
Int. J. Dynam. Control (2014) 2:404–414
DOI 10.1007/s40435-013-0042-9

Modal and whirling analysis of coupled lateral and torsional
vibration of herringbone gear

Siyu Chen · Jinyuan Tang · Changjiang Zhou · Zehua Hu

Received: 17 July 2013 / Revised: 14 November 2013 / Accepted: 18 November 2013 / Published online: 10 December 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract The coupled lateral and torsional motions are sig-
nificant for the herringbone gear in high-speed applications.
The present work attempts to investigate the influences of
damping, eccentric mass and time varying mesh stiffness of
gear pair on the modal vibration of a herringbone gear pair.
Under high-speed condition, the gyroscopic performance as
a result of coupled lateral and torsional motions cannot be
ignored. To achieve a targeted analysis, the equivalent mesh
stiffness of the herringbone gear pair is calculated in pre-
processing based on the finite element method by consider-
ing the thin rim and web. Subsequently, an analytical model
for coupled lateral and torsional motions of the herringbone
gear is proposed. Then, the natural frequencies, synchronous
whirling speed, critical speed, as well as the transient behav-
iors with time invariant and time varying stiffness, are cal-
culated numerically. The results in Campbell diagram show
that the damping affects the critical speed slightly while the
eccentric mass will reduce the critical speed significantly.
Transient dynamics analysis shows that no matter which stiff-
ness models are used, the high frequency components are
predominant, which may be the results of frequency veering
phenomena at high order natural frequency. The present work
indicates the necessity of paying attention to the critical speed
relative to mesh frequency in high speed gear applications.
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List of Symbols

αi (i = p, g) Angular perturbation
αn Normal pressure angle
α1 Supporting damping coefficient
β Helix angle
β1 Supporting damping coefficient
θ Rotation displacement
ωi Rotation velocity
δm Mesh deflection
λ eigenvalues
ζ Damping ratio
τ Dummy integration variable
v Poisson ratio

i Angular velocity
cm Mesh damping
ei Eccentric length
km Mesh stiffness
m Normal module
mi mass
rbi Basic radius of gear
x, y Translation displacement
zi Number of teeth
E Young’s modulus
T Function of kinetic energy
U Function of strain energy
Ti Drag torque
JPi Moment of inertia
X, Y, Z Unit vector of axis
Mi Mass matrix
Gi Gyroscopic matrix
C Damping matrix
Q̃i Nonlinear force
K Stiffness matrix
q Variation vector
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Fin Internal excitation vector
Fex External excitation vector
SWL Synchronous whirl line
TR Torsional response
LR Lateral response
TE Transmission error
NLTE No load transmission error

1 Introduction

In simple gear dynamic models, the effects of shaft and bear-
ing flexibility are simplified or neglected with an underlying
assumption, to study the dynamic characteristics along the
mesh plane. Theoretically, the coupled lateral and torsional
vibration characteristics may be different from those obtained
in an uncoupled analysis model [1–5].

Therefore, the coupled effects of lateral and torsional
vibrations have attracted increasing attention in gear dynam-
ics analysis. For example, in high-speed applications, the
gear dynamic force is transmitted through the shaft and bear-
ing. Conversely, the shaft deflection, together with bearing
stiffness and damping may affect the mesh characteristics of
a gear pair. Kang and Kahraman’s [6] experimental results
show that the shaft flexibility can alter the dynamic response
of a gear pair. Furthermore, the coupled lateral and torsional
modes are also confirmed experimentally in a planetary gear
system [4].

Dynamic models combining gears with flexible shafts
and bearings have been investigated by numerous scholars.
The core concept of their methods is to represent shaft by
a finite element model and introduce bearing flexibility by
a linearized 8-coefficient bearing model. The stiffness and
damping contained in the shaft and bearing exert significant
influence on the modal behavior [7]. Lund [8] first considered
coupled effects in the torsional–lateral vibrations for a geared
rotor system. Iida et al. [9] considered a simple geared system
with coupled torsional and flexural vibrations. Kahraman et
al. [2,10] developed a gear rotor system model, in which a
finite element model is used to represent shaft and the flex-
ibility of bearing is considered. Baud and Velex [11] inves-
tigated the dynamics of gear–shaft–bearing systems using a
nonlinear gear model. A nonlinear approach, proposed by
Baguet and Velex [12], is applied to analyze the dynamic
behaviors of the gear–shaft–bearing model. The shaft is also
represented by a finite element model and the proposed gear
element can account for time varying mesh stiffness as well as
tooth shape deviations. Subsequently, Baguet and Jacquenot
[13] extended the model to helical gears and finite-length
hydrodynamic bearing systems. Kang et al. [14] investigated
the dynamic behaviors of a gear–rotor system with effects of
viscoelastic supports, gear eccentricity, transmission error,
and residual shaft bow.

It is well known that a common source of rotor whirling
is rotor unbalance, since real rotors can seldom be perfectly
balanced in practice. On the other hand, for a gear rotor sys-
tem, the mesh force will push away the contact pair from
the static rotation axes and thus the gyroscopic performance
can not be ignored. As modal analysis with gyroscopic effect
is intractable [3,15], under some conditions, the gyroscopic
force of a gear rotor system is neglected [16,17]. However,
in high-speed applications such as in turbofan and turbo-
prop engines, the gyroscopic effect should be taken into
consideration as stated by Abousleiman et al. [18]. Kumar
and Rao [19,20] studied the whirling motion and critical
speed of a pair of spur gears by considering the gyroscopic
effect.

The herringbone gear, also named double-helical gear,
as the main component of a power flow transmission sys-
tem, has been widely used in aeroengine operating under
high speed and high power conditions [21,22]. It has unique
characteristics of large contact ratio, smooth transmission
and low noise, which make the system meet the require-
ments of heavy duty working conditions. Additionally, the
herringbone gear can accommodate the axial forces which
may result from axial misalignment and reduce the rigorous
request for bearing. However, literature on the herringbone
gear is quite rare and the corresponding analysis is limited to
geometrical analysis, and load distribution and transmission
error under static conditions. Jauregui and Gonzalez (cited
in Ref. [23]) have studied the axial vibrations in herringbone
gears by using a single degree-of-freedom dynamic model.
Ajmi and Velex [23] presented a model for analyzing the
quasi-static and dynamic behaviors of the herringbone gear
by taking into account time varying mesh stiffness, gear dis-
tortion and shape modifications. In their model, the herring-
bone gears were constructed by two identical gear elements
with opposed helices separated by Euler beam elements. The
gyroscopic effect is ignored and mesh stiffnesses are not
independent since they are all connected to two deformable
shafts.

Theoretically, the mesh stiffness of herringbone gears
can be calculated by using the method adopted in helical
gears [24]. But the thin rim and web for reducing the total
mass of the transmission system will disturb this strategy in
practice.

The main motivations of the present paper are to reveal the
modal vibration structure of high speed herringbone gears
with gyroscopic effects. First, the equivalent mesh stiff-
ness of the herringbone gear pair with thin rim and web
is calculated based on the finite element method. Then, a
dynamic model including five rigid body degrees of freedom
of each gear (the axial degree of each gear is neglected) is
developed to analyze modal vibrations. Finally, the whirling
motion and critical speed of the herringbone gear is analyzed
numerically.
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406 S. Chen et al.

2 Mesh stiffness of herringbone gear

To study the dynamic mesh performance of a pair of her-
ringbone gears, the mesh stiffness and static transmission
error should be first calculated. Generally, the mesh stiffness
of a herringbone gear can be calculated by using the method
adopted for helical gears, where the left and right helical gears
are connected by using Euler type finite beam elements [23].
In order to account for the effects of the thin web and rim
of the herringbone gear, a calculation method for equivalent
mesh stiffness based on the finite element method is proposed
in the present work.

With the basic design parameters of the herringbone gear
in Table 1, the finite element model is constructed as shown
in Fig. 1. In this model, only nine pairs of teeth are modeled,
assuming that the effects of other pairs are negligible. The

Table 1 Basic design parameters of Herringbone gear

Symbol Pinion
(i = p)

Gear
(i = g)

Number of teeth zi 23 157

Normal pressure angle (◦) αn 20

Normal module (mm) m 3.0215

Helix angle (◦) β 30

Young’s modulus (MPa) E 210,000

Poisson ratio v 0.3

Mass (kg) mi 2.16 41.25

Moment of inertia (kg ∗ m2) JPi 0.0036 0.97

JDi 0.0025 1.91

Supporting stiffness (N/m) kxi 6.53 E7 4.16 E7

kyi 6.53 E7 4.16 E7

kθxi 6.16 E5 2.06 E6

kθyi 6.16 E5 2.06 E6

kxiθyi 2.28 E5 5.56 E6

kyiθxi 2.28 E5 5.56 E6

Supporting damping coefficient α1 100

β1 5E−5

Mesh damping (Ns/mm) cm 200

hexahedron C3D8R element is adopted to mesh the gear teeth
and body. The element number for the pinion and gear is
166,864 and 247,546 respectively. Two reference points are
created, which are geometrical points that can be used in
Abaqus to simulate rigid bodies. The drag torque is applied to
the gear and the rotation displacement is added to the pinion.
The Abaqus/standard procedure is performed to analyze the
static teeth contact.

Then the transmission errors can be defined from the actual
total angles of rotation as [25]

TE = rbpαp + rbgαg + NLTE (1)

Here, rbi (i = p, g) is basic radius of gear i, τ is a dummy
integration variable, αi is the angular perturbation with
respect to rigid-body ration at the reference point, and NLTE
is no load transmission error.

Simply, the mesh process of the herringbone gear along the
line of action can be assumed as an equivalent mesh stiffness
and damping. In the static analysis, the damping effect is neg-
ligible and the equivalent mesh stiffness can be deduced as

km = Tg

TE · rbg cos β
(2)

here, β is helix angle, Tg is drag torque, and rbg is basic radius
of gear. Generally, the 3D models of a gear pair are perfect,
namely NLTE = 0. But after the gear body is partitioned and
meshed, the geometric error is induced inevitably. Besides,
the numerical error is also inevitable. Accordingly, NLTE
must be taken into account in the mesh stiffness analysis. To
overcome the two problems, the static analysis is performed
under two load conditions, i.e., high load (14,000 N/m) and
no load (10 N/m. Zero load is irregularity for the static analy-
sis in the Abaqus. Under this condition, the contact deflec-
tion is neglected). Then the NLTE is obtained according to
the Finite element analysis of herringbone under no load
condition.

With a drag torque of 14,120 Nm, the mesh forces are
illustrated in Fig. 2, where the abscissa axis refers to Abaqus
step time without unit, and the symbol T means gear mesh
period. From the figure, it can be known that there are at
least four pairs of teeth under mating process. The total con-

Fig. 1 Finite model of
herringbone gear pair
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Fig. 2 Mesh force

Fig. 3 Equivalent mesh
stiffness of herringbone gear

tact ratio is much larger than the theoretical value (in theory,
the transverse contact ratio is 1.409 and the axial contact
ratio is 1.896), which may result from the deflection of tooth
and foundation. With a high contact ratio, the herringbone
gear will rotate and transmit torque smoothly. With Eq. (2),
the equivalent mesh stiffness is illustrated in Fig. 3, which
indicates that the equivalent mesh stiffness is time periodic
approximately. The mesh stiffness of the herringbone gear
is different from that of other gears as there are many sharp
peaks in the stiffness curve, which is mainly caused by the
changing of tooth number in contact.

3 System model

The herringbone gear transmission system is considered to be
rigid with zero axial extension to translational displacements
and three rotation displacements. As mentioned in Ref. [26],
it is convenient to consider two angles θxi (i = p, g) and
θyi as coordinates describing the angle motion of the rotor
as shown in Fig. 4. In this way, θxi becomes an angular dis-
placement in the yz plane, describing a small rotation around
the x-axis while θyi becomes an angular displacement in the

xz plane describing a rotation around the y-axis. Here, note
that the profile errors of both helical gears are not considered
in the present paper, thus unlike single helical gear, they do
not produce axial force.

The rotation velocity of gear i can be written as

ωi = [
cos (
i + α̇i ) θ̇yi + sin (
i + α̇i ) θ̇xi

]
X

+ [
sin (
i + α̇i ) θ̇yi − cos (
i + α̇i ) θ̇xi

]
Y

+
[
(
i + α̇i ) + θxi θ̇yi − θyi θ̇xi

2

]
Z (3)

ZX

Y

xθ
yθ

αΩ +

ZX

Y

xθ
yθ

αΩ +

Fig. 4 Typical rotor configuration and coordinate system
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Here, 
i is spin speed and α̇i is torsional velocity. Then, the
kinetic energy of gear i including torsional kinetic energy
and eccentricity e are obtained,

Ti = 1

2
mi

(
ẋ2

i + ẏ2
i

) + 1

2
JDi

(
θ2

yi + θ2
xi

)

+ 1

2
JPi (
i + α̇i )

(
θxi θ̇yi − θyi θ̇xi

) + 1

2
JPi (
i + α̇i )

2

+ mi ei (
i + α̇i ) [ẏi cos (
i t + αi + ϕi )

− ẋi sin (
i t + αi + ϕi )] + 1

2
me2

i (
i + α̇i )
2 (4)

The kinetic energy can be written in matrix form as

Ti = 1

2
q̇T

i Mi q̇i + 1

2
q̇T

i Gi qi + Q̃i (qi , q̇i ) (5)

here,

qi = [
xi , yi , θxi , θyi , αi

]T (6)

Mi = diag
(

mi , mi , JDi , JDi , JPi + me2
i

)
(7)

Gi = 
i

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

0 0 0 0 0

0 0 0 0 0

0 0 0 JPi 0

0 0 −JPi 0 0

0 0 0 0 0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

(8)

Q̃i (qi , q̇i ) = +1

2
JPi α̇i

(
θxi θ̇yi − θyi θ̇xi

)

+ 1

2
JPi (
i )

2 + JPi
i α̇i

+ mi ei (
i + α̇i ) [ẏi cos (
i t + αi + ϕi )

− ẋi sin (
i t + αi + ϕi )]

+ 1

2
me2

i (
i )
2 + me2

i 
i α̇i (9)

Figure 5a shows a gear pair, in which the mesh teeth are
replaced by mesh stiffness km and damping cm along the
pressure line in the action plane. As mentioned above, the
axial force of the herringbone gear is zero when the teeth
profile errors are neglected. Then the herringbone gears can
be simplified as an equivalent spur gear pair in the mesh
process, shown in Fig. 5b.

The deflection at any potential point of contact can be
expressed as

δm = (
x p − xg

)
cos αn + (

yp − yg
)

sin αn

− (
rbpαp + rbgαg

) − e (
mt)

= VT q − e (
mt) (10)

here,

q =
[

qp

qg

]
,

VT = (
cos αn, sin αn, 0, 0,−rbp,− cos αn,

− sin αn, 0, 0,−rbg
)

(11)

Then the gear strain energy is

Fig. 5 Gear mesh model
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U1 = 1

2
kmδ2

m = 1

2
km

(
VT q − e (
mt)

)2

= 1

2
kmqT VVT q − kme (
mt) VT q + 1

2
km [e (
mt)]2

(12)

Given that the strain energy relates to the shaft and/or bearing,
the total strain energy can be written as

U = U1 + 1

2
qTKq (13)

here

K =
[

Kp 0
0 Kg

]
,

Ki =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

kxi 0 0 −kxiθyi 0

0 kyi kyiθxi 0 0

0 kyiθxi kθxi 0 0

−kxiθyi 0 0 kθyi 0

0 0 0 0 0

⎤

⎥⎥⎥
⎥⎥⎥
⎦

(14)

After Lagrange equations are applied, the equation of
motions for the un-damped system is derived as

Mq̈ + Gq̇ +
(

K + kmVVT
)

q + Q̃ = Fin + Fex (15)

here,

Q̃ =
(

0, 0,−1

2
JPi

(
α̈iθyi + 2α̇i θ̇yi

)
,

1

2
JPi (α̈iθxi

+ 2α̇i θ̇xi
)
,

1

2
JPi

(
θxi θ̈yi − θyi θ̈xi

))T

Fin =
[

Fp
in

Fg
in

]

, M =
[

Mp 0
0 Mg

]
, G =

[
Gp 0
0 Gg

]

(16)

Fi
in =

(
mi ei (
i + α̇i )

2 ,−mi ei α̈i , 0, 0,−mi ei ÿi

)T

× cos (
i t + αi + ϕi )

+
(

mi ei (
i + α̇i )
2 , mi ei α̈i , 0, 0, mi ei ẍi

)T

× sin (
i t + αi + ϕi ) (17)

Fex = −kme (
mt) VT +(
0, 0, 0, 0, Tinp, 0, 0, 0, 0, Toutp

)T

(18)

The equivalent viscous damping matrix for the supporting
shaft and bearing, and the linear mesh damping are intro-
duced in a form similar to the equivalent stiffness matrix as

C = Cs + cmVVT (19)

Then the equation of motions for the herringbone gear pair
is derived under the form

Mq̈ + (G + C) q̇ +
(

K + kmVVT
)

q + Q̃ = Fin + Fex

(20)

Table 2 Natural frequency of gear

Modal no. Natural frequency

Rad/s rpm

1 1323.2 12,636

2 1323.2 12,636

3 1649.1 15,748

4 2059.0 19,662

5 2245.1 21,439

6 5020.5 47,942

It should be noted that matrix Cs defines the external damping
of the shaft and bearing, which can be set up by proportional
damping as

Cs = α1M + β1K (21)

Here α1 and β1 refer to the supporting damping coeffi-
cients of the system and can be obtained according to the
natural frequency of herringbone gear, which is listed in
Table 2.

4 Numerical results

4.1 Effect of damping on modal vibration

For the convenience of numerical analysis, the second order
differential equation (20) can be written as a state equation

Ẋ = AX + B (22)

by introducing a new state variable

X = (q, q̇)T (23)

here,

(24)

The resulting system of equation gives non self-adjoint eigen-
value problem. In general, the eigenvalues are a function of
the rotating spin speed of the pinion shaft (in the present work,
the gear reduced speed ratio is assumed to be constant) and
are in the form [15] (In page 40 of the book)

λ j = ω j

(
ς j ± k

√
1 − ς2

j

)
, ( j = 1, 2, . . . N ) (25)
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410 S. Chen et al.

here, k2 = −1, ς j is the frequency damping constant or
damping ratio, and ω j is the damped natural frequency of
whirl speed.

In the first case, the external damping, the mesh damping,
and the eccentric mass are all ignored. The time varying mesh
stiffness is assumed to be constant with mean value shown
in Fig. 3. Figure 6 shows the Campbell diagram of the her-
ringbone gear transmission system. There are two forward-

whirling modes in which the pinion whirls in the direction of
its spin speed, and two backward-whirling modes in which
the pinion whirls opposite to the direction of its spin speed.

As for rotor dynamics, a critical speed of orders of a single
shaft rotor is defined as spin speed for which a multiple of that
speed coincides with one of the systems’ natural frequencies.
The intersection of the Synchronous Whirl Line (shortened
by SWL) ω j = s
i with the natural frequency curve ω j

Fig. 6 Campbell diagram and
critical speed relative to shaft
frequency (undamped)

Fig. 7 Campbell diagram and
critical speed relative to mesh
frequency (undamped)
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Modal and whirling analysis 411

Fig. 8 Campbell diagram and
critical speed relative to shaft
frequency (damped)

Fig. 9 Campbell diagram and
critical speed relative to mesh
frequency (damped)

defines the critical speed. For the gear transmission system,
two coupled shafts lead to two SWLs, as shown in Fig. 6.
When the pinion rotates in region (0 and 30,000) rpm, there
are four intersection points between SWLp (the subscript p
indicates the SWL relative to the pinion shaft speed, and g
is for the gear) and natural frequency curves. Points ω

ps
1 and

ω
ps
3 are backward synchronous whirling modes while ω

ps
2

and ω
ps
4 are forward synchronous whirling modes. Generally,

the backward synchronous whirling is exposed to stronger
damping because material damping becomes active due to
the alternating deformation of the shaft. When the forward
synchronous whirling occurs, the gear pair rotation is dan-
gerous as the shaft rotates in bent condition and its defor-
mation does not produce damping. Therefore, in the present
herringbone model, the critical speeds are ω

ps
2 (≈6,232 rpm)

and ω
ps
4 (≈12,544 rpm).
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412 S. Chen et al.

Fig. 10 Damping ratio, the
circle indicates the damping
ratio relative to the shaft critical
speed, and the triangle is for the
mesh frequency

As for gear dynamics, a critical speed relating to mesh
frequency is more important as the gear vibration is mainly
determined by the time varying mesh stiffness and static
transmission error, which are varying with mesh frequency.
Figure 7 shows the Campbell diagram and SWLm(the sub-
script m is identical for mesh frequency). It is observed that
the natural frequency curves intersect with SWLm nine times
at ωm

j ( j = 1, 2, . . . 9). During the acceleration phase, the
gear transmission system will encounter four critical speeds
at ω

ps
2,4,6,8 (≈267.8, 536.7, 2281.2, 6695.1 rpm). Addition-

ally, the higher whirling frequency curves ω7 and ω8 have
significant changes varying along with the pinion shaft speed.

Frequency veering phenomena [7] are observed between
curveω8 andω9 for the pinion speed around 18,990 rpm. Dur-
ing the veering phenomena, frequency curves do not cross
but swap their trends and maintain continuity as the speed
increases. In practice, the intensive coupling between the
higher whirling modes ω8 and ω9 may exist in a high-speed
herringbone gear transmission system.

In the second case, the external damping and mesh damp-
ing are introduced with other parameters being the same as
the first case.

The Campbell diagrams of the damped system are shown
in Figs. 8 and 9. The damping ratios are shown in Fig. 10.
A comparison with the Campbell diagrams in the first case
indicates: (1) a lower whirling frequency curve is appear-
ing and there are five intersection points with SWLp and
one intersection point with SWLg. (2) The lowest whirling
frequency seems to be little affected by the spin speed.
The rotation motions at the critical speed ω

ps
1 and ω

gs
1

are safe thanks to the high damping ratio, which is equal
to one. The imagine part of eigenvalue is zero, and the
amplitude of gear vibration will decay exponentially with-
out any oscillation. (3) The resonance vibration at back-
ward and forward synchronous whirling frequency ωm

8 and
ωm

9 will be attenuated due to the high damping ratio ς8 =
ς9 = 0.3934. (4) The herringbone gear system undergoes

unstable motion when the input shaft speed is lower than

p = 536.7 rpm.

4.2 Effect of eccentric mass on modal vibration

In this section, the eccentric mass in the pinion and gear is
considered. Let eg = 0.1 mm and ep = 0.01 mm, and other
parameters are the same as the previous section unless speci-
fied otherwise. The natural frequencies and damping ratio of
the herringbone gear system with and without eccentric mass
under different damping conditions are listed in Table 3.

It is observed that: (1) Under undamped condition, the
eccentric mass will reduce the critical speed of the herring-
bone gear system, especially for modal 6, the critical speed
decreases 44 %. As mentioned above, the forward synchro-
nous whirling will occurs at modal 3, 5, 7, 9. (2) Under
damped condition, the trend affected by the eccentric mass
is the same as that under undamped condition. Two new low
critical speeds are found located at 41.519 rpm for mesh fre-
quency and 954.93 rpm for shaft speed. Furthermore, the first
critical speed is safe for the damping ratio is 1. The subse-
quent three critical speeds are identical with zero damping
ratio, which means that the herringbone gear system will
oscillate with the increasing of time.

4.3 Effect of mesh stiffness on modal vibration

A constant drag torque 14,120 Nm is adopted and time vary-
ing mesh stiffness calculated in Sect. 2 is used to analyze the
dynamic response of the herringbone gear system. Letting
input shaft speed 
p = 954.93 rpm, the torsional response
(TR, θ) and lateral response (LR, y direction) at the pin-
ion are obtained within 50 periods of shaft time. The FFT
analysis made from time t = 0 is shown in Fig. 11, in which
the red dotted line is for the linear time invariant mesh stiff-
ness and the blue line is for the time varying case. The cou-
pled natural frequency at 
p = 954.93 rpm and correspond-
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Table 3 Natural frequency and damping ratio

Undamped/rpm Damped/rpm

UEC EC UEC EC

S M S M S M D S M D

1 – – – – 954.93 41.519 1 954.93 41.519 1

2 6004.5 264.08 5580.0 243.13 6004.1 264.08 0 5579.9 243.13 0

3 6232.2 267.83 6173.0 267.82 6232.6 267.83 0 6173.1 267.82 0

4 12025.0 529.88 11273.0 491.86 12024.0 529.88 0 11273.0 491.87 0

5 12544.0 536.71 12422.0 536.68 12545.0 536.71 0.0710 12423.0 536.68 0.0710

6 1589.4 20679.0 899.04 1591.0 0.1035 20692.0 899.62 0.0705

7 2281.2 2281.2 2281.2 0.1465 2281.2 0.1465

8 6291.3 5694.5 6275.8 0.3934 5691.9 0.0519

9 6695.1 6293.0 6715.9 0.3934 6276.0 0.3934

10 7099.1 6696.9 7089.9 0.0270 6716.1 0.3934

Note that UEC indicates that the eccentric mass is not considered, and EC means with eccentric mass. S represents critical speed with respect to
shaft speed and M is critical speed with respect to mesh frequency

Fig. 11 Frequency spectrum of
TR and LR

ing frequency components are also listed in Table 4. It is
indicated that the LR has shown frequency component to
be 10853, 20635, 131123 rpm and the TR has shown four
predominant frequencies 5274, 11310, 20687, 130918 rpm.
It is noted that the frequency component at 5,274 rpm of
TR is faintness. In both cases, the response is predominated
by the higher frequency components, which coincides with
the situation that the modal damping is 1 at this input speed
case. And the high frequency component may be a result of
frequency veering phenomena as shown in Figs. 7 and/or 9.
When the input speed is low, the mesh frequency as a pre-
dominant frequency will be close to it. The severity is promi-
nent at the gear pair, which is harmful to the running of the
machine.

When the time varying stiffness is added to the original
system, the frequency response is shown in Fig. 11. It is seen
that the time varying mesh stiffness may reduce the ampli-

Table 4 Coupled natural frequency and response spectra in rpm with
constant mesh stiffness


p = 954.93 rpm

Natural frequency Damping ratio LR TR

1 0 – – –

2 954.93 1

3 5591.7 0.1000 5,274

4 6160.3 0.0936

5 11313.0 0.0715 10,853 11,310

6 12344.0 0.0710

7 20691.0 0.0705 20,635 20,687

8 52467.0 0.1465

9 130911.0 0.0519 131,123 130,918

10 148411.0 0.3936

11 149900.0 0.3936
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tude of high order frequency around 130,918 rpm obviously.
Hence, in high-speed applications of a gear pair, it is much
more useful to acquire the critical speed relative to mesh fre-
quency than that relative to shaft speed. It may be noted that
the current analysis is limited, since the static time trans-
mission error is not included and the transient analysis is
performed.

5 Conclusions

The analytical model for a herringbone geared system was
proposed considering the coupling of lateral and torsional
motion. Firstly, the equivalent mesh stiffness of the her-
ringbone gear pair is obtained based on the finite element
method considering the rim and web. Then, the modal prop-
erty of vibration characteristics and transient behaviors in
high-speed condition were investigated with the gyroscopic
effect. Finally, natural frequencies and corresponding damp-
ing ratio of the coupled system, acting as a function of the
spin speed of the input shafts, were first determined for dif-
ferent damping and eccentric mass conditions. The results,
which were presented by means of Campbell diagram, were
helpful in explaining the effects of gear mesh mechanisms
especially in high-speed applications.

In addition, synchronous whirling motions of the her-
ringbone gear pair were analyzed. The results show that
the damping affects the critical speed slightly while the
eccentric mass will reduce the critical speed significantly.
Transient dynamics analysis was also performed with time
invariant mesh stiffness and time varying mesh stiffness.
In both cases, the high frequency components are pre-
dominant, which may be the results of frequency veering
phenomena at high order natural frequency. The results
indicate that it is necessary to pay attention to the criti-
cal speed relative to mesh frequency in high-speed gear
applications.
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