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Abstract Multiple studies have demonstrated that obesity is
associated with a worse outcome for all breast cancer subtypes
and that obese breast cancer patients do not respond as well as
normal weight patients to aromatase inhibitor treatment and
chemotherapy. While a number of mechanisms have been
proposed to explain this link, recent studies have provided
evidence that elevated local cyclooxygenase-2 (COX-2) ex-
pression and the resulting increase in prostaglandin E2
(PGE2) production may play an important role. COX-2 up-
regulation in breast tumors is associated with a poor progno-
sis, a connection generally attributed to PGE2’s direct effects
on apoptosis and invasion as well as its stimulation of pre-
adipocyte aromatase expression and subsequent estrogen pro-
duction. Research in this area has provided a strong founda-
tion for the hypothesis that COX-2 signaling is involved in the
obesity—breast cancer link, and further study regarding the role
of COX-2 in this link is warranted.

Keywords Breast cancer - Obesity - Cyclooxygenase-2 -
Prostaglandin E2
Introduction

Over the past 30 years, obesity has become a significant global
health problem. In the USA, the adult obesity rate has risen
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over that time period to a current rate of 35.7 % [1], and
similar trends are evident worldwide [2]. Given the associa-
tion between excess adiposity and an increased incidence of
and mortality from numerous chronic diseases, this elevation
in obesity rates presents a serious threat to public health. In
addition to promoting the development of cardiovascular dis-
ease, diabetes mellitus, and hypertension, obesity has been
shown to enhance the risk and progression of several types
of cancer, including breast cancer.

In postmenopausal women, obesity increases breast cancer
risk by approximately 40 % [3—5]. While most research has
indicated that obesity actually protects premenopausal women
from breast cancer, a recent study suggests that the interaction
may be more complex, differing with the presence of other
risk factors [6, 7]. A large body of evidence has established
that obesity is also associated with a worse breast cancer prog-
nosis for both pre- and postmenopausal women. One prospec-
tive study found that the breast cancer mortality rate escalates
with each successive increase in BMI category [8]. Another
study showed a significantly greater risk for disease recur-
rence within 10 years of diagnosis in breast cancer patients
who were obese at the time of treatment in comparison to non-
obese patients [9]. These effects could be due to later diagno-
sis in the obese population, resulting in more advanced disease
at the time of diagnosis. However, while Majed et al. [10]
reported that the obese patients from a large cohort followed
for 20 years presented with more advanced tumors, suggesting
that diagnosis had been delayed, the authors ultimately found
that multivariate statistical analysis demonstrated an indepen-
dent effect of obesity on breast cancer prognosis. Survival
analysis revealed increased metastatic recurrence as well as
decreased disease-free interval and overall survival in the
obese patient population. Additional studies have produced
similar findings, supporting the link between obesity and a
worse prognosis [11e, 12].
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A number of mechanisms have been proposed to explain
this obesity—breast cancer connection, including abnormalities
in the circulating levels of estrogens, insulin, insulin-like
growth factor, leptin, adiponectin, vascular regulators, and
inflammatory cytokines [13]. However, exploration of these
signaling molecules has thus far not produced any improve-
ment in the treatment regimen for obese breast cancer patients.
Recent studies suggesting the cyclooxygenase 2 (COX-2) en-
zyme may be an important mediator of the obesity—breast
cancer link have sparked interest in this pathway as a potential
druggable target for the obese patient population. Here, we
review the evidence regarding the hypothesis that COX-2
plays a significant role in obesity-associated breast cancer
progression and examine whether its inhibition may improve
obese patient outcome.

COX-2 and Breast Cancer Progression

Most healthy tissues do not express detectable levels of COX-
2, the enzyme responsible for catalyzing the conversion of
arachidonic acid into a number of different prostanoids. How-
ever, it can be highly induced in several tissue types as part of
the inflammatory response and is thus a key pharmaceutical
target for the reduction of pain and inflammation [14]. Upreg-
ulation of this protein has also been found in many human
cancers, including 40 % of breast tumors [15]. Of the
prostanoids, the pro-inflammatory prostaglandin E2 (PGE2)
is found in the highest concentrations within breast tumor
tissue and is known to promote breast cancer progression
[16]. Consequently, it is not surprising that high COX-2 ex-
pression levels have been found to be correlated with a poor
breast cancer outcome. Ristiméki et al. [ 17] demonstrated that
elevated COX-2 expression in invasive breast tumors was
associated with decreased distant tumor-free survival as well
as various negative prognostic indicators, including a larger
tumor size, higher histological grade and proliferation rate,
negative hormone receptor status, and the presence of axillary
metastases. Another research group reporting a link between
high COX-2 expression in stage I-III breast tumors and a
lower survival rate found that this was independent of tumor
size and grade as well as estrogen receptor alpha (ERw),
HER?2, and nodal status [18]. COX-2 positivity was similarly
correlated with a 35 % increase in the risk of breast cancer
death in a study of stage [-IV breast tumors, but this difference
in risk was no longer statistically significant after adjustment
for tumor stage at diagnosis [19]. Park et al. [20] also found an
association between COX-2 status and a worse breast cancer
survival, but only in proliferative breast tumors. Despite these
variations in results, which may be due to differences in study
population, methodology, and patient subset risk, the prepon-
derance of the evidence supports the premise that elevated
COX-2 expression is linked to a worse breast cancer outcome.

Animal model and cell culture experiments provide further
data, suggesting that COX-2 upregulation can promote breast
cancer progression. They also demonstrate that this effect is
mediated by inhibition of apoptosis as well as stimulation of
cell migration, invasion, and possibly proliferation. For exam-
ple, overexpression of COX-2 in the mammary gland has been
shown to be sufficient to induce the development of mammary
tumors in mice, and these tumors exhibit an anti-apoptotic
protein expression profile [21]. Another study found that treat-
ment with the COX-2 inhibitor celecoxib arrested the growth
of MDA-MB-231 breast cancer cells in vitro via the induction
of apoptosis. In a xenograft mouse model using the same cells,
inhibition of tumor growth with celecoxib treatment was ac-
companied by less vascularization and greater tumor necrosis
[22]. COX-2 has also been strongly linked to greater breast
cancer cell metastatic capability. In one study, COX-2 overex-
pression enhanced the ability of MDA-435S breast cancer
cells to metastasize to the bones of nude mice, while inhibition
of COX-2 reduced bone metastasis burden [23]. The role of
COX-2 in promoting breast cancer metastasis is further sup-
ported by a study showing that a fibroblast-induced increase in
invasive capacity in a xenograft model of human DCIS was
reversed with COX-2 inhibitor treatment [24]. Cell culture
studies have also demonstrated that COX-2 overexpression
in MDA-MB-231 cells leads to an increase in cell migration
and invasion [25]. In contrast, while PGE2 induces prolifera-
tion in both colon and lung cancer cells [26, 27], its effect on
breast cancer cell proliferation is unclear. Several studies have
concluded that PGE2 does stimulate breast cancer cell prolif-
eration based on the ability of COX-2 inhibitors to suppress
proliferation in these cells [28, 29]. However, Robertson et al.
[30] reported no increase in MDA-MB-231 cell proliferation
following PGE2 treatment. Indirectly, PGE2 may promote the
proliferation of ERo-positive breast cancer cells by stimulat-
ing pre-adipocyte aromatase expression and the subsequent
production of estradiol within breast tissue adjacent to the
tumor [31]. Previous pre-clinical studies have demonstrated
that PGE2, derived from macrophages and other sources, is a
potent stimulant of pre-adipocyte aromatase expression [32,
33]. Together, these studies provide a large body of evidence
supporting COX-2’s ability to promote breast cancer progres-
sion via multiple mechanisms (Fig. 1).

Obesity and COX-2 Expression

While obesity has been shown to negatively impact breast
cancer outcome for all tumor subtypes in both pre- and post-
menopausal patients, the most prominent effects are seen in
ER«-positive postmenopausal patients, a finding confirmed
by a recent retrospective analysis of the German BRENDA
cohort [34]. Obesity has been hypothesized to negatively im-
pact outcomes in this patient population by promoting adipose
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Fig. 1 Obesity, COX-2 expression, and breast cancer progression. Obe-
sity stimulates local COX-2 expression in the breast through multiple
mechanisms, leading to increased PGE2 production that directly and in-
directly promotes breast cancer progression. With the increase in adipo-
cyte necrosis that typically accompanies obesity, there is a rise in macro-
phage infiltration into the breast adipose tissue. COX-2 expression in
these macrophages is enhanced by an obesity-associated elevation in
circulating saturated fatty acid levels, which are the result of a higher rate
of lipolysis. In addition, circulating interleukin-6 levels are typically

tissue expression of aromatase, the rate-limiting enzyme in the
production of estradiol from testosterone. Due to an abun-
dance of this aromatase-expressing tissue, obese postmeno-
pausal women typically have higher levels of circulating es-
tradiol [35-37], and researchers have posited that this may
contribute to the observed increase in breast cancer risk. How-
ever, aromatase expression in breast tumors and their associ-
ated adipose tissue is typically five-fold higher than the levels
found in disease-free breast tissue, and this is accompanied by
a ten-fold elevation in estradiol concentration in comparison
to serum levels [38]. This suggests that increased circulating
estradiol is likely not a contributor to obesity-induced breast
cancer progression, but enhanced local aromatase expression
and estradiol production may be playing a role

Recent studies by Dannenberg and colleagues confirmed
the presence of elevated aromatase expression in the breast
tissue of overweight and obese women with and without
breast cancer. They also demonstrated high congruence be-
tween obesity and local breast tissue aromatase levels and
inflammation, the latter measured by the number of crown-
like structures (CLS-B). CLS-B are inflammatory foci within
the breast adipose tissue that are composed of a necrotic adi-
pocyte surrounded by macrophages, which can express high
levels of COX-2. In fact, breast tissue inflammation and aro-
matase expression were also positively correlated with levels
COX-2 and PGE2 [39ee, 40].
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elevated with obesity, and this may induce greater breast cancer cell
COX-2 expression. PGE2 production by both cell types may also be
increased with obesity by higher serum arachidonic acid levels. This
PGE2 can directly stimulate migration and invasion and inhibit apoptosis
in breast cancer cells. It can also indirectly affect breast cancer cell pro-
liferation, migration, and apoptosis via its induction of pre-adipocyte
aromatase expression and estradiol production. COX-2 cyclooxygen-
ase-2, E estradiol, EP prostaglandin receptor, R« estrogen receptor al-
pha, PGE?2 prostaglandin E2

In addition to promoting the incidence of these CLS-B,
obesity is associated with other factors that may further in-
crease COX-2 levels in adipose-infiltrating macrophages. Sat-
urated fatty acids can stimulate COX-2 expression and PGE2
secretion by cultured macrophages [32, 41], and the increased
lipolysis that occurs with obesity results in a higher concen-
tration of circulating free fatty acids [42—44]. Consequently,
the obesity-associated elevation in breast tissue aromatase
levels may also be due to free fatty acid-induced macrophage
COX-2 expression. Obesity is also typically accompanied by
increased circulating levels of several cytokines that may fur-
ther enhance local COX-2 expression. For example, serum
concentrations of IL-6 and TNF-x are generally increased
with obesity [45], and these cytokines have been shown to
promote PGE2 production in multiple cell types via their ef-
fects on COX-2 expression [46, 47].

Our recent findings support the possibility that higher con-
centrations of circulating saturated fatty acids and/or cytokines
may promote greater macrophage COX-2 expression in the
breast tissue of obese women. We demonstrated that cultured
macrophages exposed to sera from obese postmenopausal
women expressed higher levels of COX-2 mRNA and pro-
duced more PGE2 in comparison to cells cultured in sera from
normal weight women, and the obese patient sera contained
higher concentrations of saturated fatty acids, interleukin-6,
and tumor necrosis factor-alpha [48e, 49]. Through a series
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of direct and indirect co-culture experiments, we found that
this obese patient sera-induced elevation in macrophage
COX-2 expression and PGE2 production could stimulate in-
creased adipocyte aromatase expression, resulting in greater
breast cancer cell ERx activity, proliferation, and migration
[48¢]. These results suggest that increased local COX-2 and
aromatase expression could be a significant contributor to the
worse outcome observed in obese postmenopausal patients
with ERx-positive breast cancer.

To our knowledge, no one has published data regarding the
impact of obesity on breast cancer epithelial cell COX-2 ex-
pression in humans. However, in vitro studies from our labo-
ratory indicate that exposure to sera from obese women pro-
motes greater breast cancer cell COX-2 expression and PGE2
production in comparison to normal weight patient sera [50].
In addition, Stephen Hursting’s laboratory has found that diet-
induced obesity promotes mammary tumor growth and higher
tumor COX-2 expression and PGE2 levels in a xenograft
model, utilizing two mammary tumor cell lines isolated from
the MMTV-Wnt-1 transgenic mouse (personal communica-
tion). Together, this data strongly suggests that obesity may
induce higher breast tumor COX-2 expression in vivo. Given
the association between elevated breast tumor COX-2 levels
and poor prognosis, further examination of the impact of obe-
sity on breast tumor COX-2 expression is warranted.

NSAID Use and Breast Cancer Progression

Non-steroidal anti-inflammatory drugs (NSAIDs) are taken
daily by many individuals for a variety of reasons, including
cardiovascular disease prevention and pain relief. This group
of drugs, which include aspirin, ibuprofen, and naproxene,
specifically targets COX-2 and inhibits multiple inflammatory
pathways. The link between an elevated COX-2 expression
and poor breast cancer prognosis has thus spurred great inter-
est in determining whether NSAID use is associated with a
better patient outcome. With the increasing evidence that both
macrophage and breast cancer cell COX-2 expression may be
significant mediators of obesity-associated breast cancer pro-
gression, the impact of NSAID use on the obese breast cancer
patient population should be specifically assessed. We recent-
ly demonstrated that daily NSAID use in patients with inva-
sive ER x-positive breast cancer receiving adjuvant endocrine
therapy was correlated with a 52 % lower recurrence rate.
NSAID users in this patient population also remained
disease-free for more than 2 years longer than non-users
[48<]. Some much larger prospective studies examining
NSAID use following breast cancer diagnosis have also
shown positive associations with various measures of disease
outcome, but to our knowledge, only one has reported a var-
iance of similar magnitude [51]. We hypothesized that our
results may be attributable to the overwhelming incidence of

overweight and obesity in our patient population, which had
an average body mass index (BMI) of 31 kg/m?. This hypoth-
esis is supported by our cell culture experiments, demonstrat-
ing that sera from obese postmenopausal women stimulate
higher macrophage and breast cancer cell COX-2 expression
and PGE2 production in comparison to cells cultured in sera
from normal weight women, as discussed above.

Cumulatively, other studies that have examined the impact
of NSAID use on breast cancer patient outcome appear to
indicate that it may be an effective addition to adjuvant breast
cancer treatment, regardless of BMI, ER«, or menopausal
status (Table 1). However, the variability in design and patient
population among these studies makes any comparison to our
results difficult. In an examination of stage I-III breast cancer
patients from the Nurses’ Health Study, aspirin use 6—7 days/
week was associated with a significant reduction in the risk of
distant recurrence (RR, 0.57; 95 % CI, 0.39-0.82), and strat-
ification of the subjects by BMI, menopausal status, and ERx
status did not alter this result [51]. Blair et al. [52] reported that
any amount of regular NSAID use was correlated with a lower
risk of breast cancer death (HR, 0.64; 95 % CI, 0.39-1.05) in
postmenopausal patients. Adjustment for BMI category did
not change this association, but its statistical significance
was reduced by adjustment for ERx status. Another study
specifically examining the post-diagnostic use of COX-2 in-
hibitors found that incidence of bone metastases was signifi-
cantly reduced among users (OR, 0.11; 95 % CI, 0.02—0.88)
[53]. In contrast with these studies, ibuprofen (RR, 0.56; 95 %
CI, 0.32-0.98), but not aspirin (RR, 1.09; 95 % CI, 0.74—
1.61), use >3 days/week reduced the recurrence rate in a pop-
ulation of pre- and postmenopausal breast cancer patients
[54], and these results did not change after controlling for
BMI, menopausal status, and ER .

Despite the lack of change in these studies’ results with
adjustment for or stratification by BMI category, the evidence
from our research suggests that overweight and obese breast
cancer patients may derive the greatest benefit from NSAID
use. The patient population in our study was also largely post-
menopausal and included only hormone-responsive patients.
Because obesity is associated with higher COX-2 and PGE2
levels and aromatase expression in female breast tissue [39e,
40], it seems likely that the efficacy of NSAIDs in a postmen-
opausal, ER oi-positive patient population would increase with
greater adiposity. In this population, the addition of daily
NSAID use to aromatase inhibitor treatment may improve
response to the endocrine therapy by reducing production of
aromatase-promoting PGE2. In fact, NSAID use in postmen-
opausal women has been shown to be correlated with signif-
icantly lower serum estradiol levels after adjusting for age and
BMI [55]. Perhaps, the lack of variation in effect among BMI
categories in previous studies of NSAID is due to their failure
to stratify the data by BMI, ER«, and menopausal status si-
multaneously. This question could potentially be addressed by
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Diagnosis period Follow-up period

Number of subjects

Outcome measure(s) used

Type/frequency of NSAID

Prospective observational studies of NSAID use and breast cancer outcome

Subject population

Table 1
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1992-2001

1986-1992

1

59

Breast cancer and all-cause mortality

All NSAIDs; any frequency

Towa Women'’s Health Study: postmenopausal

women with invasive breast cancer [52]
Life After Cancer Epidemiology (LACE) Study:

2000-2006

1997-2000

Breast cancer recurrence 2292

All NSAIDs; >3 days/week

pre- and postmenopausal women with invasive

breast cancer [54]
Nurse’s Health Study: pre- and postmenopausal

1980-2006

1976-2002

4164

Breast cancer mortality and

Aspirin only; 1, 2-5, and

distant recurrence

67 days/week

women with stage I-III breast cancer [51]

assessing the clinical benefit of a COX-2 inhibitor/aromatase
inhibitor combination treatment in obese and normal weight
postmenopausal, hormone-responsive breast cancer patients.

Clinical Trials of COX-2 Inhibitors

Several studies have established that obese postmenopausal
women do not respond as well as their normal weight coun-
terparts to aromatase inhibitor treatment. An analysis of data
from the ATAC trial demonstrated that obese breast cancer
patients receiving the aromatase inhibitor anastrozole had a
significantly greater risk of recurrence. In addition, while
recurrence-free survival with anastrozole treatment was higher
in comparison to tamoxifen, this benefit was lost in the obese
cohort [56¢]. Another study found that although three extra
years of anastrozole treatment decreased normal weight pa-
tients’ risk of disease recurrence and death by half, overweight
and obese patients did not benefit from this treatment [57].
Furthermore, plasma estradiol and estrone sulfate levels in
obese patients remain significantly elevated in comparison to
non-obese patients following letrozole treatment [58], sug-
gesting that this reduced response rate is related to suboptimal
inhibition of obesity-associated aromatase activity. It is possi-
ble that an adjustment in the aromatase inhibitor dosage,
which is prescribed at a fixed amount, may improve obese
patient prognosis. However, that inference is confounded by
two phase III clinical trials of anastrozole that found no overall
benefit from a 10-mg dose (versus 1 mg), indicating that an
increased dosage may not be effective in overcoming obesity-
induced resistance to aromatase inhibitors [59, 60].

The research from our laboratory suggests that this obesity-
associated aromatase inhibitor resistance may be at least par-
tially due to an elevation in local aromatase expression
resulting from increased macrophage and breast cancer cell
COX-2 expression and PGE2 production. Consequently, we
have hypothesized that the addition of a COX-2 inhibiting
drug, like celecoxib, to aromatase inhibitor treatment could
improve response in the obese ERx-positive patient popula-
tion. The clinical benefit of a celecoxib/aromatase inhibitor
combination treatment has not been specifically examined in
obese women, but trials of this drug regimen in the postmen-
opausal, hormone-responsive breast cancer patient population
have generally showed a modest benefit with at least 3 months
of combination treatment (Table 2). These studies have dem-
onstrated trends towards more clinical complete response, lon-
ger duration of clinical benefit, and greater progression-free
survival with the addition of celecoxib [61-63]. A small study
assessing the impact of a 14-day pre-surgical regimen of
celecoxib in postmenopausal breast cancer patients also found
a non-significantly greater decrease in Ki67 staining with
celecoxib treatment that the authors thought warranted further
investigation [64]. None of these trials analyzed the treatment
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benefit by BMI category, so it is impossible to determine from
this data whether overweight/obese women in this patient
population are more likely to benefit from COX-2 inhibition.
To our knowledge, no one has examined the efficacy of a
COX-2 inhibitor/aromatase inhibitor combination in animal
models of obesity and mammary carcinogenesis either.

Given that elevated COX-2 expression and PGE2 produc-
tion have direct breast cancer promoting effects independent
of their impact on aromatase expression, a few researchers
have also conducted clinical trials to examine the benefit of
COX-2 inhibitor treatment in combination with chemothera-
py. Several studies have linked an elevated BMI with a poor
response to chemotherapy, indicating a need for the develop-
ment of more effective chemotherapeutic regimens for this
patient population. For example, Del Fabbro et al. [65] found
that overweight (BMI>25 kg/m?) patients receiving neoadju-
vant chemotherapy had a lower pathological complete re-
sponse (pCR) and shorter progression-free survival in com-
parison to normal weight patients. Others have demonstrated a
similar correlation between overweight status and a decreased
chance of achieving pCR with neoadjuvant chemotherapy
[66, 67]. These results are supported by reports that obesity
is associated with a worse breast cancer outcome, including
lower disease-free survival and overall survival for all breast
cancer subtypes treated with taxane agents [68, 69]. These
findings, in conjunction with the data indicating an association
between obesity and higher breast tissue COX-2 expression,
suggest that obese patients could be particularly responsive to
a COX-2 inhibitor/chemotherapy combination.

Collectively, clinical trials assessing the effects of this type
of drug combination on breast cancer have found that various
COX-2 inhibitor/chemotherapy regimens are effective and
safe, but may not provide further benefit over chemotherapy
alone (Table 2). One phase II study examining the addition of
concurrent celecoxib to a neoadjuvant regimen of 5-fluoroura-
cil, epirubicin, and cyclophosphamide (FEC) followed by do-
cetaxel demonstrated that the COX-2 inhibitor was well-
tolerated and 80 % of the invasive breast cancer patients re-
ceiving this combination were disease-free at a 50-month fol-
low-up [70]. Fabi et al. [71] also found that metastatic breast
cancer patients pre-treated with anthracyclines and/or taxanes
tolerated a combination treatment of capecitabine and
celecoxib with little toxicity and a 47.5 % clinical benefit rate
defined as CR plus stable disease of >6 months. Patients with
tumor overexpression of COX-2 had a significantly longer
time to progression and overall survival. Unfortunately, nei-
ther of these studies included an arm without celecoxib, so the
authors could not conclude whether the inclusion of celecoxib
in the chemotherapeutic regimen improved patient outcome.
To our knowledge, only one study has been conducted of a
celecoxib/chemotherapy combination that included an arm
without celecoxib. This study assessed the benefit of
epirubicin/cyclophosphamide followed by docetaxel with
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randomization to concurrent celecoxib (HER2— patients) or
trastuzumab (HER2+ patients) in stage II-III patients. There
was no significant difference in pCR between the HER2—
patients that did (13 %) and did not (11.5 %) receive
celecoxib, and the authors concluded that the addition of
celecoxib to this drug regimen was unlikely to improve prog-
nosis in this patient population [72].

As with the clinical trials of celecoxib/aromatase inhibitor
combination treatments, there is no indication that the authors
of these studies stratified their data by BMI category to ana-
lyze whether obese patients derived greater clinical benefit
from the addition of celecoxib. However, Stephen Hursting’s
laboratory has demonstrated that the tumor-promoting effects
of diet-induced obesity were significantly reduced by omega 3
ethyl ester (Lovaza™, GlaxoSmithKline, UK) treatment in a
xenograft model utilizing two mammary tumor cell lines de-
rived from the MMTV-Wnt-1 transgenic mouse. Lovaza sup-
plementation in the obese mice was also associated with lower
mammary tumor COX-2 expression and PGE2 levels (person-
al communication). Given that the molecular profiles of
the two cell lines used (one basal-like and one claudin
low) indicate that these tumors were estrogen-indepen-
dent, these results suggest that the anti-tumor effects of
Lovaza may be mediated by its suppression of COX-2,
but not any subsequent reduction in aromatase expres-
sion. Consequently, we propose that obese breast cancer
patients may benefit from the addition of treatments
targeting the COX-2 pathway, regardless of their ERx
status.

Conclusion

Obesity is known to be associated with a worse breast cancer
prognosis as well as reduced response to aromatase inhibitors
and chemotherapy. While the mechanism(s) mediating these
effects are not completely understood, evidence from our lab-
oratory and others suggests that increased COX-2 expression
in tumor epithelial cells and local adipose-infiltrating macro-
phages could be playing an important role in the link between
obesity and breast cancer progression. However, no clinical
trial of COX-2 inhibitor treatment for breast cancer has spe-
cifically assessed its efficacy in obese patients. Additional
research to examine the benefit of combining a COX-2
targeting drug with endocrine treatment and/or chemotherapy
in this patient population is thus warranted.
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