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Background: In eukaryotic genome, chromatin is not randomly distributed in cell nuclei, but instead is organized into
higher-order structures. Emerging evidence indicates that these higher-order chromatin structures play important
roles in regulating genome functions such as transcription and DNA replication. With the advancement in 3C
(chromosome conformation capture) based technologies, Hi-C has been widely used to investigate genome-wide long-
range chromatin interactions during cellular differentiation and oncogenesis. Since the first publication of Hi-C assay
in 2009, lots of bioinformatic tools have been implemented for processing Hi-C data from mapping raw reads to
normalizing contact matrix and high interpretation, either providing a whole workflow pipeline or focusing on a
particular process.
Results: This article reviews the general Hi-C data processing workflow and the currently popular Hi-C data
processing tools. We highlight on how these tools are used for a full interpretation of Hi-C results.
Conclusions: Hi-C assay is a powerful tool to investigate the higher-order chromatin structure. Continued
development of novel methods for Hi-C data analysis will be necessary for better understanding the regulatory
function of genome organization.

Keywords: 3D genome structure; Hi-C data processing tool; chromatin interactions

INTRODUCTION

In recent years, more and more lines of evidence have
been uncovered that three-dimensional chromatin struc-
ture plays important roles in gene regulation [1,2]. In
order to dissect the dynamic chromosomal organization
during differentiation and diseases genesis, many 3C [3]
based methods were developed for different purposes,
including 4C [4], 5C [5], Hi-C [6], ChIA-PET [7] and
Capture Hi-C [8]. Hi-C assay provides a robust way to
investigate the genome-wide all-to-all long-range chro-
matin interactions, and have achieved many significant
successes in understanding the regulatory functions of the
higher-order chromatin structure in different species and
cell lineages. Like other high throughput sequencing
based techniques, analyzing Hi-C data sets requires lots of
computational resources and skills. Understanding the
principle for Hi-C data processing is critically important
for choosing a proper Hi-C tool and interpreting the final

results. In this review, we will go through the general
Hi-C data processing workflow, review some currently
published Hi-C data analysis pipelines and finally outlook
some further improvements for Hi-C data analysis.

GENERAL Hi-C DATA PROCESSING
WORKFLOW

General Hi-C data processing workflow mainly contains
the following compartments: mapping, filtering, pairing,
binning, normalization, post-processing and visualization
(Figure 1). Mapping performs raw reads alignment to get
the distal interacted tags partially mapped. Filtering
removes randomly pulled down genomic reads or
singletons to get potential valid interactions. Pairing
step always follows mapping or filtering stages to get
paired tags since they are mapped separately. Then the
whole genome is binned to count the region-to-region
interacting frequency. Often, normalization is needed to
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remove system bias. Post-processing consists of many
high-order analyses, such as calling topological asso-
ciated domains (TADs) [9], separating active/repressive
(A/B) compartments [6] and integration analysis with
other data sets [10]. The final step is to visualize the Hi-C
results, mainly in heatmap format.

Mapping

Due to the ligation of chromatin fragments after
restriction enzyme digestion, Hi-C will generate lots of
chimeric reads that cannot be directly mapped to the
reference genome. Currently, there are three strategies to
handle these chimeric reads. The simplest way is to totally
ignore all unmappable reads and only keep the end-to-end
mapped reads for further processing. This strategy is used
by HiC-inspector [11], HiC-Box [12], HiCdat [13],
HIPPIE [14] and Juicer [15], and works well for short
sequencing reads because they have less probabilities
containing multiple ligated junction sequences. In order to
rescue the chimeric reads, hiclib [16] package initializes
an iterative mapping strategy, which iteratively extends
and maps the unmappable tags to the genome. On the

other hand, HiCUP [17] pre-truncates the chimeric reads
on the ligation sites based on the digested enzyme
sequence before mapping to get the original genomic
fragments, while HiC-Pro [18] splits the chimeric reads
after global mapping and then re-maps these partial tags to
the reference genome. Finally, TADbit [19] provides these
two options for mapping and users can choose either of
them.

Pairing

As each end of the paired-end reads are mapped
separately, it is needed to do pairing to get the paired-
end tags (PETs). Most of Hi-C tools output mapped
results in SAM/BAM format [16,18], which records the
reads mapping information line by line in separate files.
Hence SAMtools [20] is used to sort the results and then
PETs are paired according to the matching reads names.

Filtering

There are two popular algorithms used when filtering out
invalid PETs. One is distance based filtering [21], which

Figure 1. General Hi-C data processingworkflow. Yellow box shows the overview of Hi-C workflow, blue box introduces the details for
corresponding step, red box gives the common aspects of post-processing.
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simply removes all intra-chromosomal interactions shorter
than a given cutoff while keeping all inter-chromosomal
interactions. The second algorithm is filtering based on
restriction enzyme digested fragments [16–18], which
classifies all PETs into valid and invalid ligations
according to their locations to the digested sites and
direction. It removes all self-circling PETs and dangling
PETs and so on (Figure 2). In most if not all cases, only
one of the duplicated PETs is kept for further processing.
For the distance based filtering, the cutoff selection is
relatively arbitrary and could be advantageously used
(with, for example, 20 kb cutoff or more) if one is only
interested in long-range interactions. While for restriction
enzyme based filtering, sheering size is often used as
cutoff to select PETs mapped closing to fragment ends.

Binning

After pairing and filtering invalid PETs, the whole
genome is binned into small regions and the valid PETs
are assigned to each unique bin to count the interacting
frequencies. The resolution depends on the sequencing
depth, ranges from kilobase to megabase. The typical way
to determine the suitable resolution for a given Hi-C
library is that majority of bins (for example, 80%) have at
least background level coverage (expected level from
Normal or Bernoulli distribution and so on). Alterna-
tively, it is a good idea to perform the analysis on multiple
resolutions. The binning results can be stored in matrix
format or in region-to-region format (which only records
the non-zero frequencies) depending on the tools used for
further analyzing.

Normalization

There are many normalization methods implemented for
removing different kinds of biases in Hi-C library. For
example, explicit-factor correction algorithm from HiC-
Norm [22] is based on the assumption for correcting
explicitly for known bias such as GC content, fragments
length and mappability. Alternatively, matrix balancing
method assumes uniform visibility for all genomic loci
and hence it assures equal row and column sum for
correcting both known and unknown biases, which is
used in iterative correction and eigenvector decomposi-
tion (ICE) [16] and Knight and Ruiz’s algorithms [23].
Besides, HiCpipe [11], which is adapted from Yaffe and
Tanay’s method [24], further considers the one-dimen-
sional distances for regions during normalization.
Recently, HiCNormCis [10] has been published for
normalizing and comparing the contact frequencies
between samples, especially for local (15–200 kb) cis
interactions occurring within TADs. Despite several
methods implemented for Hi-C data normalization, it is
hard to conclude which one performs better for each
sample since each method depends on its debatable
assumption. For instance, explicit normalization assumes
there are three and only three known biases in the data set
and tries using probability models to fit these biases, while
matrix balancing normalization assumes “equal visibility
means no bias”, which cannot be mathematically
demonstrated. Besides, we found the correlation between
results from different normalization methods and the raw
matrix increased with the sequencing depth, indicating
higher coverage may decrease the sample biases.

Figure 2. Filtering mapped PETs using restriction enzyme (RE) fragments. For four kinds of valid PETs, each of them should have

comparable fraction. If the maximummolecule size is known during Hi-C library preparation, then PETs aligned distal than this size from the
nearest RE site should also be treated as invalid. PETs: paired-end tags.
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Post-processing aspects

Common post-processing aspects includes calling TADs,
separating active/repressive compartments A/B [6],
identifying chromatin loops [25] and so on. Currently,
several tools are available for calling TADs including
directionality index based hidden Markov model (DI-
HMM) method [9], peak calling based on distance-scaling
factor method [26], dynamic programming method
named “Armatus” [27], arrowhead algorithm which can
identify sub-domains for high resolution data sets [25],
maximization of likelihood based block-wise segmenta-
tion model named HiCseg [28], and Clustering based
Hi-C Domain Finder (CHDF) [29]. A/B compartments
are defined as the component of the PCA results for
normalized interaction matrix [6]. In addition, a few Hi-C
tools can integrate Hi-C results with other genomic data
such as ChIP-seq or GWAS data, and these include
HIPPIE [14], HiCdat [13] and Juicer [15].

Visualization

Several tools can be used to show the genome-wide Hi-C
contact maps. For instance, WashU Epigenome Browser
[30] supports interactively browsing interaction matrix in
three formats. The 3D Genome Browser [31], which also
provides browsing function similar to WashU Epigenome
Browser, is based on UCSC Genome Browser [32] and
hence simultaneously allows users to view the UCSC
tracks. Juicebox [25], a desktop application, can show the
heatmap for multiple human and mouse Hi-C data sets
and contains several features such as domain calling, peak
calling. Finally, Genome3D [33–35] and TADkit [36] can
build and visualize the three-dimensional models of
chromatin for Hi-C data.

POPULAR Hi-C DATA ANALYZING TOOLS

Since the first Hi-C study was published in 2009 [6],
many bioinformatic tools have been developed for
analyzing Hi-C data sets [37,38], and Table 1 summarizes
the published methods. In the next paragraphs, we
provide a brief view of different Hi-C tools, and give
users some helpful suggestions for choosing Hi-C tools.

Hiclib package

The hiclib package [16] provides a complete framework
from mapping to normalized contact matrix for analyzing
Hi-C data sets. It is the first to use iterative mapping
strategy to rescue chimeric reads and to use iterative
correction and eigenvector decomposition (ICE) techni-
que to normalize raw interaction matrix. In details, hiclib
first trims the heading N base pairs (N is specified by the

user, default is 25 bp) for mapping to reference genome
using bowtie2. For all multiple mapped and unmapped
reads, it extends the fragment length by a step S (default is
5 bp) and remaps the extended fragments to the genome.
This iterative step is stopped until all reads are uniquely
mapped or the reads end is reached. After mapping, hiclib
uses SAMtools to sort and store the output results, and
then both the double-sided (DS) reads and single-sided
reads (SS) are filtered by restriction enzyme digested
fragments. The final results are stored in a special data
structure. During iterative correction and eigenvector
decomposition normalization, hiclib does not assume the
sources of biases and corrects all factors affecting the
matrix frequency. Therefore, supposing a uniform cover-
age over the whole matrix, it ensures equal visibility of
each bin in the iteratively normalized contact map.
To our knowledge, hiclib was the first complete

pipeline that tried to rescue chimeric reads during
mapping. In previous method, only the fully mapped
reads were kept for further analysis, and hence hiclib
package largely increases the mapping ratio for Hi-C data
sets, especially with long reads. Second, it was the only
tool that included the single-sided (SS) reads when
computing the coverage, which then could be used to
check the quality of the library and could also be
considered during normalization. Third, hiclib initialized
a new matrix normalization method named ICE, which
was demonstrated to remove all kinds of biases and give a
much more robust result than other matrix normalization
methods. Hiclib did not provide a standalone pipeline for
initializing Hi-C data analysis, which meant the users
needed to custom the Python scripts published by hiclib
authors in the tutorials. However, we have found a
standalone tool named runHiC (https://pypi.python.org/
pypi/runHiC) which is based on hiclib and runs in
command-line mode.

HIPPIE

High-throughput identification pipeline for promoter
interacting enhancer element (HIPPIE) [14] implements
a full Hi-C data processing workflow pipeline from
mapping raw reads to the detection of long-range
enhancer-target gene interactions. HIPPIE is divided
into five steps: i) raw reads mapping. Raw reads are
mapped to reference genome using BWA, with no effort
made for chimeric reads. ii) quality control. Low mapping
quality reads, duplicated reads and reads mapped to
mitochondrial or random contigs are discarded.
iii) identification of significant DNA–DNA interacting
regions. “Hi-C peaks” are called for fragments with
higher specific read coverage. iv) Enhancer–target gene
predictions. Candidate enhancer elements are identified as
Hi-C peaks that interact with a promoter carrying typical
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enhancer epigenetic markers. v) Characterization of these
long-range interactions. HIPPIE is designed for running
on computing clusters with Oracle Grid Engine, which
makes it extendable for large data sets. HIPPIE was the
first pipeline to provide the ability to integrate Hi-C
results with epigenetic data sets. It uses a negative
binomial model to call significant “Hi-C peaks” as
fragments harboring higher than expected reads coverage,
then maps these peaks to enhancer markers such as
H3K27ac signals and GWAS datasets. However, the

mapping strategy needs to be optimized when compared
to other Hi-C tools.

HiC-inspector

HiC-inspector [11] can take raw reads or pre-mapped
BED files as input. For raw reads, HiC-inspector uses
bowtie for mapping and only the fully mapped reads are
kept for further analysis. Then the PETs are simply
filtered by enzyme-digested fragments. For raw contact

Table 1. Tools for Hi-C data processing pipeline.
Tool Aligner Mapping

strategy

PETs

filtering

Normalization Descriptions Url

Hiclib [15] Bowtie2 Iterative RE

fragments

ICE No standalone pipeline provided.

runHiC is based on hiclib and is

command-line based

https://bitbucket.

org/mirnylab/

hiclib

HIPPIE [14] BWA - - Explicit

model

Designed for high performance

computing cluster with Oracle

Grid Engine. Can integrate with

epigenetic datasets and GWAS

data

http://wanglab.

pcbi.upenn.edu/

hippie

HiC-inspector

[11]

Bowtie - RE

fragments

Coverage

correction

RE filtering only keeps PETs

with 3'-end facing the restriction

site. Command-line based and

provides simple interactive

browser

http://biocore.crg.

cat/wiki/HiC-

inspector

HiC-Box [12] Bowtie2 - Not

detailed

Not

detailed

GUI based, compatible with

Genome Re-Assembly Assessing

Likelihood (GRAAL). No

published paper with details

https://github.

com/koszullab/

HiC-Box

HiC-Pro [18] Bowtie2 Trimming RE

fragments

Optimized

ICE

Command-line based and easy to

use. Provides complete workflow

from mapping to normalized

matrix, can handle SNP

information

https://source-

forge.net/pro-

jects/hicpro/

HiCUP [17] Bowtie,

Bowtie2

Pre-truncation RE

fragments

- Command-line based with

incomplete workflow, needs

other tools such as HiCpipe

[11] to finish normalization and

other processes

http://www.bioin-

formatics.babra-

ham.ac.uk/pro-

jects/hicup

HiCdat [13] Subread,

Bowtie2

- RE

fragments

Three

options

GUI and R based with mapping

command provided but not piped.

Provides comprehensive functions

for high-order analysis and

integrating with epigenetic datasets

http://www.

github.com/

MWSchmid/HiC-

dat

TADbit [19] GEM Iterative

/Trimming

RE

fragments

ICE No standalone pipeline provided.

Can call and compare TADs

between samples. No published

paper with details

http://

www.3DGe-

nomes.org

Juicer [15] BWA - RE

fragments

Matrix

balancing

Command-line based. Provides

many high-order functions such

as calling TADs, loops,

compartments and displaying

with Juicebox

https://github.

com/theaidenlab/

juicer/wiki
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matrices, the corresponding coverage corrected matrices
and Pearson correlation matrices are generated for
visualization in heatmap format.

HiC-Box

HiC-Box [12] provides a user-friendly GUI interface for
processing Hi-C data from mapping to visualization,
which makes integrating Hi-C data much easier for
biologists compared to hiclib. HiC-Box maps raw reads to
reference genome using bowtie2 and makes no effort to
rescue the chimeric reads. Then the PETs are binned to
generate maps at different resolutions and can be
visualized in the box. The details of PETs filtering and
normalization are not available since HiC-Box is not a
published tool (only web-based documents are available).

HiC-Pro

HiC-Pro [18] provides a full workflow to analyze Hi-C
data from raw reads to normalized contact maps. Different
from iterative mapping strategy used in hiclib, HiC-Pro
tries to search for the exact ligation sequence in the
multiple mapped and unmapped reads and splits the full
reads into two pieces, and next remap these fragments to
the genome separately. In details, HiC-Pro first does a
global mapping which maps the full reads to reference
sequence using bowtie2; then for non-uniquely mapped
reads, HiC-Pro performs a local mapping for split
fragments; finally, both the globally mapped and locally
mapped tags are merged for filtering. The filtering
algorithm is similar to the one described in hiclib. The
normalization codes provided in HiC-Pro are adopted
from hiclib’s ICE with some performance optimization.
To validate the quality of Hi-C experiments, HiC-Pro
performs a variety of quality controls at different steps of
the pipeline, such as alignment statistics, the ratio of
global and local mapped reads and PETs filtering results.
Besides, HiC-Pro can handle the SNP information
contained in Hi-C data sets, which can be used to
distinguish paternal and maternal X chromosome silent
domains as described in the original paper [18].
Compared to hiclib, HiC-Pro is much user-friendly
since it is fully command-line based, runs much faster
with the same CPU resources and can be easily submitted
to clusters for very big data sets.

HiCUP

HiCUP (Hi-C user pipeline) [17] is designed for mapping
Hi-C and Capture Hi-C (CHi-C) data to specified
reference genome and removing artifacts. It does not
perform the genome binning and normalization processes

as hiclib and HiC-Pro do, and thus HiCUP needs other
tools to finish the downstream steps. Unlike HiC-Pro,
HiCUP first truncates the raw reads at the ligation sites if
present and separates them into two fragments; then maps
the truncated reads to reference genome using bowtie or
bowtie2. After mapping, HiCUP will remove invalided
and duplicated PETs using enzyme-digested fragments
similar to hiclib and HiC-Pro. HiCUP outputs its final
results in SAM/BAM format with paired reads placed on
adjacent lines. Downstream tools, such as Hicpipe, for
normalization, can be used to complete the analyses on
this SAM/BAM file.

HiCdat

HiCdat [13] provides two utilities for comprehensive
Hi-C data processing. The first one is HiCdatPre, a simple
GUI interface to pre-process Hi-C data and other genomic
data sets like RNA-Seq, ChIP-Seq and BS-Seq. The
second is HiCdatR, which contains many R functions for
higher-level analysis. HiCdat itself does not perform
mapping and takes pre-mapped BAM files as input
although the authors provide the commands to map raw
reads using Subread or bowtie2 in their tutorial and thus,
all chimeric reads will be discarded during mapping step.
HiCdatPre mainly consists of these five steps: i) pairing
aligned reads based on the matching name; ii) creating
fragments using restriction enzyme or fixed bin size; iii)
mapping PETs to fragments to filter invalid ligations and
count interaction frequency; iv) pre-processing additional
genomic or epigenetic data sets, such as preparing counts
and density files for RNA-seq or ChIP-seq experiments;
and v) generating organism-specific R codes for higher-
level analysis. HiCdatR provides many R functions for
post-processing: i) normalizing with three methods
provided, the distance based normalization for intra-
chromosomal interactions and coverage based normal-
ization for inter-chromosomal interactions as described in
Liebermann et al. 2009, ICE normalization [16] and
HiCNorm [22]; ii) calculating correlation between
samples and replicates; iii) visualizing interactions; iv)
comparing samples; v) calculating the distance decay
exponents (IDEs); vi) identifying compartments using
principle component analysis (PCA) and correlating PC1
to genomic and epigenomic features; vii) estimating
highly interacted regions and enrichment/depletion of
epigenomic/genomic features.
HiCdat supplies lots of highly specific Hi-C data

processing functions, especially for integration with other
genomic and epigenetic data sets, which are missed in
other tools. This makes HiCdat outstanding for higher-
level analysis, although the mapping strategy in HiCdat
needs to be improved.
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TADbit

TADbit [19] provides two strategies for mapping via
GEM [39,40]: iterative and trimming mapping methods
used in hiclib and HiC-Pro respectively. Users can choose
either method depending on whether the enzyme is
known or not. The filtering strategy and ICE normal-
ization are identical to the method described before.
Based on normalized matrix, TADbit can call TADs and
compartments for Hi-C map and can compare TADs
between samples. As for hiclib, TADbit needs users to
perform the analysis step by step following the Python
source codes provided in the tutorial or to manually
generate the whole workflow into a single Python script,
which is not convenient for biologists. Based on TADbit
results, TADkit can be used to build and visualize the 3D
model in an interactive mode.

Juicer

Juicer [15] provides a complete pipeline from processing
raw Fastq reads to high-order analysis such as calling
TADs, separating A|B compartments and identifying
significant chromatin loops. The final result can be
viewed in Juicebox [41]. Juicer takes BWA package to
map the raw reads and then uses restriction enzyme
digested fragments to filter the paired tags. Interaction
matrixes can be generated in different resolutions and
normalized by vanilla coverage normalization [6] or
Knight and Ruiz’s matrix balancing algorithm [23] and
stored in a special compressed file format. Juicer provides
Arrowhead algorithm for calling TADs, HiCCUPS
algorithm for identifying chromatin loops and CTCF
motif anchors, aggregate peak analysis for putative peak
enrichment and finally eigenvector for separating A|B
compartments. Juicer can handle very large datasets by

using CPU clusters, general-purpose graphics processing
units (GPGPUs) or field-programmable gate arrays
(FPGAs).

NORMALIZATION TOOLS

As many factors can cause various biases into Hi-C data
processing, hence normalization of the raw contact maps
is critically required before further analysis. Many Hi-C
tools have already implemented the normalization method
in the pipelines, such as hiclib, HiC-Pro, TADbit and so
on (see Table 1). Here we introduce additional standalone
tools that focus on Hi-C data normalization. Table 2
summarize these popular normalization tools with simple
descriptions. As we explained before, it is not easy to
conclude which method performs better than other one,
hence we suggest users try at least two different tools to
confirm whether the results are consistent.

HiCNorm

HiCNorm [22] is a parametric model designed for
removing systematic biases such as GC contents,
mappability and fragment length distribution in the raw
Hi-C contact maps. HiCNorm uses a generalized linear
model instead of negative binomial or Poisson regression
to correct these biases. When compared with the original
Yaffe and Tanay’s method [24], HiCNorm needs less
parameters and runs about 1,000 times faster with higher
reproducibility.

Hi-Corrector

Hi-Corrector [42] uses the iterative correction (IC)
algorithm to correct the biases in raw contact maps,
which assumes all genomic regions have the equal

Table 2. Tools for post-processing Hi-C data (tools provide complete workflow are listed in Table 1).

Tool name Model assumption Description

Normalization HiCNorm [22] Three systematic biases Generalized linear regression-based

method, much faster than Yaffe’s method [24]

Hi-Corrector [42] Matrix balancing Parallelized and memory-controllable ICE, very fast

HiFive [43] Three options GUI based and integrated into Galaxy

HiCNormCis [10] Three systematic biases Poisson-regression-based method for local regions, result can

be used to call FIREs. Not publicly available

Calling TADs DI-HMM [9] Directional indexes bias

with HMM

Insensitive to parameters and hence it is hard to identify sub-

TADs

Arrowhead [15] Dynamic programming Can call sub-TADs, integrated in Juicer

Armatus [27] Multi-scale approach Can call TADs with different scales, but not easy to choose fine

scale ranges

HiCseg [28] Linear segmentation Turn 2D into 1D, can model the uncertainty

CHDF [29] Dynamic programming Robust to different resolution but need users to control the total

number of TADs for each chr
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visibility, as for ICE. Hi-Corrector provides two running
modes for different scales of data size. For small data set,
users can run the Memory Efficient Sequential algorithm
(IC-MES) on a single computer with limited memory,
while for large data size, users can run the Memory-
Efficient Parallel algorithm (IC-MEP) on a computing
cluster, which largely improved the performance com-
pared to ICE.

HiFive

HiFive [43] is a tool suite focusing on Hi-C and 5C data
filtering, normalization and post-processing. HiFive
provides three running modes: the command line, the
web-based, as integrated by Galaxy, or the development
library mode. HiFive contains three normalization
methods: a combinatorial probability model based on
HiCPipe’s algorithm named “Binning”, a modified
matrix-balancing approach named “Express”, and a
multiplicative probability model named “Probability”.

HiCNormCis

HiCNormCis [10] is a Poisson-regression-based normal-
ization approach designed to normalize the raw local
(15–200 kb) cis contacts for genome-wide. HiCNormCis
also removes the three types systematic biases. Compared
to HiCNorm and ICE, HiCNormCis achieves the best
performance for normalized results, and the output can be
converted into “FIRE (frequently interacting regions)
score”. Note that this tool is not publicly available and
only the principle have been described in the original
paper.

TOPOLOGICAL ASSOCIATED DOMAINS
(TADs) CALLING TOOLS

Usually, chromatin regions are packed into small
conserved domains called TADs which have high
frequent inner-domain interactions compared to inter-
domain interactions. CTCF binding sites and other
chromatin binding proteins are enriched at the TAD
boundaries, forming chromatin loops that play important
roles in regulating gene expression. There are many
standalone tools developed for calling TADs for Hi-C
data. Here we limited the description to the most popular
ones that are widely used in published papers. Table 2
summarized these tools with simple descriptions.
Although many algorithms have been developed for
calling TADs, there is no exact mathematical definition of
what a TAD is, hence generally the results are judged by
eyeballing-the predicted TAD regions against Hi-C
heatmap. Significant TADs should be highly conserved
among different tools and different resolutions, providing

researchers a heuristic way to identify reliable TADs for a
particular sample.

Directionality index based hidden Markov model
(DI-HMM)

DI-HMM [9] was the first available tool published for
identifying TADs for Hi-C data. The important key step
for DI-HMM is calculating the directionality index, which
is defined as the interaction density ratio between left side
and right side for each loci, DI is positive at the beginning
of TADs and negative at the end of TADs. Then hidden
Markov model is used to identify biased “states” and
therefore defines the topological domains across the
whole genome. DI-HMM is insensitive to its parameters,
and hence it is hard to identify sub-TADs for large TADs,
generating relatively broader TADs compared to other
tools.

Armatus

TADs called by DI-HMMmethod are relatively large, and
the majority of them are highly conserved structures
across different cell types. However, this may lead to
missing some cell-type specific domains or sub-TAD
regions. Armatus [27] was designed for calling TADs on
different resolution scales using dynamic programming.
Based on a set of given domain-length scaling factor γ,
Armatus identifies a consensus set of domains that
persists across various resolutions as well as resolution-
specific domains. Both of the two types of domains are
used as TAD calls for downstream analysis. Compared to
DI-HMM method, Armatus can construct more subtle
conserved and cell type specific TADs that have particular
functions, but the key parameter, scaling factor γ, is not
clearly explained and hence makes it very arbitrary to
determine the scaling ranges, which will directly affect
the consensus result generated by Armatus.

Arrowhead

In order to call sub-TADs from ultra-high resolution Hi-C
data sets, Rao et al. proposed a heuristic algorithm named
Arrowhead [15,25], which can find the corners of the
domains to locate the boundaries of TADs. First, the
normalized contact matrix M* is transformed to an
arrowhead matrix defined as Ai, i+d=(M*i, i-d –M*i, i+d)/
(M*i, i-d+M*i, i+d). Then the matrix Ai, i+d represents
each domain in M* as an arrowhead-shaped feature and
dynamic programming is used to calculate the “corner
score” as the boundaries of TADs. In the original paper,
they identified that TADs are 4‒5 times smaller than with
other methods in human and mouse genome. However,
we should notice that Arrowhead will miss some large
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TADs which are apparent in DI-HMM or Armatus.
Arrowhead now is integrated in Juicer tool.

HiCseg

HiCseg [28] is an R package that defines a block-wise
segmentation model for detecting TADs based on a
maximum likelihood approach. It treats the detection of
diagonal blocks as a particular 2D segmentation issue,
which is common in image processing area. Then, this 2D
segmentation problem can be boiled down into a 1D
segmentation problem with efficient dynamic program-
ming algorithm applied. In their publication, the authors
proved HiCseg performs much better than DI-HMM
method in both synthetic data and real data.

CHDF

Clustering based Hi-C Domain Finder (CHDF) [29] is a
recently published TADs calling tool which is based on
the tendency of interaction intensity inside/outside
domains. CHDF supposes that three regions exist in a
Hi-C interaction matrix: domain region (D), regions
between two adjacent domains (A) and the residuals (R).
Hence the goal of CHDF is to identify a set of domains D,
which have the minimal sum-of-squared-error and where
the Hi-C interaction intensity in these D regions is much
higher than that of the A regions. Dynamic programming
algorithm is applied to solve this problem efficiently.
Compared to DI-HMM and HiCseg, CHDF has a few
advantages as the authors concluded: i) CHDF model is
based on the knowledge that TADs have higher inside
interaction intensity compared to outside, which is easy to
understand. ii) CHDF can identify TADs at smaller scales
and these subtle domains can be verified by other
experiments. iii) The TAD boundaries from CHDF results
are more enriched with CTCF and active histone markers.
iv) CHDF has a much higher efficiency for Hi-C
interaction matrix with large dimension when compared
to the other two methods. The shortage of CHDF is that it
needs the users to determine the maximum number of
TADs for each chromosome, which is hard to estimate
without prior knowledge, leading CHDF to potentially
identify the exact number of TADs set by users.

VISUALIZATION TOOLS

Visualization of Hi-C final results is critically important
for analyzing Hi-C data, especially for integration with
other genomic and epigenetic data sets. Heatmap is a
common way to show the chromosome-scale interactions
at different resolutions. However, it can only contain
limited information and cannot be interactively changed.
To address this issue, several browser based tools have

been developed for interactively representing Hi-C data
with other data sets. For example, WashU Epigenome
Browser [30] supports interactively browsing both the
intra- and inter-interactions in different formats and the
results can be easily exported as PDF files. Another
visualization tool, 3D Genome Browser [31], which is
based on UCSC Genome Browser [32], allows viewing
Hi-C heatmaps and UCSC tracks simultaneously. Except
web-based tools, there is a desktop-based application
named Juicebox [25,41], which also allows users to
interactively zoom in and out of Hi-C maps, and
compares between maps or other genomic and epigenetic
tracks.

OUTLOOK

In this article, we reviewed the recent published tools and
methods for processing Hi-C data sets from raw reads
mapping to high-order interpretation. These tools focus
on a single or multiple steps during Hi-C data processing,
each having its own advantages and disadvantages. As
there is currently no golden standard for Hi-C data
analysis, it is difficult to determine which tool or method
performs the best. Therefore, it is of great interest for the
field to establish the standard for data analysis so that
researchers can use the same standard analysis pipeline to
compare Hi-C data generated with standard experimental
protocol. In practice, for example, we would recommend
researchers to try at least two kinds of normalization
methods based on different model assumptions.
Another notable issue for existing tools is that most of

them do not provide comparative analysis between a
series of Hi-C data such as differential TAD analysis and
A/B compartment switching. It would be helpful to add
these functions to current tools. Recently, diffHiC [44]
was developed to identify differential chromatin interac-
tions between the HiC data from different cell types. In
addition, it is important to develop methods that can
integrate Hi-C data with other genomics or epigenomics
data such as histone modifications and transcription factor
binding. Currently, Juicer can call chromatin loops and
integrate with CTCF and/or cohesin ChIP-seq datasets,
while HIPPIE and HiCdat provide a way to link Hi-C data
with other epigenetic sources and GWAS information, for
example, annotating candidate long-range promoter-
enhancer interactions. In future, we would expect more
and more methods for deep analysis of Hi-C data.
With the technical advance of Hi-C assay to improve

the mapping resolution of chromatin interaction or reduce
interaction background, novel algorithms and methods
are expected to develop. The combination of technical
improvement and computational method innovation will
help us better understand the regulatory function of
genome organization.
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