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Abstract There is increasing interest in metformin’s effects
on the development, treatment, and/or progression of breast
cancer. This emerges from observational studies that diabetic
women treated with metformin in comparison to other antidi-
abetic compounds had lower breast cancer incidence and/or
mortality rates. The mechanism of action is considered to be
activation of hepatic AMPK resulting in reduced gluconeo-
genesis. Calorie restriction, which consistently reduces mam-
mary tumorigenesis in rodents, is also thought to act through
this pathway leading to the hypothesis that metformin’s anti-
cancer effects are mediated in a similar fashion. Here, we
review the literature evaluating metformin’s anticancer effects
in relation to breast/mammary tumorigenesis.We include clin-
ical observations, as well as studies utilizing rodent models
and mammary cell lines. In addition to the anticancer effect of
metformin mediated through the AMPK pathway, additional
mechanisms of action that directly target tissues have been
identified including effects on stem cells, apoptosis, STAT3,
and HER2.
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Introduction

Identifying compounds with chemopreventive and adjuvant
actions to protect against breast cancer development and re-
currence is an active area of research. However, only a few
compounds such as tamoxifen, a selective estrogen receptor
modulator, and the aromatase inhibitors have been taken into
the clinical arena. One limitation of inhibitors that target the
functioning of the estrogen receptor has been lack of enduring
efficacy in the adjuvant setting, illustrated by recent demon-
stration of the ATLAS and aTTom trials that 10 years of ta-
moxifen is better than 5 years in terms of distant disease-free
survival and overall survival, and the benefit of 10 compared
to 5 years of tamoxifen is realized in years 10 to 15. These trial
results suggest that tamoxifen alone may be insufficient adju-
vant therapy, particularly in pre-menopausal patients. Not only
do we need to start thinking about a longer time horizon for
breast cancer chemoprevention, we also need to be thinking
about more effective prevention and adjuvant strategies. This
unmet need has led to interest in repurposing the diabetes drug
metformin for potential roles in breast cancer treatment, adju-
vant therapy and long-term prevention. This interest has
stemmed from epidemiological studies that support an anti-
cancer role for metformin in breast cancer and other solid
tumor malignancies [1–3] and the observation that metformin
exhibits low toxicity and can be given to non-diabetic patients
without inducing clinical hypoglycemia [4]. Metformin has
been in the forefront of approved drugs that could be
repurposed for breast cancer therapeutics as a result of reports
that metformin use in type 2 diabetic patients is associated
with reduced overall cancer incidence and/or death rates in
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comparison to other treatments [1, 2]. Several recent original
research as well as meta-analyses/review articles present ad-
ditional support and discussion of the overall anticancer ef-
fects of metformin in diabetic subjects [5–8] although not all
data are consistent with an anticancer effect [9]. Here, we will
focus on reviewing the potential for metformin to specifically
be used to prevent breast cancer in humans and in experimen-
tal rodent studies.

Human Studies

Epidemiological evidence of an association between metfor-
min use and reduced cancer mortality including breast cancer
mortality was first published almost 10 years ago [1, 2]. It was
also reported that diabetic women who were new metformin
users had a significant decrease in cancer diagnosis when
followed for up to 10 years, including a 40–50 % reduction
in breast cancer diagnosis [3]. An additional study reported
that diabetic women treated with metformin who were diag-
nosed with breast cancer had a better pathologic complete
response rate (pCR) to neoadjuvant therapy than did those
using other diabetic treatments [10].

Several other epidemiological studies have supported a
protective effect of metformin in diabetic women with breast
cancer. For example, Taiwanese women who were followed
after being diagnosed with type 2 diabetes had a reduced in-
cidence of breast cancer incidence if they were metformin
users and there appeared to be a relationship between dose
of metformin and effect [11]. In another study from Turkey,
newly diagnosed breast cancer patients (average age of 57)
taking metformin and matched to women not taking metfor-
min [12] had a significantly lower incidence of stage 3 tumors
and triple negative tumors and higher incidence of ER+/PR+
tumors. Of note, these observational studies have all been
done in diabetic women, leaving open the question of whether
metformin only has an effect in the presence of diabetes. In
contrast, other studies have reported that the choice of glucose
control agent has no influence on cancer development [13,
14].

Several short-term intervention studies of the effects of
metformin on breast tumor cell proliferation have recently
been published. Niraula et al. [15] treated newly diagnosed
non-diabetic breast cancer patients with 500 mg of metformin
three times daily between diagnostic biopsies and breast sur-
gery (median ∼18 days). Tumor Ki67 labeling index, the pri-
mary endpoint, was significantly decreased from 36.5 to
33.5 % following metformin treatment. In contrast, Bonanni
et al. [16] found that treatment with 850 mg metformin twice
daily for 4 weeks between biopsy and surgery in newly diag-
nosed nondiabetic women did not significantly affect tumor
Ki67 in comparison to a placebo group. There was a non-
significant mean proportional decrease in Ki-67 of 10.5 % in

women with a HOMA (homeostasis assessment model) of
>2.8 and a non-significant increase in women with a HOMA
of <2.8, suggesting that particular attention must be paid to the
study population when investigating metformin effects in a
window of opportunity study. A third study by Hadad et al.
[17] which had a control arm randomized in a blinded fashion
to metformin 1 g twice daily vs. no drug showed significant
reductions of the Ki67 LI in two cohorts of patients, a pilot
cohort (P=0.041) and the metformin arm (0.027), whereas
there was no reduction in the Ki67 LI in the control group.
Perhaps some of the other ongoing intervention trials will
clarify these discrepancies (http://clinicaltrials.gov/ct2/show/
NCT00897884?term=breast+cancer+AND+metformin).

Implementation of interventions to prevent breast cancer is
feasible due to the fact that women at risk can be identified in a
number of different ways. This includes calculating the risk of
developing breast cancer using the GailModel (and the factors
included in it such as age, family history, previous breast bi-
opsies) [18]. Additional factors such as higher breast density
[19] and overweight/obesity [20] have been reported to in-
crease breast cancer risk. Given the number of overweight/
obese women in the USA and worldwide, this potentially
provides a large number of at risk women who could be iden-
tified and targeted in future prevention studies particularly if
other risk factors are also identified.

In Vitro Studies

There are numerous publications presenting data on
metformin’s effects on the growth of different human breast
cancer cell lines which focused on cell proliferation as well as
AMPK-associated proteins and apoptosis. A summary of these
findings is presented in Table 1.

With respect to proliferation, the ER+ MCF-7 cell line has
been consistently reported to respond to the addition of met-
formin with reduced proliferation as well as increased apopto-
sis [21, 23, 25–27, 29]. Other breast cancer cell lines with
varying hormonal receptor and HER2 status, i.e., MCF-7-
HER2, SKBR3, BT20, T47D, MDA-MB-453, BT549, BT-
474, and MB-468 were also reported to exhibit reduced pro-
liferation in response to metformin treatment [23–27, 29, 32,
33••, 34]. In contrast, studies using the triple-negative MDA-
MB-231 cells have not reported consistent findings, with one
study reporting no effect of metformin on cell number by
direct cell counting [23], while in three other studies, reduced
proliferation was reportedwhen dye assessmentmethods were
used [24, 27, 29]. One of these publications reported effects on
triple negative breast cancer cell lines (MDA-MB-468, MDA-
MB-231, BT20, and BT549) with no effect reported on the
other cell lines tested (MCF-7, BT474, SKBR3, and MDA-
MB-453) [24].
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A number of these above citations also presented data on
effects of metformin treatment on pAMPK activity as well as
other proteins in this pathway. In most cases, pAMPK activity
was increased while mTOR-associated factors were decreased
[21–23, 25, 26, 33••, 34]. Effects of metformin on apoptosis in
breast cancer cell lines have also been reported whereby in
most cases, enhanced cell death has been found [23, 24, 32].

A recently published study indicated that media glucose
concentrations enhanced metformin’s effects on cell death in
HeLa, MCF-7, and MDA-MB-231 cell lines [35]. This sug-
gests that cell culture conditions may be an important factor to
consider when evaluating metformin’s in vitro actions. In
summary, although there appears to be discrepancies with re-
spect to the responses of specific human breast cancer cell
lines, in general, metformin appears to have an impact on
human breast cancer cell proliferation. However, in most
cases, high concentrations of metformin were used so it is
difficult to assess the application of these findings to human
therapeutics. Additional aspects of in vitro studies are also
presented in the BMechanisms of Action^ section.

Rodent Studies

To obtain a better idea of the potential effects metformin might
have on either tumor development and/or progression numer-
ous preclinical animal model studies have been conducted.
This has included xenograft experiments primarily using hu-
man breast cancer cell lines examining the effects of metfor-
min treatment on tumor progression, as well as studies deter-
mining the effects on mammary tumor development in
carcinogen-induced and transgenicmodels. Summaries of the-
se studies are presented in Tables 2 and 3, respectively. In
general, metformin appears to have demonstrated effects in
ER- xenograft experiments and HER2 positive transgenic
mammary carcinoma models as will now be described.

Several xenograft studies have assessed the effect of met-
formin treatment on growth of the triple negative MDA-MB-
231 human breast cancer cell line in immunocompromised
mice. For example, Cheong et al. [39] implanted MDA-MB-
231 cells into the mammary gland fat pad of 4-week-old fe-
male CD-1 nu/nu mice and initiated metformin treatment
14 days later (tumor size 50 mm3) at a dose of 250 mg/kg
body weight by daily intraperitoneal injection with additional
study groups included: control, 2-deoxyglucose (500 mg/kg)
or metformin plus 2-deoxyglucose. Following 36 days of
treatment, there was no effect of either metformin or 2-
deoxyglucose alone, but the combined treatment reduced tu-
mor growth by half. In another study, 5-week-old nude mice
were injected subcutaneously with MDA-MB-231 cells, and
metformin treatment (2000 μg/ml in drinking water equal to
200 mg/kg body weight) was initiated 8 days later. Metformin
treatment significantly reduced tumor growth and Ki67T
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staining [24]. In the second part of this experiment, metformin
treatment was initiated 7 days prior to cell inoculation
resulting in an extension of the time until tumor palpability
from 10 days in control mice to 20 days in metformin treated
mice. Tumor incidence was also significantly decreased from
100 % in control mice to 50 % in metformin-treated mice.

Several studies have been published using additional breast
cancer cell lines. Iliopoulos et al. [38•] injected MDA-MB-
231, ER-Src (estrogen receptor regulated Src), or BT-474
breast cancer cell lines into the right flank of female nu/nu
mice and treated the mice with metformin (200 ug/mL in
water) beginning 10 days later. Additional groups received
doxorubicin (4 mg/kg), combined doxorubicin and metformin
or vehicle. Metformin treatment alone reduced tumor growth
and an even greater effect was found with combined doxoru-
bicin and metformin treatment for all cell lines. Notably, the
ER-Src model is not a direct model of estrogen receptor driven
breast cancer, but rather an estradiol inducible MCF10A
estrogen-receptor v-Src model. In another study from this re-
search group, metformin treatment alone did not affect tumor
growth, but when combined with doxorubicin, the suppres-
sion of tumor growth was far greater than with doxorubicin
alone [37]. Metformin treatment was administered every
3 days injected near the tumor after the mass reached
∼50 mm3 (Personal communication K.Struhl). In another as-
pect of this study, cancer stem cells obtained from this cell line
were pretreated with metformin 20 days prior to inoculation
into mice, and this prevented tumor formation. How to trans-
late these findings to humans is unclear, but these data impli-
cate metformin-targeted pathways in tumor engraftment and/
or mammary carcinoma cell viability, possibly through inhi-
bition of stem cell-specific mechanisms.

A higher dose of metformin, 750 mg/kg/day (5000 ug/ml
in drinking water) for 5 weeks, did not impart a protective
effect against tumor growth from implanted MDA-MB-435
cells [36].While there is some concern related to the relevance
of this cell line for breast cancer [46, 47], recent data suggest
that the MDA-MB-435 line may indeed share some aspects of
gene regulation with triple negative breast cancer.

A very recent study presented a direct comparison of met-
formin (2 mg/mL in drinking water) to phenformin (1.65 mg/
mL in drinking water) treatments on local and metastatic
growth of a mouse cell line which overexpresses HER2
(MMTV-Erbb2) [41••]. Cells were implanted in both immu-
nodeficient and immunocompetent mice and both treatments
effectively and significantly reduced tumor growth and lung
metastases with a greater response observed with phenformin
treatment. Similar results were obtained performing the study
with the MDA-MB-436 triple negative human breast cancer
cell line.

The impact of metformin treatment on prevention of mam-
mary tumorigenesis in the clinically relevant (ER-/HER2/neu)
transgenic mouse MMTV-neu line 202 has been investigated.

In the first published study, metformin treatment (100 mg/kg/
day) was initiated at 8 weeks of age and the mice followed
until 52 weeks of age. At study termination, fewer metformin-
treated mice had high tumor multiplicity, and these mice had
extended tumor latency and increased life expectancy com-
pared to the non-treated mice [42•]. A more recent study from
this research group used the same experimental protocol ex-
cept that the mice were followed for their lifespan [43]. The
results obtained confirmed the delay in mammary tumor de-
velopment in MMTV-neu mice although tumor number and
metastases rates were not affected. This group has also report-
ed that at a similar dose of metformin in the SHRmouse strain
increased life span, but metformin did not influence the devel-
opment of spontaneous malignant tumors [48].

A very recently published paper used MMTV-neu mice
treated with a dose of 250 mg/kg daily of metformin admin-
istered by IP injections from 8–18 weeks of age. Since this
was a short-term study, mammary tumor incidence was not the
endpoint, rather mammary morphogenesis was evaluated
[33••]. Mammary gland whole mounts from the metformin-
treated mice exhibited decreased lateral branching and alveo-
lar structure in comparison to glands from the control mice.
Additional findings indicated that sphere formation was re-
duced from MECs obtained from mammary tissue of
metformin-treated mice and ErbB2 and EGFR expression
was down regulated while AMPK activation was enhanced.

Effects of metformin treatment in female rats administered
the carcinogen N-methyl-N-nitrosourea (MNU) to induce
mammary tumors have also been reported. When female
Sprague Dawley rats were treated with either 5 or 50 mg/kg/
day of metformin in their drinking water, neither dose affected
tumor incidence although the higher dose extended tumor
latency slightly [44]. In another publication, results were pre-
sented from three different experiments on the effects of met-
formin in a rapidly emerging mammary tumor model in which
MNU is administer at 20 rather than ∼50 days of age [29]. In
experiment 1, metformin was included in the diet at either 0.5
or 1 % beginning at 28 days of age for 5 days, and then, the
doses were lowered to 0.05 and 0.25 %, respectively, for an
additional 28 days for a total of 33 days of treatment. There
was no effect of either metformin dose on mammary tumor
incidence, although at the higher dose, latency was signifi-
cantly extended and mammary tumor multiplicity and weight
were reduced. It was also reported that tumors from the
metformin-treated rats exhibited activation of the AMPK
pathway. Further, at the higher dose of metformin, serum in-
sulin and leptin concentrations were reduced, but there were
no effects observed on IGF-I, adiponectin or glucose levels. In
experiment 2, metformin was included in the diet at 0.3 %
from 4 until 13 weeks of age, but there was no effect of met-
formin treatment on mammary tumorigenesis. In experiment
3, 0.25 % metformin was included in the diet and combined
with dietary energy restriction of 40 %. There was no
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additional benefit to the protective effect of calorie restriction
with the higher dose of metformin. In another chemical carci-
nogenesis study, Wistar rats were given MNU at ∼52 days of
age and from 10 weeks of age fed a high fat diet (45 % fat by
calories) to increase body weight gain. At 18 weeks of age,
some of the ratswere ovariectomized, andmetformin (2mg/ml
in drinking water) treatment was initiated. After 3 weeks of
metformin treatment, mammary tumor burden was reduced
fivefold. Notably, progesterone receptor expression of the
mammary tumors was reduced with no effects on either estro-
gen receptor alpha or HER2 in the metformin-treated obese
rats compared to tumors obtained from non-treated obese rats
[45].

In an attempt to more accurately reflect a human inter-
vention trial, we are conducting a long-term metformin
treatment study using MMTV-TGF-α mice that develop
mammary tumors in the second year of life. The mice are
fed a moderately high fat diet from 10 weeks of age, and
metformin treatment is initiated at 30 weeks of age and
maintained to 90 weeks of age. In addition to an ad libitum
control group, we have included a group with a 25 %
reduction in caloric intake to make a direct comparison to
metformin treatment. Interestingly, although metformin is
frequently referred to as a calorie restriction mimetic, few
attempts have been made to make a direct comparison of
these two interventions. We anticipate results of this study
to be available in 2015.

Results of a study in another transgenic mouse model of
triple negative breast cancer, MMTV-PyMT, were recently
reported with metformin treatment compared to phenformin
[41••]. In comparison to findings above evaluating these two
compounds on tumor progression where phenformin appeared
to be more effective than metformin, in this transgenic mouse
model, the compounds had a similar effect on reducing mam-
mary tumor weight, tumors per mouse, and metastases to
lungs. The anticancer effects of phenformin had been investi-
gated in several earlier studies. In one study, phenformin was
administered at a dose of 5 mg/day for 2.5 months or at 10mg/
day for 5 months in female rats treated with DMBA to induce
mammary tumors [49]. Both doses significantly reduced
mammary tumor incidence (100 vs 43 % and 88.7 vs 55 %
control vs phenformin). In a second rodent model, phenformin
was given to 3.5 month old C3H/Sn mice (80 mg/kg/day,
5 days/week=∼2.4 mg/mouse) [50]. This treatment regimen
reduced spontaneous mammary tumor incidence 3.8-fold (20
versus 80 %) and extended lifespan by over 20 %. Due to
concerns of causing serious lactic acidosis, phenformin is no
longer used clinically for diabetes treatment and thus has not
been investigated clinically as an anticancer drug.

Although limited in number, these published reports indi-
cate potential cancer preventive effects for metformin treat-
ment particularly to extend tumor latency. However, metfor-
min has been administered in a number of different ways, i.e.,

in water or food or by ip injection and in one case locally so it
is difficult to make direct comparisons of outcomes. Further,
most studies have been undertaken in rodents fed low fat diets
while humans usually consume diets with higher fat levels.
How this might impact drug availability and effects on animal
physiology remain to be determined. Clearly, studies using
mice fed a high fat diet would be more a reflection of the
human situation. Overall though metformin’s effect on cancer
latency and/or progression appears to be more robust than its
effect on prevention.

Mechanisms of Action

A downstream target for metformin was unknown until the
discovery of the AMP protein kinase. AMPK is an AMP-
activated protein kinase that is an essential factor in maintain-
ing energy homeostasis following multiple types of cellular
stress including heat shock, metabolic poisoning, glucose star-
vation, oxygen deprivation, and disruption of blood supply
[51]. Through acute phosphorylation of multiple downstream
targets, as well as long-term effects on gene and protein ex-
pression, activated AMPK switches off ATP consumption
pathways and switches on ATP production pathways [52].
Based on metformin’s effects on diabetes, its action has been
attributed to activation of AMPK in the liver with eventual
lowering of gluconeogenesis and then the reduction of serum
glucose and subsequently the need for less insulin. Since in-
sulin and IGF-I are potent growth-promoting proteins, reduc-
ing their levels could explain a whole body approach to
metformin’s anticancer effect. Recently, AMPK has been dis-
covered to be a negative regulator of the dysregulated aerobic
glycolysis in cancer cells (the Warburg effect) and a direct
suppressor of tumor growth, based on studies in which genetic
ablation of the AMPK alpha 1 subunit promotedMyc-induced
tumor progression [53•]

In addition, direct effects of metformin on cell proliferation
and apoptosis have been documented in multiple human breast
cancer cell lines as was described above in the in vitro section.
In many cases, metformin concentrations far exceeded clinical
in vivo levels, although these in vitro findings have indeed
indicated that metformin can directly affect cells if it can access
organs and tissues and tissue levels can exceed plasma levels
several fold [54]. A possible explanation for some of the vary-
ing results is that there may be a relationship between metfor-
min sensitivity and glucose exposure in vivo that is difficult to
reproduce with cultured cells. Another possibility is that tissue
concentrations of metformin may be much higher than previ-
ously thought [54]. While many different pathways have been
shown to be impacted by metformin in breast cancer cell lines,
the general consensus is that metformin can suppress mTOR-
mediated protein translation and cell growth. This inhibition of
mTOR may be mediated through AMPK activation [55].
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However, inhibition of mTOR is also known to cause feedback
activation of Akt, whose over activation can lead to the devel-
opment of cancer [56]. Thus, the mechanism underlying
metformin’s effect on cancer cells is still elusive.

AMPK can be activated through reversible phosphoryla-
tion at the Thr172 site within its α-subunit by upstream ki-
nases [52]. LKB1 is an upstream kinase of AMPK that phos-
phorylates and activates AMPK in response to a decrease in
energy storage. However, previous studies have shown that
AMPK can also be activated without direct activation of
LKB1, indicating the existence of other upstream AMPK ki-
nases [57, 58]. Among other potential AMPK kinase candi-
dates, ATM can phosphorylate LKB1, the upstream kinase of
AMPK, in response to DNA damage [59, 60]. In addition,
ATM can also activate AMPK in an LKB1-independent man-
ner [61•]. Recently, a genome-wide association study
(GWAS) identified ATM as a gene whose variation affects
glucose response of diabetic patients to metformin treatment
[62••]. In this study, metformin-mediated AMPK activation in
hepatic H4IIE cells was strongly inhibited by the ATM spe-
cific inhibitor KU-55933. These findings provide novel in-
sights as to how metformin acts as a potential pharmaceutical
agent for cancer prevention and treatment.

ATM is a protein kinase that is deficient in ataxia-
telangiectasia (A-T), an autosomal recessive childhood disorder
characterized by cerebellar ataxia and oculocutaneous telangi-
ectasias [63•]. The gene mutated in this disease, ATM (A-T,
mutated), encodes a 370-kDa Ser/Thr protein kinase. While
ATM has been reported to function in controlling cell cycle
progression by phosphorylating p53 after DNA damage, it is
also known that ATM plays an important role in regulating
cellular glucose homeostasis [63•]. It has recently become clear
that p53, a downstream target of ATM, also regulates multiple
steps of glucose metabolism pathways. p53 inhibits glycolysis
by suppressing the expression of multiple enzymes involved in
the glycolytic process [64]. Recent reports also indicate that p53
inhibits glycolysis in cancer cells by stimulating the activity of
multiple enzymes that participate in the TCA cycle and the
oxidative phosphorylation process [65]. This theory is support-
ed by multiple lines of recent evidence showing that p53 is
activated along with ATM and AMPK following the addition
of metformin to various cancer cell lines [66–68]. These results
suggest that p53 may play a key role in inhibiting aberrant
glucose metabolism following metformin treatment. It remains
to be determined if this response is important in the prevention
and/or progression of breast cancer.

Interestingly, a recent finding indicated that metformin can
activate Chk2 kinase, a key component of the DNA damage-
like response (DDR) pathway, through activation of ATM
[69]. Though actual DNA damage is not observed upon met-
formin treatment, the activation of Chk2 may likely protect
cells from DNA damage caused by oxidative stress-induced
during the lipid oxidation process.While the conventional role

for p53 is to act as a tumor suppressor by sensing DNA dam-
age and inducing cell cycle arrest and cell apoptosis, the pos-
sibility should not be ruled out that metformin may induce
ATM/chk2’s and ATM/p53’s ability to promote the DDR pro-
cess, thus preventing malignant transformation [70].

However, results of in vitro experiments suggest that met-
formin may also be activated through AMPK-independent
mechanisms. For example, in a glioblastoma model, metformin
treatment exerted antiproliferative effects through an AMPK
independent mechanism directly inhibiting mTOR by enhanc-
ing PRAS40’s association with RAPTOR [71]. In another
study, using prostate cancer cells when the AMPK pathway
was inhibited, metformin was still able to exert antiproliferative
effects [72]. Additional work by the same group found that
REDD, which is a negative regulator of mTOR, was required
for the reduction in cell proliferation [73]. Other studies have
suggested that metformin can affect stem cells or self-renewal
of some breast cancer cell lines [40, 74, 75]. Further, in a MCF-
7mammospheremodel, the addition ofmetformin at an 11-mM
concentration reduced their size and number [76]. In addition,
when mammosphere formation was enhanced with addition of
estrogen, metformin reduced the expression of OCT4, which is
considered a cancer stem cell marker.

Among studies of other targets of metformin in breast can-
cer, STAT3 has recently emerged, because metformin inhibits
STAT3 phosphorylation in triple negative and HER2 positive
breast cancers [33••, 77]. Also, in a Src-induced transforma-
tion model, metformin inactivates STAT3 [40]. Metformin
reduces the phosphorylation of both Tyr705 and Ser727 resi-
dues on STAT3 [77]. Phosphorylation of Tyr705 causes rapid
translocation of STAT3 to the nucleus and activates the ex-
pression of proliferation and survival genes. Phosphorylation
of Ser727 (pSTAT3 S727) has been reported to cause STAT3
to localize to the mitochondria (mitoSTAT3) where it modu-
lates complexes I and II and promotes breast cancer growth
[78]. Another group also linked mitoSTAT3 (pSTAT3 S727)
with modulation of mitochondrial function, in part, through
binding of mitochondrial DNA and regulating transcription of
key proteins [79]. This newly discovered role of STAT3 in
mitochondrial function regulation is of particular interest since
metformin has been reported to inhibit complex I [80], which
is believed to be a direct target of metformin [81]. The mech-
anism of metformin induced suppression of STAT3 phosphor-
ylation is unclear. Several possible upstream pathways have
been proposed to be responsible for STAT3 inactivation by
metformin. Metformin effects on RTKs, mTOR, and Src have
all been implicated as possible mechanisms [77].

Conclusions

Strong in vitro evidence with fairly consistent findings indi-
cate antiproliferative actions for metformin as well as
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induction of apoptosis in a number of different human breast
cancer cell lines. However, the metformin concentrations are
frequently much higher than what would be achieved in vivo
with currently established therapeutic doses. In human stud-
ies, the majority of the results are observational in diabetic
women, thus much work remains to be done to determine if
non-diabetic women at high risk for breast cancer might ben-
efit from chemopreventive use of metformin. In animal
models, the impact of metformin treatment is strongest in xe-
nograft models representing cancer progression. With respect
to prevention of mammary tumors, the major effect has been
on tumor latency. Novel mechanisms of metformin involving
mitochondrial bioenergetics are emerging and may involve
both AMPK-dependent and -independent pathways. New reg-
ulators, including the ATM protein kinase as part of the
AMPK pathway and the modulation of the STAT3 pathway
by metformin independent of AMPK, are being investigated.
Although considered a calorie restriction mimetic this still has
not been directly compared in the breast cancer field. Present-
ly, the concept of secondary prevention is being studied in the
phase III MA.32 clinical trial in which breast cancer patients
are randomized tometformin or placebo to study the impact of
metformin on invasive disease-free survival in early stage
breast cancer. This trial is likely to provide new insights to
possible roles of metformin in breast cancer adjuvant therapy.
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