesis of n-
6 series eicosanoid [4]. Several groups reported that n-3 PUFAs
counter-regulate AA-derived eicosanoids in cells, animals, and
humans by inhibiting n-6 PUFA metabolism and antagonizing
them on their oxygenation pathways to produce mediators [23e,
61, 64]. DHA can downregulate the formation of AA-derived
PGE,. n-3 PUFAs inhibited tumor cell growth and invasion in a
xenograft animal model, and the inhibition was associated with
decreased levels of both COX-2 and PGE, [65]. Thus, dietary n-
3 PUFAs may function as natural COX inhibitors.

Integration of PUFAs into glycerophospholipids is a rapid
and efficient process. We reported that about 25 % of input n-3
fatty acids in albumin-conjugated form was integrated into cell
membranes in 2 days. The majority of these newly integrated
PUFAs were in the form of phosphatidylcholine (PC) and
phosphatidylserine (PE) [51]. It was also reported that intrave-
nous injection of omega-3 PUFAs triggered a rapid increase of
EPA in erythrocytes and of EPA and DHA in plasma PC [66].
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The membrane integration of n-3 PUFAs modifies
glycerophospholipid structure. Fatty acid at the sn-2 position
of the glycerol backbone can be replaced by DHA, and this
replacement also changed the species of phospholipid on the
membrane. DHA phospholipids inhibited AKT™% but not
AKT®*”® phosphorylation, altered the localization of PIP?
and phospho-AKT>*” protein in the cell, decreased the inter-
actions of pPDPK 15%*1-AK T and AKT-BAD, and suppressed
the growth of prostate cancer. Knockdown of Bcl-2-associated
death promoter (BAD) abolished n-3 PUFA-induced cell ap-
optosis, and introduction of exogenous BAD restored cancer
cell sensitivity to n-3 fatty acid treatment in vitro. Knockout of
BAD eliminated the inhibitory effect of n-3 PUFA on the
growth of prostate tumor in an animal model. These data sug-
gest that inhibition of prostate cancer growth by n-3 PUFAs is
modulated in part via the PI3K/AKT/BAD signaling pathway
[51].

Several groups have recently reported that unconjugated
free fatty acids could activate G protein-coupled receptors
(GPCRs), a family of transmembrane proteins, including
GPR40, GPR41, GPR43, GPR84, and GPR120. They found
that GPR120 can function as a long-chain n-3 PUFA receptor
both in vitro and in vivo and hypothesized that reduced
GPR120 activity can be an important factor for tissue inflam-
mation, insulin resistance, and obesity [67]. GPR120 receptor
expression is upregulated in pro-inflammatory bone marrow-
derived CD11C" macrophages (BMDCs), monocytic macro-
phage cells, adipose tissue, and mature adipocytes. In
GPR120 receptor-positive cells, DHA strongly inhibited
lipopolysaccharide-induced phosphorylation of JNK and
IKKf, degradation of IkB protein, secretion of pro-
inflammatory cytokines, and expression of inflammation-
related genes. The inhibitory effects of DHA were completely
abolished by knocking down the GPR120 gene, indicating
that the anti-inflammatory effects of DHA were specifically
modulated through the GPR120 receptor [67].

Toll-like receptors (TLRs), a family of transmembrane gly-
coprotein receptors, play an important role in the innate im-
mune system. TLR expression is upregulated in the microen-
vironment of many types of tumors, including breast, prostate,
lung, pancreatic, and liver cancer [68]. TLRs activate the pro-
duction of many inflammation-related cytokines via a signal-
ing cascade. These cytokines then associate with components
of the adaptive immune system to destroy intruders [69].
Among the TLR family, TLR4 and TLR9 have been reported
to be associated with prostate cancer, while TLR3 can induce
human prostate cancer cell apoptosis through a PKC-alpha-
dependent mechanism [70-72]. Huang et al. suggested that
saturated fatty acids promoted TLR2 and TLR4 mediated
pro-inflammatory activity in a cell-based system, while
DHA suppressed such TLA receptor-mediated activity [73].

Syndecan-1 (SDC-1) is another cell membrane protein
which can be functionally modulated by n-3 PUFAs. SDC-1
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protein functions as an integral membrane protein and partic-
ipates in recruitment of leukocytes in non-infectious inflam-
matory diseases, inhibition of inflammation by attenuating
heparin sulfate chain-binding pro-inflammatory factors, and
remodeling of injured cardiac tissues [74]. Hu and colleagues
found that n-3 PUFA-induced prostate cancer cell apoptosis
occurred through modulation of SDC-1 expression, followed
by downregulation of PDPK1/AKT/BAD phosphorylation
[75]. Loss of cell surface expression of SDC-1, as seen in
many cancers such as colorectal and skin cancer, triggers met-
astatic transformation in cancer cells [74]. Our own studies
have found that in contrast to normal prostate epithelial cells
and androgen-independent PC3 and DU14S5 cells, SDC-1 pro-
tein expression was downregulated in prostate cancer cell
lines and androgen-dependent lymph node carcinoma of the
prostate (LNCaP) cells [75]. In a Pten-null mouse prostate
cancer model, we have also found that inhibition of prostate
cancer growth by dietary n-3 PUFAs was associated with an
increased expression of SDC-1 protein [75, 76].

Hepatocellular carcinoma (HCC) is primarily a conse-
quence of long-term chronic liver inflammatory diseases of
various origins. Weylandt et al. used the fat-1 transgenic
mouse model, which endogenously converts n-6 PUFAs to
n-3 PUFAs, to analyze the effect of n-3 PUFAs on liver cancer
formation in chemical carcinogen-induced tumors in vivo. By
comparing the size and number of surface-visible tumors in
the liver, they found that increases in n-3 PUFA levels in
tissues resulted in a decrease in tumor formation. They also
found that inflammation-related markers, such as liver COX-2
gene expression and plasma TNF-« protein, were significant-
ly lower in fat-1 transgenic mice. Their results strongly indi-
cate that high levels of n-3 PUFAs in tissues inhibit liver
carcinogenesis, probably through downregulation of the in-
flammatory response [77]. Lim and colleagues reported that
n-3 PUFAs EPA and DHA inhibited HCC development by
inhibiting the expression of both COX-2 and (3-catenin. EPA
and DHA treatment resulted in a reduction of cell viability in a
dose-dependent manner, accompanied with the cleavage of
PARP, caspase-3, and caspase-9 in human HCC cell lines,
while n-6 PUFA AA had little effect. By downregulating
COX-2 and upregulating COX-2 antagonist 15-
hydroxyprostaglandin dehydrogenase (15-PGDH), DHA sup-
pressed PGE, signaling and inhibited the growth of
inflammation-related HCC in vivo [78].

In a 22-year prospective cohort study with 500 confirmed
cases of colon and colorectal cancer, Hall et al. studied the
association between n-3 PUFAs/marine fish consumption and
the risk of colon and colorectal cancer. Marine fish consump-
tion was inversely related to the risk of colorectal cancer. The
multivariate RR for people consuming fish more than five
times per week compared to those less than once per week
was 0.63 (95 % CI, 0.42-0.95). Intake of n-3 fatty acids had
very similar results compared to marine fish consumption.

The authors further analyzed the association between fish con-
sumption and the risk of colon and rectal cancers separately.
The RRs were 0.62 (95 % CI, 0.38—1.00) for colon cancer and
0.65 (95 % CI, 0.30—1.41) for rectal cancer. These results are
consistent with their previous study comparing blood levels of
n-3 PUFAs in a case-control study within the same cohort.
The findings from this long-term prospective study support
the idea that consumption of marine fish and n-3 PUFAs
may reduce colorectal and colon cancer risk [79, 80].

Combinational Adjuvant Therapy with n-3 PUFAs

Although many improvements have been made in recent
years, traditional cancer chemotherapy alone often does not
provide satisfactory long-term clinical results. In most cases,
only partial response is achieved. Even with complete remis-
sion cases, cancer cells often continue to proliferate and even-
tually metastasize. Combining agents result in superior re-
sponse rates and increased disease-free or even overall surviv-
al. However, combinational chemotherapy has also been as-
sociated with increased treatment complexity and toxicity and,
frequently, decreased quality of life (QoL) [81]. n-3 PUFAs, as
we discussed above, have potent anticancer effects with mul-
tiple targets, including anti-inflammation, inducing cell apo-
ptosis, etc. Thus, n-3 PUFAs are good candidates for chemo-
prevention or combinational chemotherapy. Most importantly,
n-3 fatty acids can serve as a “health promoter” to increase the
QoL of cancer patients. For instance, plasma n-3 PUFA levels
in cancer patients are up to 50 % lower than in healthy indi-
viduals; low n-3 fatty acids are related to loss of adipose tissue
and skeletal muscle, an indication of poor treatment response
and reduced survival of cancer patients, thus suggesting sup-
plementation with n-3 PUFA will be beneficial. Many studies
show prevention of muscle loss or gain of body mass with n-3
PUFA supplementation during cancer chemotherapy. n-3
PUFA supplementation may not only improve the cachexia
condition for cancer patients but also deliver better response to
treatment and reduce side effects associated with cancer che-
motherapy [3].

COX-2 inhibitors may be effective chemopreventive com-
pounds against colorectal cancer (CRC), but their therapeutic
applications have been snubbed because of severe cardiovas-
cular and gastrointestinal side effects. Fini et al. found that, in
a mouse colon cancer model, a diet rich in EPA in the form of
free fatty acids significantly suppressed polyp number (by
71.5 % in the small intestine and 78.6 % in the colon,
P<0.0001) and load (by 82.5 % in the small intestine and
93.4 % in the colon, P<0.0001), with a reduction in COX-2
expression and (3-catenin nuclear translocation [82]. In spite
of significant developments in cytotoxic chemotherapy and
targeted therapy in the past decade, therapies for colon cancer
still remain ineffective [83, 84]. Thus, n-3 PUFAs used as
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chemoimmunotherapeutic agents in association with cytotox-
ic chemotherapeutic agent will be a good candidate for colon
cancer combinational chemotherapy. In a cell-based experi-
ment, Granci et al. treated colon cancer cells with a combina-
tion of n-3 PUFA and cytotoxic chemotherapeutic agent 5-
fluorouracil and found a significant increase in apoptosis-
related mitochondrial membrane depolarization [85]. Howev-
er, it is likely that this combination treatment only relied on the
capacity of n-3 PUFA to induce cancer cell apoptosis and not
on its anti-inflammatory effects, since there were no immune
cells to elicit an immune response in their cell-based system.

Polycomb group protein EZH2 is overexpressed in patients
with prostate cancer, breast cancer, and other neoplasia. His-
tological analyses have shown that EZH2 expression in-
creased in normal breast epithelium of patients with a higher
risk of developing breast cancer. It has been suggested as a
marker for aggressive breast cancer [86]. Dimri and col-
leagues found that dietary n-3 PUFAs can suppress EZH2
expression in breast cancer cells. Treating breast cancer cells
with n-3 PUFAs caused an inhibition of EZH2 expression and
areduction in cancer cell invasion, an oncogenic characteristic
that is associated with EZH2. The authors proposed that n-3
PUFAs may exert their anti-oncogenic and chemopreventive
effects by suppressing EZH2 gene expression [86]. Patients
with breast cancer often develop bone metastasis, which
causes severe pain associated with osteolytic lesions and bone
fracture. Based on a mouse bone metastasis model of MDA-
MB-231 human breast cancer cells, Mandal and colleagues
reported that a marine fish oil-rich diet inhibits the develop-
ment of osteolytic lesions in the bone, indicating suppression
of cancer cell invasion. The mechanism through which n-3
PUFAs inhibit metastasis of breast cancer cells to the bone
still needs to be clarified [87]. Our previous studies showed
that DHA supplementation induced SDC-1 expression and
trigged human breast cancer cell apoptosis in vitro. By
interacting with the SDC-1 ectodomain, DHA inhibited the
phosphorylation of MAPK/Erk (MEK)/extracellular signal-
regulated kinase (Erk) and BAD to induce cell apoptosis.
Knocking down SDC-1 expression by siRNA abolished the
inhibitory effects of DHA on the phosphorylation of these
signaling molecules and diminished cancer cell apoptosis. In
the Fat-17 transgenic mouse model, a genetic model able to
convert endogenous n-6 to n-3 PUFAs, SDC-1 levels were
higher in Fat-1" mammary tissue compared with that of
wild-type (wt) mice. Phosphorylation of MEK, Erk, and
BAD was lower in the Fat-17 vs. wt tissue. Phosphorylated
MEK, Erk, and BAD were markedly higher in mammary
gland tissue of Fat-17/SDC-1"") mice compared with those
of SDC-17"") mice. These results indicate that SDC-1, upreg-
ulated by DHA, promotes apoptosis in breast cancer cells
through downregulation of MEK/Erk/BAD signaling [88].
All these in vitro and in vivo results demonstrated that n-3
PUFAs can downregulate cancer-related cellular proteins
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and modify cellular signaling to inhibit tumor growth and
metastasis. Further studies could be done in these models to
see if n-3 PUFAs can be synergistically combined with other
chemotherapy or chemoimmunotherapy agents, as a multitar-
geted approach to treat breast cancer or contain its metastasis.

Hormonal Therapy and Potential Prevention of Bone
Loss with n-3 PUFAs

Steroid hormones have been associated with all stages of
breast and prostate cancer development. Hormone deprivation
therapy for breast and prostate cancer has helped greatly in
preventing disease recurrence or prolonging time to recur-
rence, but eventually, some tumors begin to resist the treat-
ment and relapse to hormone-independent forms. Progression
to resistance to hormone therapy in both cancers causes tens of
thousands of patient deaths each year [89, 90]. Cancer hor-
mone deprivation therapy is often followed with severe bone
loss and high risk of bone fracture. Ovarian ablation therapy in
premenopausal women with breast cancer is associated with a
high incidence of bone loss, as high as 13 % within 12 months
of treatment [91]. Likewise, androgen deprivation therapy
triggered significant loss of bone density, about 67 % within
the first 18 months of treatment [92].

Several in vitro and in vivo experiments suggest that n-3
PUFAs may be effective in slowing down androgen-
independent (Al) prostate cancer growth. Mice with deletion
of the c-Jun NH,-terminal kinase (JNK) or phosphatase and
tensin homolog (Pten) gene can develop invasive Al prostate
cancer [93]. Knock-out of Pten expression increased the expres-
sion of androgen receptor (AR) and prostate cancer cells be-
came more resistant to castration treatment [46]. The increased
expression of both androgen receptor mRNA and protein is
necessary and sufficient to transform prostate cancer from
hormone-sensitive to hormone-insensitive [94]. In a Pten-null
prostate cancer model, we found that n-3 PUFAs decrease the
development of castration-resistant tumors as compared with n-
6 PUFA. n-3 PUFAs downregulated AR protein levels in both
cytosolic and nuclear fractions of tumor cells but had little effect
on AR mRNA levels. n-3 PUFA-induced degradation of AR
protein could be blocked by proteasome inhibitor MG132. Re-
ducing the expression of AR significantly reduced prostate can-
cer cell proliferation. These results indicate that n-3 PUFAs
prevent or delay androgen-independent prostate cancer devel-
opment in part by degrading AR protein in a proteasome-
dependent manner [46]. In a mouse CWR22 androgen-
independent prostate cancer xenograft model, McEntee et al.
found that there was a highly significant positive correlation
between the ratio of apoptosis to mitosis and total n-3 PUFAs
in tumors and with the n-3/n-6 PUFA ratio, and an inverse
correlation with tissue AA and total n-6 PUFA content [95].
In a cell-based study, Friedriches et al. found that EPA and



Curr Pharmacol Rep (2015) 1:283-294

289

DHA were able to slow down the growth of LNCaP cells, an
androgen-dependent prostate cell line, while AA increased
androgen-independent prostate cancer cell growth. Their results
established a possible correlation between decreased expression
of the androgen receptor and suppression of the Akt/mTOR
signaling pathway [96]. In a Pten-null mouse model, where
AKT is constitutively active, we also found that n-3 PUFAs
can inhibit prostate cancer growth by inhibiting the PI3K/AKT
survival pathway [51]. Thus, supplementing dietary n-3 PUFAs
in combination with androgen ablation therapy maybe more
effective in preventing or inhibiting the development of
androgen-independent prostate cancer in patients compared
with androgen ablation therapy alone.

Similarly, in vitro and in vivo experiments also suggest the
potential use of n-3 PUFA to prevent the development of
estrogen-independent breast cancer and its metastasis. Regu-
lation of hormonal steroidogenesis involves the metabolism of
AA via the 5-lipoxygenase pathway. Cooke et al. reported that
AA metabolites contribute to steroidogenic acute regulation
by engaging, at least in part, the autocrine- or paracrine-
activated eicosanoid receptor, OXE-R. DHA treatment partial-
ly but significantly decreased progesterone production in
OXE-R-expressing cells. These results suggest that DHA
can antagonize AA-regulated steroidogenesis through the 5-
lipoxygenase pathway [97]. Traditionally, 173-estradiol (E2)
has been considered as an estrogen receptor-o« (ER &) activator
to promote breast cancer growth. Although inhibition of ERx
is a successful approach for patients with ERx-positive tu-
mors, some patients become resistant to anti-estrogen therapy
after an initial response. Subsequent studies revealed that E2
could exert its activity through G protein-coupled estrogen
receptor (GPER). Marjon et al. provided the first in vivo evi-
dence that GPER played a critical role in breast tumor growth
and metastasis [98]. Cao and colleagues showed that EPA and
DHA could switch the effects of estrogen from pro-survival
and proliferative to pro-apoptotic in human breast cancer cell
lines. EPA and DHA promoted such pro-apoptotic action of
estrogen by sensitizing the GPER1-cAMP-PKA pathway and
blunting the response of EGFR, Erk1/2, and AKT signaling
[99]. Based on the known functional interaction between the
estrogen and PPARYy receptors, Manni et al. tested the hypoth-
esis that the combination of estrogen receptor antagonist ta-
moxifen with n-3 PUFAs would have a better antitumor effect
than either agent alone. In a chemical carcinogen-induced
mammary carcinogenesis mouse model, they demonstrated
that the combination of tamoxifen and n-3 PUFAs could in-
hibit tumor development and proliferation to a greater extent
than the individual interventions [100]. These results provide
a positive indication of better efficacy of escalating n-3 PUFA
biologic effects and the pro-apoptotic signaling of estrogen in
breast cancer cells and also provide us with a new vision for
the potential application of n-3 PUFAs combined with hor-
mone therapy for breast cancer.

The sex hormones are particularly important for adults to
maintain healthy bones. Loss of hormone production or re-
duced levels may lead to bone loss. It has been reported that
hormonal therapy for women with breast cancer can reduce
bone density at a significant rate, at least double that of women
during early menopause [101]. For men receiving hormone
therapy during prostate cancer treatment, a significant drop
of hip bone mineral density occurs frequently, up to 9.6 %
bone loss in the first year post treatment [102]. A recent study
reported that lower risk of hip fracture was associated with
higher red blood cell AA (hazard ratio (HR) 0.44), EPA (HR
0.46), and total n-3 PUFAs (HR 0.55). More importantly, the
incidence of hip fractures nearly doubled with the highest red
blood cell n-6/n-3 ratio (HR 1.96) [103]. A positive correla-
tion between n-3 PUFA levels in erythrocytes and bone mass
was also reported in postmenopausal Korean women with
osteoporosis [104]. In Fat-1 transgenic mice with high endog-
enous n-3 PUFA levels, there was no significant bone loss
after ovariectomy, while there was substantial bone loss after
ovariectomy in wild-type mice [105]. Endogenously produced
n-3 PUFAs can attenuate ovariectomy-induced bone loss,
probably by reducing adipogenesis of bone marrow and oste-
oclastogenesis [106, 107].

Among several potential mechanism whereby n-3 PUFAs
may affect the bone, anti-inflammation may be critical. Cyto-
kines are key regulators controlling the ratio of osteoproteger-
in (OPG) and receptor activator of NFkB ligand (RANKL) in
bones. RANKL is expressed in osteoblasts, while RANKL
receptor RANK is expressed on osteoclasts. RANKL binds
to RANK on osteoclasts to activate the receptor and stimulate
osteoclast formation and to suppress osteoclast apoptosis.
OPG is a glycoprotein expressed by and secreted from osteo-
blasts. OPG can function as an antagonist blocking RANKL
and preventing it from activating RANK. The ratio of OPG/
RANKL is important for bone health, with a higher ratio in-
dicating a high bone density, or less bone resorption [108].
Sub-physiologic concentrations of testosterone increase in-
flammation and bone loss in male rats by decreasing the ratio
of OPG/RANKL. n-3 PUFA mediator resolvin D2 (RvD2)
can partially reverse this impact and ameliorate low
testosterone-derived inflammatory response [109]. In trans-
genic mice overexpressing the pro-resolving RvE1 receptor
on leukocytes, local RVEI application during uniform crani-
otomy in the parietal bone significantly enhanced the expres-
sion of OPG and subsequently enhanced the regeneration of
the bone defect [110]. n-3 PUFAs have been reported to down-
regulate the production of n-6 FA-derived eicosanoid PGE,.
High PGE, decreases OPG production and increases RANKL
expression [111]. Thus, DHA can increase the OPG/RANKL
ratio by decreasing AA-mediated PGE,. These data suggest
that the optimal balance of n-3 and n-6 PUFAs is important in
order to maintain a less inflammatory cytokine environment
favorable to bone health.
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Clinical Trials Using n-3 PUFAs for Cancer
Prevention and Treatment

Based on the epidemiological data and the demonstrated mul-
titargeted effects of n-3 PUFAs on cancer in cell culture and
animal models, many clinical intervention trials were pro-
posed and developed to validate the effectiveness of fish oil
orn-3 PUFAs in cancer prevention and treatment or to provide
nutritional support for cancer patient who suffered weight
loss, fatigue, and other inflammation-related illness [4]. Here
we will update our previous review with recent clinical trials.

Several clinical trials address the potential applications of
n-3 PUFAs in treating patients with cancer-associated weight
loss (cachexia). Studies show that an inflammatory reaction to
a local tumor can also trigger a cascade of systemic inflam-
mation that eventually lead to development of anorexia and
catabolic processes, such as muscle proteolysis and lipolysis,
the early stage of fatigue and cachexia [112]. Several clinical
trials have been reported using EPA or marine fish oil (EPA +
DHA) in purified form or in the form of oral supplements in an
effort to prevent or reduce weight and muscle loss in cancer
patients. The studies show that EPA supplementation with a
dosage of more than 2 g per day can reduce, even stabilize,
weight loss and lean tissue wasting in patients with advanced
stages of cancer [112—115].

However, recent data from a double-blind placebo-con-
trolled randomized clinical trial suggested that EPA supplemen-
tation alone is not effective in treating cancer cachexia [116].
By comparing the effects of an EPA supplement, megestrol
acetate (MA), and combination treatment, another trial found
that the EPA supplement, either alone or in combination with
MA, did not improve weight or appetite better than MA alone.
EPA was comparable to MA with respect to appetite gain, qual-
ity of life, and survival rate. Combination therapy did not have
additional benefits relative to MA alone [117]. In this trial, the
dosage of EPA supplement was 1.09 g/day, lower than the
effective dosage (>2.0 g/day) suggested by another trial [116].
Successful management of cachexia may require a multimodal
approach with nutritional supplementation and pharmacologi-
cal treatment. A recent randomized phase III clinical trial sug-
gested that combination therapy with MA, EPA supplementa-
tion, thalidomide, and L-carnitine was significantly more effec-
tive in improving lean body mass and appetite than single
agents [118]. Combination pharmacological therapy with nutri-
tional supplementation of n-3 PUFAs may be the appropriate
approach to cancer cachexia management.

Nutritional supplements of n-3 PUFAs as immuno-
modulators have also been studied in several clinical trials
for their ability to prevent inflammation and infection. Admin-
istration of n-3 PUFAs pre- or post-surgery of major abdom-
inal cancer was shown to decrease inflammatory cytokine
levels [4]. In a randomized intervention trial, patients with
elective colorectal cancer surgery were given oral nutritional
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supplements enriched with n-3 PUFAs at dosage of 2.0 g of
EPA and 1.0 g of DHA per day for 7 days before surgery. n-3
PUFAs increased the levels of anti-inflammatory modulators
leukotriene BS (LTBS) and 5-hydroxyeicosapentaenoic acid
(5-HEPE) and reduced the production of leukotriene B4
(LTB4), a pro-inflammatory modulator. The trial concluded
that orally administrated n-3 PUFAs can exert anti-
inflammatory effects in surgical patients, while having no ef-
fect on reducing the risk of postoperative complications [119].
A clinical phase II trial to improve outcome of chemotherapy
in metastatic breast cancer by DHA was based on the finding
that compared to normal cells, tumor cells can be more easily
sensitized to chemotherapy when membrane lipids contain
high level of DHA, because of differential antioxidant defense
level between normal and tumor cells. After administration of
DHA at a dosage of 1.8 g per day to anthracycline-based
chemotherapy patients with breast cancer and visceral metas-
tases, DHA level was 5.1 % of total fatty acids on average
(range 2.5-8.3 %) while baseline DHA level was 2.6 % (1.6—
5). The trial results showed that time to progression (TTP) was
8.7 months in the high (H) DHA group (plasma DHA >2.5 %)
vs. 3.5 months in the low (L) DHA group (plasma DHA
<2.5 %). The overall survival was significantly greater in the
H-DHA group with a median survival time of 34 months vs.
18 months in the L-DHA group (P=0.007). The study con-
cluded that DHA had no adverse side effects, unlike chemo-
therapy, and improved the outcome of treatment; at high plas-
ma level, DHA has a potential to specifically chemosensitize
tumors for better therapeutic effects [120].

Some studies suggested that COX inhibitors, primarily
blocking AA metabolism, are effective in the prevention of
prostate and colon cancer. However, the severe cardiovascular
side effects of COX-2 inhibitors have threatened the clinical
application of these inhibitors [4]. To examine the beneficial
effects of modulating dietary fat content and the n-6/n-3 PUFA
ratio in prostate cancer patients on the insulin-like growth
factor/insulin-like growth factor-binding protein (IGF/IGFBP)
system and the COX-2/PGE, pathways, Aronson et al. initi-
ated a phase II prospective randomized trial focused on low-
fat diet supplemented with fish oil in patients undergoing rad-
ical prostatectomy. In the low-fat fish oil vs. Western diet
group, n-6/n-3 ratios were reduced in benign and malignant
prostate tissue, cell proliferation was reduced as determined
by a reduced proliferation index (Ki67) both in vivo and
in vitro, and there was no significant difference in mean
PGE, levels, COX-2, apoptosis (TUNEL), or angiogenesis
(CD-31) immunostaining [121].

Conclusion

High n-6 to n-3 PUFA ratio in the Western diet may be asso-
ciated with high cancer incidence and mortality in the Western
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world. Bringing back a healthier, lower n-6 to n-3 PUFA ratio
is an attractive approach for cancer prevention. Many of the
anticancer effects of n-3 PUFAs observed in animal models
and cell-based systems failed to translate into human trials or
to be confirmed in some observational human studies. How-
ever, one potential factor at the origin of this discrepancy is
that those studies did not take into account the importance of
the n-6/n-3 PUFA ratio. Therefore, establishing an n-6/n-3
PUFA index for individual patients will become more impor-
tant in the future n-3 PUFA cancer intervention or chemopre-
vention trials in order to provide the optimal dose of n-3
PUFAs leading to the proper n-6/n-3 PUFA ratio.
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