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Abstract Cryptosporidium is increasingly being recognized
as an important cause of diarrhea worldwide. Although well
known for its impact among HIV positive population, im-
proved diagnostic tests have contributed to its emerging rec-
ognition one among the most prevalent causes of early child-
hood moderate to severe diarrhea, persistent diarrhea, and im-
paired neurocognitive development. The diagnosis of Crypto-
sporidiosis is generally carried out based on availability of
skilled microscopist or advanced equipment for molecular-
and immunologic-based assays. As an emerging enteric path-
ogen of medical importance, the need for point-of-care tech-
nology is deemed necessary for early identification of the
pathogen and application of infection control measures for
its potential risk of creating outbreaks. Current point-of-care
technologies demonstrate varying sensitivities and specific-
ities and may already address the present diagnostic need.
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Introduction

The Need for Sensitive Cryptosporidium Diagnostics

The recent identification of cryptosporidiosis as an important
cause of morbidity and mortality worldwide has been sug-
gested to be due to gaps in diagnosis, treatment, and immuni-
zation [1•, 2, 3]. This article will focus on conventional and
innovative technologies employed for sensitive and rapid
Cryptosporidium diagnostics.

Cryptosporidium is a protozoan that is increasingly being
recognized as an important cause of diarrhea worldwide. Of
the more than 26 Cryptosporidium species, Cryptosporidium
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parvum (humans and ruminants) and Cryptosporidium
hominis (humans only) are the most important causes of hu-
man infections and are morphologically indistinguishable. All
species of Cryptosporidium are obligate intracellular parasites
that undergo development leading to the excretion of 4–6 μm
sized oocysts in feces. Infected people can excrete oocysts for
as long as 60 days after infection [4]. Transmission of
Cryptosporidium is mainly through the oral-fecal route with
an infectious dose as low as 10 oocysts [5]. The small size of
Cryptosporidium, persistence of shedding, and low infective
dose allow the parasite to easily spread in places with inade-
quate sanitation and hygiene. Even in resource abundant set-
tings, the parasite can evade detection resulting in outbreaks,
the largest of which was documented in Milwaukee, Wiscon-
sin USA and accounted for more than 400,000 infections and
100 deaths [6].

Cryptosporidium sp. are ubiquitous and can be found in
untreated drinking and recreational water, contaminated food,
day care centers, and hospitals [7, 8]. Exposure to farm ani-
mals and children, initially infected with this parasitic organ-
ism can lead to the further propagation of the organism.
Through flooding and increased rainfall, climate change is
predicted to increase the burden of waterborne diseases in-
cluding Cryptosporidium [9]. The observations of esophageal
cryptosporidiosis, where parasites were found in squamous
mucosa and submucosal lumen and border [10], extraintesti-
nal manifestations of Cryptosporidium infection in severely
immunocompromised patients [11•], and respiratory crypto-
sporidiosis concurrent with intestinal cryptosporidiosis in
HIV-seronegative children [12] suggest the potential for more
diverse routes of transmission. With the possible increase in
the burden of Cryptosporidium, there is a need to develop
more sensitive diagnostic techniques to detect the organism
in clinical, biological, and environmental specimens [7].

Current Diagnostic Platforms

Serological and microscopic Diagnosis of Cryptosporidium

Studies focusing on comparisons of the effectiveness and re-
liability of various methods in diagnosing Cryptosporidiosis
greatly increased since its identification as a gastrointestinal
and respiratory tract parasitic disease among many species of
animals, including mammals, in the 1970s To date, there is no
single ideal test for the diagnosis of Cryptosporidiosis, and a
significant percentage of Cryptosporidium infections can be
missed if any of the available assays has been the sole method
of diagnosis [13] (Table 1). Thus, current research mainly
focuses on determining the most sensitive and cost-effective
diagnostic method that can detect infection even at the earliest
stages before the parasite has multiplied. Such research aims
to draw benefit from knowing the most reliable tool in

detecting the presence of Cryptosporidium parasite in vulner-
able population groups and its environmental reservoir which
may lead to enhanced diagnostic surveillance and clinical
tools for effective eradication measures of the disease.

One approach to detect Cryptosporidium infection is the
serological detection of the specific antibody response. Fol-
lowing infection, there is usually the development of charac-
teristic immunoglobulin G (IgG), IgA, and IgM antibody re-
sponse against 2 sporozoite surface antigens with apparent
molecular masses of approximately 27, 15, and 17 kDa
[14•]. IgG responses to Cryptosporidium sporozoite antigens
of low molecular size can persist for several months [1] in
adults and have been shown to be consistent and of sufficient
intensity to act as reliable markers of exposure [15, 16].

Prior studies suggested that serum Cryptosporidium-spe-
cific antibody levels remain elevated for weeks to months
following infection [15]. Increases in the intensity of Western
blot response for IgG antibody to two Cryptosporidium anti-
gens (17 and 27 kDa) following infection were observed
among highly exposed individuals. A 15 kDa protein isolated
from the feces of infected calves by immunoaffinity adsorp-
tion using a monoclonal anti C. parvum antibody was recog-
nized by IgA antibodies present in the saliva during the con-
valescent phase of infection. These results suggest that this
coproantigen may be released from C. parvum sporozoites
and may induce IgA antibody production in the mucosal im-
mune system of infected calves [17]. The seroprevalence of
I gG an t i bod i e s t o t h e 27 -kDa and 15 /17 -kDa
Cryptosporidium antigen in sera was significantly greater
(49–61 %) in settlements where the drinking water originated
from surface water than in the control city where riverbank
filtration was used (21–23 %). Hence, the elevated responses
were most likely due to the use of contaminated water [18•].

It is necessary to evaluate the comparative diagnostic accu-
racy and feasibility of newly introduced test in comparison to
the existing tests or the criterion standard to reveal how well
this test discriminates between health and disease. The Center
for Disease Control and Prevention Project #438 has devel-
oped a second generation ELISA that detected all laboratory
confirmed cases. It showed improved sensitivity over the im-
munoblot test results [19]. There was also no cross-reactivity
between Cryptosporidium and Giardia or Toxoplasma. More-
over, ELISA results from the same sample sets from two dif-
ferent laboratories showed excellent correlation. While these
serological assays for Cryptosporidium are important for epi-
demiological studies because specific antibody responses de-
velop after both symptomatic and asymptomatic infection,
they cannot be used to diagnose active infection.

Cryptosporidium can only be cultivated for a short time in
epithelial cell monolayers and does not grow in conventional
laboratory media. Thus, microscopy is considered the conven-
tional method of detecting active infection. Accuracy of diag-
nostic microscopy may be affected by several factors. The
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majority of positive Cryptosporidium samples are not usually
found in watery stools, rather in loose mushy stools which
implies that microscopy might not efficiently work for highly
turbid samples as solid particles might cover the target organ-
isms. Multiple staining and washing steps of the fecal sample
on the slide could also lessen the detectable quantity of oo-
cysts since oocysts can be washed away in the process [20].
The significant impact of the skills and experience in process-
ing slides and analyzing stool samples of the microscopist is
one limiting factor affecting accuracy of results. The generally
low sensitivity results for microscopic diagnosis are usually
augmented by performing repeated microscopic examination
to confirm a microscopic finding. This basically implies
that aside from being a less effective diagnostic tool
compared to other serological techniques, conventional
microscopy is also time-consuming and tedious, as it
generally requires an average rate of 10 min per slide
before oocysts can be detected and its diagnostic accu-
racy is largely dependent on the experience and skills of
the microscopist [21•].

Several preparation and staining techniques were devel-
oped to improve detection of parasites in stool samples.
Among the four existing commonly used preparation tech-
niques for microscopic analysis of stool samples: Sheather’s
flotation (SF), normal saline sedimentation staining (NSSS),
direct fecal smear staining (DFSS), and Sheather’s flotation
sedimentation staining (SFSS), the latter is considerably more
sensitive and specific compared with the other three, having
sensitivity and specificity values of 82.6 and 98.8 %, respec-
tively [22]. Most laboratories use a modified acid-fast or Saf-
ranin stain to detect oocysts. Two other microscopic methods
namely auramine phenol microscopy and immunofluores-
cence microscopy have improved sensitivity, 92.1 and
97.4 %, respectively, though it still has the potential to pro-
duce false-negative results [23]. Despite its downsides, the use
of microscopy as a diagnostic tool for Cryptosporidium re-
mains to be the most common technique to detect presence
of active infection and is the only technique that can distin-
guish the presence of oocysts. However, when there is high
index of suspicion, it is highly advisable to do confirmatory
tests, such as PCR for microscopy-negative samples. While
highly sensitive, molecular-based tests, such as polymerase
chain reaction (PCR), enzyme-linked immunosorbent assay
(ELISA), and some immunochromatographic tests such as
the use of ImmunoCard STAT® [23, 24, 25•] are not routinely
available in most laboratories.

In the clinical setting, there is a need for rapid, sensitive,
and specific diagnostic methods that can guide appropriate
control and therapy for cryptosporidiosis [23]. Antigen-
based detection using ELISA and Western blot methods has
been widely used. ELISA, however, has its limitations which
involves the relative decrease specificity due to occurrence of
cross reactions with closely related parasitic antigens. In

addition, some comparative evaluation studies revealed the
lack of sensitivity of ELISA compared with genotypic assays
[26].

Polymerase Chain Reaction/Multiplex PCR

PCR is now gaining acceptability as the method of choice in
the detection ofCryptosporidium because of higher sensitivity
compared to other methods. Aside from this, it also has the
capacity to detect co-enteropathogens (multiplex), to quantify
the amount of parasites present in the sample when utilizing
quantitative PCR (qPCR), and discriminate between infecting
strains [27]. Also, qPCR is sensitive enough to detect excep-
tionally low copy number of the organism [28]. The simulta-
neous detection in a single assay provides substantial savings
in cost and time in identifying the specific infectious agent and
does not require visual determination or antibody binding,
thus permitting early and appropriate therapy initiation in a
timely and effective manner.

Detection of C. parvum by PCR was first reported in 1991.
Since then, several techniques have been developed to detect
and differentiate Cryptosporidium at the species and subtype
level. Nucleic acid-based methods to screen or detect the pres-
ence ofCryptosporidium involves isolating its DNA, combin-
ing the isolate with PCR mixture that contains primers and/or
probes targeting a region of its nucleic acid sequences, ampli-
fying the target sequence, and detecting the product via gel or
fluorescent dyes. Prior to DNA extraction, it is necessary to
break open the oocysts. Various methods have been reported
such as freeze-thawing, boiling, or use of beads [29]. Ampli-
fied products can be further analyzed by restriction enzyme
digest or by sequence analysis. This approach has significant
advantages due to the flexibility of the primer design. The
development of the droplet digital PCR now provides absolute
quantification without the need for calibration curves or nor-
malization to reference genes. A recent article reported less
affection by inhibitors, lower template copy numbers, but
higher costs, when compared with qPCR [30] .

The gene encoding the 18S rRNA region is being used
more frequently as the target [31] because of more studies
reporting a higher sensitivity in relation to its copy number,
although other genes have also been reported, such as
Cryptosporidium oocyst wall protein [32], 60-kDa glycopro-
tein, heat shock protein 70, Laxer locus, andmicrosatellite loci
[33, 34]. Discrimination of species utilizes sequencing be-
cause of the very close similarity.

Loop-Mediated Isothermal Amplification

Loop-mediated isothermal amplification (LAMP) is an
emerging technology and recognized as a useful diagnostic
tool in Cryptosporidium detection [35]. It has major advan-
tages over other diagnostic methods for detection of
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Cryptosporidium especially at relatively low concentration in
environmental samples [36]. Comparative detection of
LAMP, PCR, and IFA has been documented in several epide-
miological studies. In a study in Iran, LAMP showed higher
sensitivity than PCR and IFA in the detection of
Cryptosporidium oocyst in water samples [37•]. Similarly, a
sensitivity assay performed used in a study in Turkey deter-
mined that LAMP can detect C. parvum DNA at 1.8 fg con-
centration, as compared to 100 fg by nested PCR [38•]. De-
velopment in LAMP assays has improved detection limits for
Cryptosporidium in water and fecal samples. LAMP in com-
bination of ARAD filter for the detection of Cryptosporidium
oocysts in drinking water detected at least one oocyst in 10 l of
drinking water [39]. Findings from a study using RT-LAMP
targeting 18S sRNA had a detection limit of as low as 6×10−3

oocysts/test tube using water samples [40]. LAMP has been
shown to be highly specific and sensitive for the detection of
different Cryptosporidium species using different target
genes. In particular, primer sets targeting gp60 was used to
detect C. parvum [36], heat shock protein (HSP)-70 for Cryp-
tosporidium andersoni [41], and S-adenosyl-methionine syn-
thetase (SAM) gene for C. parvum, C. hominis, and Crypto-
sporidium meleagridis in fecal and water samples [38•, 41]. A
new approach of an inclusion of a restriction site to generate
clonable LAMP products was used to validate findings by
sequencing [41]. A commercially available LAMP kit
(Loopamp®, Eiken Chemical Co, Japan) is now being used
for the detection of Cryptosporidium in environmental sam-
ples. Although LAMP is rapid and effective method of diag-
nostic method, one current limitation is the limited range of
available sequences of Cryptosporidium species for primer
design. Further development of different LAMP methods
would lead to better decisions concerning treatment, contam-
ination, and public health risks. Due to its sensitivity and sim-
plicity, this method may prove to be a useful diagnostic tool in
epidemiologic studies of Cryptosporidium detection.

Fluorescent In Situ Hybridization

The epidemiological importance of human cryptosporidiosis
resulted in the development of innovative techniques that
would identify oocysts in both clinical and environmental
samples. Direct identification of zoonotic Cryptosporidium
species without the use of PCR-based methods is of great
importance during outbreak investigations. Simpler tools that
provide species-specific information would enable water util-
ities and public health authorities to better assess the potential
human health risks associated with Cryptosporidium positive
environmental samples. One of these techniques is the fluo-
rescence in situ hybridization (FISH). This method utilizes
fluorescently labeled complementary DNA oligonucleotide
probes that target-specific sequences of cellular rRNA for di-
rect identification of microorganisms. Ribosomal RNA

(rRNA) targeted oligonucleotide probes provide an advantage
because they can be designed to various degrees of specificity,
reaching from genus to species and even subspecies level.
Fluorescently labeled rRNA targeted probes applied in FISH
have emerged as a powerful tool for the detection of microor-
ganisms in a wide range of environmental samples. The rRNA
is used because it is a naturally amplified target for hybridiza-
tion probes due to its high copy number. The procedure in-
cludes the following steps: (i) fixation of the specimen; (ii)
preparation of the sample, including specific pre-treatment
steps; (iii) hybridization with the respective probes for detect-
ing respective targets; (iv) washing steps to remove unbound
probes; (v) mounting, visualization, and documentation of
results [42–44].

The first use of 6-carboxyfluorescein phosphoramidite as a
label for fluorescent in situ hybridization for specific detection
of C. parvum was developed in 1997 [45]. The probe set
consisted of two synthetic oligonucleotides each tagged with
a fluorescent reporter molecule. Each probe strand detects
ribosomal RNA from a range of isolates of this species, and
the combination was designed to allow detection of all iso-
lates. However, the sets were not tested for utility in actual
water samples.

A fluorescent in situ hybridization (FISH) technique devel-
oped by Vesey et al. (1998) shows considerable promise as an
indicator of C. parvum oocyst viability [46]. In these assays, a
fluorescent DNA probe is targeted to the 18S rRNA of
C. parvum. The 18S rRNA is usually present in viable organ-
isms and is degraded by cellular RNases in dead or dying
cells. Hybridization with the designed Cry1 probe resulted in
fluorescence of sporozoites within oocysts that were capable
of excystation, while oocysts that were dead prior to fixation
did not fluoresce. Results also showed that the fluorescence of
FISH-stained oocysts was not bright enough to enable detec-
tion of oocysts in environmental water concentrates contain-
ing auto-fluorescent algae and mineral particles. However, in
combination with immunofluorescence staining, FISH en-
abled species-specific detection and viability determination
of C. parvum oocysts in water samples. The 18S rRNA can
be used successfully for species-specific design of probes for
FISH detection of Cryptosporidium spp. FISH using a
C. parvum-specific probe provided an alternative tool for ac-
curate identification of zoonotic Cryptosporidium which can
be applied to both epidemiological and outbreak investiga-
tions [43, 46, 47]. Since its development, several studies have
utilized FISH in recovering C. parvum in flies which causes
mechanical transmission of the pathogen [48], direct and rapid
detection of C. parvum on polytetrafluoroethylene (PTFE)
membrane [49], testing of recreational beach water samples
[50], and visualizing C. parvum life-cycle stages in cell-free
culture [51].

Although most studies focused on detection of C. parvum
only, a two-color FISH assay, based on species-specific probes
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for C. parvum and C. hominis, can distinguish between the
two major species involved in human infections. The potential
to detect and identify pathogenic Cryptosporidium species in
clinical, water, and environmental samples within a 3-h time
frame demonstrates that FISH presents an alternative to PCR-
based assays [52].

The major drawback for FISH technique, however, is that it
is limited to measuring the viability of C. parvum oocysts and
not their infectivity. The extent to which FISH probes are
useful for studies of oocyst viability is dependent on the rate
at which SSU rRNA decays. Quantitative assessment of rapid
decay upon cell death for SSU rRNA has not really been done,
and it is likely that the rate of degradation will vary depending
on different environmental conditions (i.e., temperature, pH,
salinity, and/or RNase contamination present) [53].

Recent Advances

Nanotechnology-Based Platforms

The potential of nanotechnology-based materials has been uti-
lized to improve specificity and sensitivity of other detection
methods such as ELISA, PCR, lateral flow assays, and
immunofluorescent-antibody microscopy [1•, 54•, 56]. One
of the main problems encountered in IFA microscopy is the
presence in water samples of inert particles or algal cells
which have strong auto-fluorescence that can compete with
the signal of labeled cells. Although fluorescent dyes have
been suggested to effectively label oocysts in water samples,
they have high susceptibility to photodegradation and have
broad excitation and emission spectra. The use of semicon-
ductor quantum dots for immunofluorescent labeling of
C. parvum oocysts in water samples has shown to provide
excellent and more consistent results [57–59]. Labeling with
quantum dots (QD) can detect up to 4495 oocysts. The differ-
ence in detected oocysts using quantum dots and FITC does
not have any significant difference even at various C. parvum
oocyst concentrations [58]. In terms of photostability, QD-
labeled oocysts exhibit better photostability after being ex-
posed to continuous UVexcitation for 5 min while the inten-
sity of FITC-labeled oocysts can decrease to 19.5 % after the
same period [57, 59]. Quantum dot labels also have approxi-
mately 50% lower interference in concentrated water samples
compared to organic fluorophore labels [59]. Another appli-
c a t i on o f nano t e chno logy -ba sed ma t e r i a l s f o r
Cryptosporidium diagnosis is the use of oligonucleotide gold
nanoparticles for molecular detection without the need for
amplification of nucleic acids and proteins [60]. Examples
of assays that have been developed using gold nanoparticles
are the electrochemical-based sandwich enzyme-linked
immunosensor [61], rapid immunodot blot assay [62], and
amplification-free detection systems [60] by using a dual-

labeled gold nanoparticles (alkaline phosphatase (ALP) and
anti-oocyst monoclonal antibody) functionalized indium tin
oxide electrode.With this approach, the sensitivity of the elec-
trochemical immunosensor increased with a limit of detection
of 3 oocysts/ml in a minimal processing period [61].

The other assay developed using gold nanoparticles is the
immunodot blot assay. Compared to the conventional method
of adding anti-oocyst monoclonal antibodies then ALP-
conjugated secondary mouse antibodies to immobilized
C. parvum, this enhanced method makes use of dual-labeled
gold nanoparticles to detect the C. parvum. The sensitivity of
the immunodot blot assay was improved by 500 times com-
pared to the conventional method that it can detect as low as
10 oocysts/ml. The enhanced assay also had good coherence
with the results of PCR detection of the organism in water
samples [62].

Aside from detection using antibodies, RNA’s coding for
the 18S rRNA and HSP70 have also been targeted using oli-
gonucleotide gold nanoparticles. The hybridization of nano-
particle probes to 18 s rRNA, which was done without ampli-
fication, was detected without complex technology was able
to detect as few as 670 oocysts/ul in spiked stool samples.
Cross-reactivity with either 18 s rRNA of other protozoan
parasites or Escherichia coliwas not observed [60]. Targeting
the HSP70 gene, on the other hand, causes formation of oli-
gonucleotide networks that are visually detected with simple
colorimetric readout. Detection after inducing expression of
HSP70 has sensitivity that can detect as low as 5000 oocysts
[63]. Both of these methods have potential of being used for
point-of-care assays for C. parvum.

There are other nanotechnology-based detection methods
that have been less studied such as the background-free cy-
tometry with rare earth nanoparticle bioprobes [64],
bioimaging with silica-encapsulated europium particles [64],
and the use of piezoelectric-excited millimeter-sized cantile-
ver (PEMC) sensors [55, 65].

Towards Point-of-Care Technology

Lab-on-a-Chip

The concept of micro total analysis system (μTAS), later in-
dicated as a lab-on-a-chip, was introduced by Manz and col-
leagues in the early 1990 [66, 67]. They introduced the con-
cept of scaling down the size of analytical devices for im-
proved performance and portability. An ideal μTAS requires
only a small volume of sample and incorporates all necessary
manipulations and analysis steps to deliver a qualitative or, in
some cases, quantitative result in a single-in-answer-out man-
ner [68]. The majority of μTAS platforms developed for de-
tecting Cryptosporidium are principally for environmental
analysis for cryptosporidial contamination from water
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sources. The platforms used for detection range from size-
filtering-based microfluidic devices [69, 70] to nucleic acid-
based amplification systems [71], the protozoan’s
dielectrophoretic properties [72, 73], and immunological
properties [74]. These μTAS technologies are promising plat-
forms for future point-of-care (POC) platforms that may even-
tually be suitable not only for environmental surveillance but
also as clinical diagnostic tools. One promising technology
that has been tested for both epidemiological surveillance
and now piloted for clinical diagnosis among HIV patients
suspected of cryptosporidiosis is the use of microfluidic im-
munoassay system targeting the P23 antigen of the
Cryptosporidium developed by Zhang and colleagues [75].
The detection process can be completed within 10 min using
2μl of the sample volume. It generated a diagnostic sensitivity
of 100 % and diagnostic specificity of 98.2 %. Although the
technology remains Bnear^ POC, the challenge of miniaturiz-
ing the digital conversion of fluorescence signal to a handheld
device may well be expected in the near future.

Immunochromatographic Tests

The development of POC tests for the diagnosis of
Cryptosporidium addresses the challenges posed by
resource-limited settings and the patient’s need for immediate
intervention. The majority of POC test kits that have been
commercially available over the past decade utilizes the prin-
ciple of immunochromatographic assays (ICT) in the form of
test strips [56, 76, 77, 78•, 79, 80, 81•, 82•]. Generally, the
strips follow the lateral flow concept where Cryptosporidium
antigen-specific antibodies are bound to a membrane and uses
capillary flow to move the labeled antibody-antigen complex
[83]. One of the considerations in gauging the performance of
a POC test strip is having a turn-around time of 10 min—the

assumed time a microscopist scans a slide prior to declaring
negative results [82•, 84].

Despite its increasing commercial availability and simplic-
ity, a few clinical laboratories in resource-replete regions re-
sort to ICT rapid testing and still consider microscopy as the
standard for diagnosis [85, 86•]. Aside from a relatively high
testing cost, the available POC tests exhibit a wide range of
sensitivity, from as low as 13.6 % [87•] to as high as 100 %
[88•, 89], with a good specificity of 97–100 %, nonetheless
[77, 80, 90, 91]. Due to the wide range of sensitivity, it is
necessary to constantly evaluate the tests’ diagnostic perfor-
mance in varying settings with focus on the assessment of its
effect on patient-centered outcomes [92•].

Furthermore, the current commercially available POC tests
are limited to detecting the presence or absence of the parasite
without the capacity to quantify the burden of infection and
differentiate between genus [87•]. However, these limitations
can be outweighed if POC tests will be used to accelerate
treatment initiation, to test a relatively large number of at-
risk patients or to screen individuals during epidemics. Some
of the commercial tests comprise of a combination of antibod-
ies specific for 2–3 antigens such as the RIDA® QUICK
Cryptosporidium/Giardia Combi cassettes (R-Biopharm,
Germany) [77], ImmunoCard STAT®Crypto/Giardia (Meridian
Bioscience, Inc.) [91], and RIDA® QUICK Cryptosporidium/
Giardia/Entamoeba Combi dipsticks (R-Biopharm, Germany)
[93•]. These single panels are used to detect an enteric infection
caused by either Cryptosporidium or Giardia, as in the case of
RIDA® QUICK Cryptosporidium/Giardia Combi and
ImmunoCard STAT® Crypto/Giardia, and Cryptosporidium/
Giardia/Entamoeba for the RIDA® QUICK Cryptosporidium/
Giardia/EntamoebaCombi, with comparable performance met-
rics (see Table 2) [25•, 81•, 87•, 88•, 93•]. Although this diag-
nostic platform is best coupled with standard/routine diagnostic

Table 2 List of common commercially available immunochromatographic tests and their corresponding performance metrics

ICT test Sensitivity Specificity PPV NPV

Savyon® CoproStrip™ [82•] 74 98 97 94

Coris Duo-Strip† [88•] 66.7 95.2 – –

Dia.Pro CA-RT [81•] 86.7 100 100 95.2

Coris Crypto-Strip [77, 91] 61.1 99.3 80 98

Techlab Quik Chek [88•, 89] 100 100 100 100

Meridian ImmunoCard STAT!® CGE‡ [88•] 100 95.4 – –

Meridian ImmunoCard STAT!® CG† [25•, 81•, 91] 87.3 99.6 95.6 98.6

ThermoFisher Remel™ Xpect™ [91] 68.8 100 – –

R-Biopharm RIDA®QUICK Cryptosporidium [23, 77, 88•, 90, 93•] 83.1 98.6 89.4 97.8

R-Biopharm RIDA®QUICK CG Combi† [77, 87•, 93•] 53.4 98.9 91.7 82.6

R-Biopharm RIDA®QUICK CGE Combi‡ [93•] 71.1 94.3 65.2 95.6

†A single platform that simultaneously detects Cryptosporidium and Giardia infections.
‡A single platform that simultaneously detects Cryptosporidium, Giardia and Entameoba infections.
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procedures, it can be a primary option for the rapid qualitative
diagnosis of a possible enteric parasite for providing immediate
intervention or a basis for performing further laboratory testing.

Conclusion

While the challenge of therapeutic intervention for
Cryptosporidium remains a huge task, the challenge of diag-
nostic technology for active case detection has moved at con-
siderable speed. The major limiting factor of these existing
technologies is access. The major driver for developing diag-
nostic point-of-care testing is to improve the turn-around-time
of such testing, thereby allowing clinicians and patients to
make a quick clinical decision. For point-of-care tests to have
maximal impact in resource-limited settings, it is necessary for
the cost of the technology to be affordable even to the mar-
ginalized sector of society. To optimize point-of-care testing in
resource-limited settings, diagnostic tests need rigorous as-
sessments focused on relevant clinical outcomes and opera-
tional costs, which differ from assessments of conventional
diagnostic tests [92•]. The development of a fully integrated
POC platform for the diagnosis of Cryptosporidium must in-
clude each aspect of test performance such as sample prepa-
ration, on-chip nucleic acid analysis and immunoassay, and
system integration/automation. At this point in time, ICT plat-
forms remain to be the closest to bedside; however, a chal-
lenge remains on the ability to identify and discriminate inten-
sity disease burden. This can be augmented with strong clin-
ical correlation and the knowledge on the burden and epide-
miology of the disease in clinical setting.
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