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Abstract
The present article exploits a novel application of AI-based Levenberg–Marquardt scheme with backpropagated neural net-
work (LMS–BPNN) to analyze the double-diffusive free convection nanofluid flow model (DDFC-NFM) over an inclined 
plate in the existence of Brownian motion and thermophoresis properties embedded in a porous medium. The governing 
PDEs representing DDFC-NFM are transformed into system of nonlinear ODEs by applying suitable transformation. The 
reference data set is generated from Lobatto III-A numerical solver by variation of magnetic field parameter (M), thermal 
Grashof number (Gr), angle of inclination (α), Brownian motion parameter (Nb), Dufour-solutal Lewis number (Ld), modified 
Dufour parameter (Nd) and thermophoresis parameter (Nt) for all scenarios of the designed LMS–BPNN. The approximate 
solution and its comparison with standard solution are analyzed by execution of training, testing and validation procedure of 
the designed LMS–BPNN. The effectiveness and reliable performance of LMS–BPNN are endorsed with MSE-based fitness 
curve, regression analysis, error histogram analysis and correlation index. Results reveal that velocity increases with the 
rise in Gr, whereas reverse trend has been noticed for angle of inclination and magnetic field parameter and the temperature 
profile increases with the increase in Nb, Nd and Nt. The solutal concentration profile increases with the increment in Ld, 
while an increase in Nd causes a decrease in it. When Nt increases, the enhancement in the nanoparticle volume frictions 
occurs, but an opposite behavior is depicted for Brownian motion parameter.

Keywords  Double-diffusive free convection · Nanofluid · Thermophoresis and Brownian motion effect · numerical 
computation · Artificial backpropagated neural network · Levenberg–Marquardt scheme
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�	� Electrical conductivity
DB	� Brownian motion coefficient
T	� Temperature
T∞	� Ambient temperature
N∞	� Ambient volume friction
K′	� Porous medium permeability
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DTC	� Dufour-kind diffusivity
Gr	� Thermal Grashof number
Gm	� Solutal Grashof number
Nb	� Brownian motion parameter
M	� Magnetic field parameter
Ln	� Nanoliquid Lewis number
Ld	� Dufour-solutal Lewis number
Nt	� Thermophoresis parameter
DDFC	� Double-diffusive free convection
NFM	� Nanofluid flow model
Pr	� Prandtl number
�	� Kinematic viscosity
g	� Gravitational force
�p	� Nanoparticle mass density
�	� Ratio of heat capacities
�1	� Thermal diffusivity
DT	� Thermophoretic diffusion coeff.
C∞	� Ambient concentration
DS	� Solutal diffusivity
DCT	� Dufour-kind diffusivity
�	� Angle of inclination
Gn	� Nanoparticle Grashof number
Nd	� Modified Dufour parameter
MSE	� Mean square error
Le	� Regular Lewis number
K	� Permeability parameter
�	� Nanoparticle volume fraction
ANN	� Artificial neural network
LMS	� Levenberg–Marquardt scheme
BPNN	� Backpropagated neural network

1  Introduction

In recent time, nanofluid and its findings have received sig-
nificance importance over the past few years. This is due to 
their diverse and massive applications such as nano-drug 
delivery, food processing, power plant, geothermal extrac-
tion, nanoliquid detergent and numerous others. Firstly, 
the word ‘nanofluid’ was invented by Choi [1] which is a 
liquid composed of nano-scaled particle suspended in base 
fluid. This nanometer-sized material has unique chemical 
and physical characteristics. Usually, the base fluid has low 
thermal conductivity such as water, engine oil and ethylene 
glycol used for this purpose, and the nanoparticles consist 
of Cu, AlN, SiC, Al2O3 and graphite. It supports base fluid 
as due to high thermal conductivity it enhances the heat 
transfer process which saves cost and times. Several authors 
investigated nanofluid flow past an inclined plate under 
different effects. Khan et al. [2] studied viscosity of MHD 
flow of mixed convection Eyring–Powell nanofluid past an 
inclined plate. Zeeshan et al. [3] numerically investigated 
bi-phase coupled stress nanofluid past an inclined surface 

with Hafnium and metallic nanoparticles. Laminar conjugate 
mixed convection flow of nanofluid with transverse mag-
netic field past an inclined flat surface embedded in a porous 
medium is discussed by Khademi et al. [4]. Mass and energy 
transport boundary-layer flow of nanofluid in the presence 
of Soret–Dufour effect past an inclined plate is presented by 
Rafique et al. [5]. Idowu and Falodun [6] analyzed the heat 
and mass transfer MHD flow of nanofluid past an inclined 
surface in the existence of thermophoresis and Soret–Dufour 
effect. Recently, the researchers also investigated the com-
bination of three different nanoparticles with base liquid, 
known as ternary hybrid fluid. The viscosity and thermal 
conductivity of these fluids depend upon three volume frac-
tion parameters. Animasaun et al. [7] exemplified the three-
dimensional ternary nanofluids considering suction effect 
and bi-stretching surface. Yook et al. [8] investigated the 
ternary fluid past convectively heated sheet considering the 
effect of heat sink/source and magnetic flux density.

Many authors investigated the non-Newtonian fluid and 
its findings over a porous medium [9–11]. Rashad et al. [12] 
exemplified natural convective non-Newtonian nanofluid 
flow in a porous medium past a radiative plate. Slip motion 
of MHD nanofluid over a stretching surface in porous media 
is examined by Kumar et al. [13]. Megahed [14] studied 
within a porous medium the convective heat transfer effect 
past a Maxwell fluid flow past a stretching surface. Rasheed 
et al. [15] discussed mixed convection flow of tangent hyper-
bolic fluid implanted in a porous medium with chemically 
reactive and magnetic field effect. Heat transfer effect on 
peristaltic propulsion of Jeffrey nanofluid within a porous 
rectangular medium is presented by Riaz et al. [16]. Yadav 
[17] analyzed the effect of Darcy number and viscosity on 
the arrival of convective motion in a couple-stress fluid in 
a porous medium.

The effect of concentration with temperature gradient 
referring to buoyancy-driven flows is known as double-
diffusive convection. The double-diffusive convention has a 
variety of applications in scientific field such as oceanogra-
phy, geophysics applications, chemical reaction, petroleum 
reservoirs, aerospace defense, solar collector, food process-
ing, energy storage and numerous others. Firstly, Pera and 
Gebhart [18] investigated numerically this phenomenon for 
vertical laminar fluid motions. After this, numerous studies 
have been investigated on double diffusion [19–21]. Nag and 
Molla [22] studied the double-diffusive natural convention 
effect on non-Newtonian nanofluid in square cavity. Dou-
ble-diffusion effect over square cavity on natural convention 
flow with entropy generation is investigated by Said et al. 
[23]. The suspension of nano-encapsulated phase change 
materials in the presence of double-diffusion nanofluid flow 
in rotating porous cavity is examined by Raizah and Aly 
[24]. Prasad et al. [25] analyzed the double-diffusion natural 
convection Casson nanoliquid flow over an inclined surface 
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within a Darcian porous medium. MHD Casson fluid past a 
vertically inclined plane in a porous medium with double-
D = diffusion convective flow is discussed by Sailaja et al. 
[26]. Double-diffusion effect on mixed convection flow in 
the existence of static magnetic field within rectangular 
domain is investigated by Moolya and Satheesh [27].

The natural convective boundary-layer nanofluid flow 
in the presence of Brownian and thermophoresis effect is 
taking into consideration by many researchers [28, 29]. 
The suspension of randomly moving particles in gas or 
liquid which enhance the collision of molecules is known 
as Brownian motion, whereas thermophoresis is the move-
ment of tiny particles toward decreasing thermal gradient. 
Heat transfer free convection nanofluid flow with Brown-
ian and thermophoresis effect is studied by Haddad et al. 
[30]. Ganji et al. [31] examined the Brownian and ther-
mophoresis effect on free convection MHD Al2O3–H2 O 
nanofluid flow. Heat transfer natural convection flow on 
nanofluid with Brownian and thermophoresis effect in 
L-shaped enclosure is studied by Rana et al. [32]. The 
effect of Brownian motion and thermophoresis in wavy 
porous cavity on free convection nanofluid flow is pre-
sented by Pop et al. [33].

Sometimes, it is not possible to find an exact solution 
of a problem analytically for this purpose; researcher uses 
different numerical and semi-numerical techniques to 
solve the problem. Some techniques are homotopy per-
turbation method [34], Keller–Box method [35], spectral 
relaxation method [36], Galerkin finite element method 
[21] and many others [37–39]. All the above-mentioned 
cited studies on different nanofluidic systems are solved 
by using different numerical and semi-numerical methods, 
but AI-based numerical computing paradigms are impor-
tant to exploit double-diffusive free convection nanofluid 
flow model (DDFC-NFM) due to their worthiness and 
efficiency. Some authors already applied these stochastic 
numerical techniques in different fields such as thermody-
namic [40], plasma physics [41], astrophysics [42], finance 
[43], nanofluid model [44], Emden–Fowler system [45, 
46], HIV infection model [47], nonlinear corneal shape 
model [48], mosquito dispersal model [49] and COVID-19 
models [50, 51]. All these inspiring factors motivate the 
researchers to exploit consistent and precise AI algorithm-
based numerical computational paradigm for numerical 
analysis of mathematical model for double-diffusive free 
convection nanofluid by conducting graphical and numeri-
cal studies to explore the effect of all variants on velocity, 
nanoparticle volume fraction, solutal concentration and 
temperature profile. MATLAB is used for this purpose.

The innovative contributions of the present study are 
as follows:

•	 The novel application of Levenberg–Marquardt scheme 
with backpropagated neural network (LMS–BPNN) is 
adopted to analyze the double-diffusive free convection 
nanofluid flow model (DDFC-NFM) over an inclined 
plane in the existence of thermophoresis and Brownian 
motion properties implanted within a porous medium.

•	 The mathematical modeling is presenting for the pro-
posed problem, i.e., DDFC-NFM.

•	 The reference data set is generated from Lobatto III-A 
numerical solver by the variation of and for all seven 
scenarios of the designed LMS–BPNN.

•	 The solver LMS–BPNN is designed with the help of 
procedure based on testing, training and validation to 
find the approximate solutions of DDFC-NFM. Further-
more, the comparative study is conducted through MSE 
in order to validate the consistent accuracy.

•	 The effectiveness and reliable performance of LMS–
BPNN are endorsed with MSE-based fitness curve, 
regression analysis, error histogram analysis and corre-
lation index.

2 � Problem formulation

Consider time-independent 2D incompressible natural con-
vection flow of nanofluid past an inclined impermeable plate 
implanted in the existence of thermophoresis and Brownian 
motion effect within a porous medium. Figure 1 represents 
the geometry of the present fluid flow system, where y-axis 
is perpendicular to an inclined plate and x-axis makes an 
acute angle � with vertical part.

A uniform transverse magnetic field of strength B0 is 
applied normal toward the direction of nanofluid flow. The 

Fig. 1   Flow model
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influence of induced magnetic field and magnetic Reynolds 
number is negligible. Further, we consider the temperature 
Tw, the solute concentration Cw and nanoparticle volume 
fraction Nw have constant values. Ambient values of T, C 
and N are T∞,C∞ and N∞ , respectively. Assume Cw > C∞ 
and Nw < N∞ , so that as a consequence thermal and nano-
particle volume fraction buoyancy effect of an upward fluid 
is encouraged.

The system of PDEs with BCs after considering Soret and 
Dufour effect is as follows [52–54]:

Consider dimensionless variables [55]:

Here, c is the empirical constant. The following equations 
can be attained by substituting the above variables:
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Mathematical expressions for physical parameters used in 
Eqs. (8)–(12) are:

Involving stream function

we have the following form of Eqs. (9)–(13) as:
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Fig. 2   The neural network for 
DDFC-NFM
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The further information regarding problem formulation can 
be seen in [55]. The process of finding the solution of the 
above PDEs is complex and tough. Lie group transforma-
tions suggested by Mukhopadhyay et al. [56, 57] and Islam 
et al. [58] are applied to solve the system of PDEs.

This implies the following are corresponding ODEs with 
boundary conditions.

3 � Solution methodology

The solution methodology is comprised of two steps: 
Firstly, the reference data set of LMS–BPNN is generated 
by solving transformed ODEs system presented in Eqs. 
(19)–(23) via Lobatto-IIIA numerical solver in MAT-
LAB using “bvp4c” package by variation of magnetic 
field parameter (M), thermal Grashof number (Gr), angle 
of inclination ( � ) , Brownian motion parameter (Nb), 
Dufour-solutal Lewis number (Ld), modified Dufour 
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parameter (Nd) and thermophoresis parameter (Nt). Later 
on, the designed AI-based Levenberg–Marquardt scheme 
with backpropagated neural network (LMS–BPNN) is 
implemented with the help of MATLAB command ‘ftool’ 
which is an artificial neural network (ANN) toolbox.

The ‘nftool’ command is utilized to examine the MSE 
results, histogram studies and regression analysis that 
validates the performance of LMS–BPNN of the proposed 
DDFC-NFM. The solution for f �(�), �(�),�(�) and �(�) for 
input 0 to 10 is randomly dispersed, and the reference data 
set is segmented to generate a set for training data (80%), 
validation data (10%) and testing data (10%) to operate 
the designed LMS–BPNN. The proposed LMS–BPNN is 
presented as an artificial neural network in Fig. 2, and a 
flowchart of methodology is depicted in Fig. 3.

4 � Analysis and discussion of result

The designed LMS–BPNN is operated under the influence 
of parameters of interest Gr, �,M , Ld, Nb, Nd and Nt for 
DDFC-NFM. There are seven scenarios each with four 
cases. Table 1 shows the numerical values of parameters 
of interest associated with DDFC-NFM which are used in 
the rest of work. Figures 4 and 5 show the performance and 
transition state of the proposed LMS–BPNN, while Figs. 6, 
7 and 8 show the fitness curve with error analysis for sce-
narios 1–3, 4–6 and 7, respectively. Figures 9 and 10 show 
the regression of DDFC-NFM for scenarios 1–4 and 5–7 by 
LMS–BPNN, respectively. Furthermore, the MSE conver-
gence for performance of training, testing and validation, 
performance, epochs, backpropagated operator, i.e., Mu, and 
time taken are depicted in Table 2.

The convergence curves of MSE for the second case 
of all seven scenarios of DDFC-NFM are represented in 
Fig. 4(I)–(VII) for training, testing and validation. The 
excellent or best curves are achieved at 654, 234, 111, 
166, 219, 215 and 141 epochs, while MSE is almost 
10−9, 10−9 → 10−7, 10−10 → 10−9, 10−10 → 10−9, 10−10 →

10−9, 10−9, 10−9 → 10−8  ,  r e s p e c t i ve ly.  T h e  va l -
u e s  o f  g r a d i e n t  a n d  M U  p a r a m e t e r  fo r 
LMS–BPNN are shown in Fig. 5(I)–(VII). These values are 
[  9.99 × 10−8, 9.95 × 10−8, 9.99 × 10−8, 9.95 × 10−8, 9.94×

10−8, 9.96 × 10−8, 9.98 × 10−8, 9.99 × 10−8, 9.81 × 10−8 ] and 
[ 10−09, 10−09, 10−09, 10−09, 10−09, 10−08, 10−08 ]. The valida-
tion and efficient convergence of LMS–BPNN for each case 
of DDFC-NFM have been proved by the outcomes.

The comparative study for LMS–BPNN outcomes with 
the reference data solution is presented in Fig. 6(I–VI) for 
scenarios 1–3, Fig. 7(I–VI) for scenarios 4–9 and Fig. 8, 
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Fig. 3   The neural network for DDFC-NFM
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which are further validated by error analysis. The informa-
tion about correlation can be examined by the investigation 
of regression analysis. The regression plots are given in 
Figs. 9(I)–(IV) and 10(I)–(III) for scenarios 1–4 and 5–7 
of DDFC-NFM, respectively. The value closure to unity of 
correlation R proved the perfection of modeling, in terms of 
training, testing and validation endorsed the effectiveness of 
LMS–BPNN for the designed DDFC-NFM.

Moreover, the total numerical analysis for all seven 
scenarios is shown in Table 2. The performance measures 
of LMS–BPNN for all cases of scenario lie in the range 
10−9, 10−10 → 10−9 for all corresponding cases of sce-
nario 2. Moreover, for scenarios 3–7 the performances are 
10−10 → 10−8, 10−10 → 10−9, 10−10 → 10−9, 10−10 → 10−9 
and 10−9, respectively, for the designed DDFC-NFM. 
In Table  2, the precise and accurate performance of 
LMS–BPNN is certified by numerical illustrations for solv-
ing each variant of DDFC-NFM.

4.1 � Impact on velocity profile f�(�) and absolute 
error analysis

The MATLAB software is used to analyze the results of 
LMS–BPNN for investigating the effects of variation of 
thermal Grashof number (Gr), angle of inclination ( � ) and 
magnetic field parameter (M) of velocity profile f �(�) with 
absolute errors as depicted in Fig. 11. Figure 11a depicts 
the impact of thermal Grashof number on f �(�) with an 
absolute error about 10−6 → 10−3 as shown in Fig. 11b, 
while Fig. 11c represents the impact of angle of inclina-
tion on f �(�) with an absolute error about 10−7 → 10−2 as 
shown in Fig. 11d. Similarly, Fig. 11e depicts the influence 
of M on f �(�) with an absolute error about 10−7 → 10−3 as 
shown in Fig. 11f.

One may notice that

Table 1   Depiction for all 
scenarios of DDFC-NFM

Scenario Cases Physical quantities

Gr � M Ld Nb Nd Nt

1 1 1.0 �∕6 0.5 1.0 0.2 0.3 0.3
2 2.0 �∕6 0.5 1.0 0.2 0.3 0.3
3 3.0 �∕6 0.5 1.0 0.2 0.3 0.3
4 4.0 �∕6 0.5 1.0 0.2 0.3 0.3

2 1 1.0 0 0.5 1.0 0.2 0.3 0.3
2 1.0 �∕6 0.5 1.0 0.2 0.3 0.3
3 1.0 �∕4 0.5 1.0 0.2 0.3 0.3
4 1.0 �∕3 0.5 1.0 0.2 0.3 0.3

3 1 1.0 �∕6 0.5 1.0 0.2 0.3 0.3
2 1.0 �∕6 1.5 1.0 0.2 0.3 0.3
3 1.0 �∕6 2.5 1.0 0.2 0.3 0.3
4 1.0 �∕6 3.5 1.0 0.2 0.3 0.3

4 1 1.0 �∕6 0.5 0.2 0.2 0.3 0.3
2 1.0 �∕6 0.5 0.6 0.2 0.3 0.3
3 1.0 �∕6 0.5 1.0 0.2 0.3 0.3
4 1.0 �∕6 0.5 1.2 0.2 0.3 0.3

5 1 1.0 �∕6 0.5 1.0 1.0 0.3 0.3
2 1.0 �∕6 0.5 1.0 1.5 0.3 0.3
3 1.0 �∕6 0.5 1.0 2.5 0.3 0.3
4 1.0 �∕6 0.5 1.0 3.5 0.3 0.3

6 1 1.0 �∕6 0.5 1.0 0.2 0.0 0.3
2 1.0 �∕6 0.5 1.0 0.2 0.5 0.3
3 1.0 �∕6 0.5 1.0 0.2 1.0 0.3
4 1.0 �∕6 0.5 1.0 0.2 1.5 0.3

7 1 1.0 �∕6 0.5 1.0 0.2 0.3 0.0
2 1.0 �∕6 0.5 1.0 0.2 0.3 0.1
3 1.0 �∕6 0.5 1.0 0.2 0.3 0.2
4 1.0 �∕6 0.5 1.0 0.2 0.3 0.3
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•	 The velocity enhances swiftly near the surface with the 
rise in Gr and then gradually decreases and approaches 
to zero as � → ∞ . This is due to the fact that the Gr is 
the ratio of thermal buoyancy force to viscous hydrody-
namic force in the boundary layer. So, the increment in 
the Gr causes an increment in thermal buoyancy force in 
the system, which weakens the bonds between fluids and 
consequently lowers the internal friction pressure and 
increases the gravity [59].

•	 The velocity f �(�) decays with the increase in M due to 
the fact that a retarding force is exerted by magnetic field 
on free convection flow.

•	 The velocity f �(�) declines with the increase in � . As 
angle of inclination � increases, the effect of buoyancy 
force decreases due to thermal diffusion.

4.2 � Impact on temperature profile �(�) 
and absolute error analysis

The MATLAB software is used to analyze the results of 
LMS–BPNN for investigating the impact of change in 
Brownian motion parameter (Nb), modified Dufour param-
eter (Nd) and thermophoresis parameter (Nt) of temperature 
profile �(�) with absolute errors as illustrated in Fig. 12. Fig-
ure 12a depicts the Brownian motion parameter impact on 
�(�) with an absolute error about 10−7 → 10−3 (Fig. 12b), 
while the effect of the modified Dufour parameter on �(�) 
with an absolute error about 10−7 → 10−4 is shown in 
Fig. 12c, d. Similarly, Fig. 12e represents the impact of ther-
mophoresis parameter on �(�) with an absolute error about 
10−7 → 10−3 as shown in Fig. 12f.

One may notice that

Table 2   Comparative study 
through backpropagation 
networks for all scenarios 
associated with DDFC-NFM

Sc C MSE levels Best perform Gradient Mu Ep Time (s)

Training Validation Testing

1 1 1.30E−09 2.00E−09 1.90E−09 1.30E−09 9.93E−08 1E−09 137 8
2 1.65E−09 1.71E−09 2.47E−09 1.65E−09 9.99E−08 1E−09 654 59
3 1.04E−09 1.26E−09 1.17E−09 1.04E−09 9.95E−08 1E−09 929 89
4 7.02E−09 1.01E−08 5.12E−09 7.02E−09 9.92E−08 1E−09 342 35

2 1 4.27E−09 5.37E−09 4.18E−09 4.27E−09 9.62E−08 1E−09 203 17
2 4.83E−09 3.51E−08 6.33E−09 4.83E−09 9.95E−08 1E−08 234 15
3 1.69E−09 1.94E−09 1.86E−09 1.69E−09 9.99E−08 1E−09 239 48
4 4.41E−10 5.27E−10 5.01E−10 4.41E−10 9.91E−08 1E−09 119 10

3 1 2.79E−09 6.58E−09 4.10E−09 2.79E−09 9.71E−08 1E−09 236 79
2 4.12E−10 4.26E−10 4.17E−10 4.12E−10 9.94E−08 1E−09 111 7
3 2.86E−10 6.47E−10 2.86E−10 9.93E−08 9.93E−08 1E−09 118 9
4 3.94E−09 4.49E−09 6.08E−09 3.94E−09 9.86E−08 1E−08 167 11

4 1 5.23E−10 6.27E−10 6.09E−10 5.23E−10 9.98E−08 1E−09 120 12
2 8.64E−10 9.46E−10 6.75E−10 8.64E−10 9.96E−08 1E−09 166 13
3 7.01E−10 7.47E−10 9.30E−10 7.01E−10 9.88E−08 1E−09 168 11
4 1.21E−09 1.96E−09 2.37E−09 1.21E−09 9.91E−08 1E−09 130 8

5 1 8.64E−10 2.37E−09 1.93E−09 8.64E−10 9.98E−08 1E−09 386 25
2 1.36E−09 4.71E−09 1.42E−09 1.36E−09 9.98E−08 1E−09 219 17
3 1.10E−09 1.53E−09 1.81E−09 1.10E−09 9.87E−08 1E−09 690 50
4 2.25E−09 2.37E−09 2.72E−09 2.25E−09 9.94E−08 1E−09 521 36

6 1 4.99E−10 5.85E−10 5.31E−10 4.99E−10 9.95E−08 1E−09 517 47
2 3.93E−09 4.26E−09 5.00E−09 3.93E−09 9.99E−08 1E−08 215 33
3 4.16E−09 4.99E−09 5.52E−09 4.16E−E−09 9.85E−08 1E−08 192 26
4 3.10E−09 3.02E−09 3.87E−09 3.10E−09 9.93E−08 1E−09 262 25

7 1 3.44E−09 4.99E−09 4.56E−09 3.44E−09 9.92E−08 1E−08 188 15
2 8.62E−09 8.26E−09 8.57E−09 8.62E−09 9.81E−08 1E−08 141 4
3 4.95E−E−09 5.91E−09 5.85E−09 4.95E−09 9.93E−08 1E−08 243 20
4 4.46E−09 4.94E−09 4.29E−09 4.46E−09 9.96E−08 1E−08 246 27
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Fig. 4   The neural network for 
DDFC-NFM
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Fig. 5   Transition state of 
LMS–BPNN of case 2 of all the 
scenarios of DDFC-NFM
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Fig. 6   Error analysis and fitness of function for the designed LMS–BPNN of case 2 of scenarios 1–3 of DDFC-NFM
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Fig. 7   Error analysis and fitness of function for the designed LMS–BPNN of case 2 of scenarios 4–6 of DDFC-NFM
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•	 The �(�) profile enhances with the increment in the values 
of Brownian motion parameter (Nb), modified Dufour 
parameter (Nd) and thermophoresis parameter (Nt). 
When the Nt, Nb and Nd increase, the thermal boundary 
layer expands. In a recent meta-analysis, it was concluded 
that due to Brownian motion of nanoparticles internal 
pressure of nanoparticles increases and as a result tem-
perature increases [60]. Another study [61] reveals that 
the different reactions to a temperature gradient’s force 
are adequate to improve the temperature profile due to 
increased thermophoresis.

4.3 � Impact on solutal concentration profile �(�) 
and absolute error analysis

The MATLAB software is used to analyze the results of 
LMS–BPNN for investigating the impact of variation of 
Dufour-solutal Lewis number (Ld) and modified Dufour 
parameter (Nd) on �(�) with absolute errors as depicted 
in Fig. 13. Figure 13a shows the effect of Ld on �(�) with 
an absolute error about 10−7 → 10−4 as shown in Fig. 13b, 
while the impact of Nd on �(�) with an absolute error about 
10−7 → 10−3 is shown in Fig. 13c, d.

One may notice that

•	 The �(�) profile increases with an increment in the value 
of Ld, which occurs for Newtonian fluid. The effect is 
prominent around the boundary-layer region, i.e., � ≤ 6 
; afterward, it gradually converges. Increasing regular 
Lewis number implies increasing thermal diffusion so 

the solute concentration velocity increases and gets the 
tendency to scatter away from boundary-layer region; 
as a consequence, solute concentration boundary-layer 
thickness declines. But, the opposite behavior is seen in 
case of Ld.

•	 The increase in the modified Dufour parameter causes a 
decrease in solutal concentration profile.

4.4 � Impact on nanoparticle volume fraction profile 

(�) and absolute error analysis

The MATLAB software is used to analyze the results of 
LMS–BPNN for investigating the impact of variation of 
thermophoresis parameter (Nt) and Brownian motion param-
eter Nb on �(�) with absolute errors as depicted in Fig. 14. 
Figure 14a shows the impact of Nb on �(�) with an absolute 
error about 10−7 → 10−3 as shown in Fig. 14b, while Fig. 14c 
represents the effect of Nt on �(�) with an absolute error 
about 10−7 → 10−3 as shown in Fig. 14d.

One may reveal that:

•	 Nanoparticle volume friction profile decreases, that is, 
boundary-layer thickness decreases with the enhance-
ment of Nb.

•	 The prominent and opposite effect is seen; as the value 
of Nt increases, the enhancement of nanoparticle volume 
frictions occurs. This is due to increasing diffusivity as 
increase in thermophoresis because particles move from 
hot to cold so there is an enhancement of density of nano-
particles within boundary layer.

Fig. 8   Error analysis and fitness of function for the designed LMS–BPNN of case 2 of scenario 7 of DDFC-NFM
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Fig. 9   Regression illustrations for the designed LMS–BPNN result for case 2 of scenarios 1–4 of DDFC-NFM
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Fig. 10   Regression illustrations for the designed LMS–BPNN result for case 2 of scenarios 5–7 of DDFC-NFM
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Fig. 11   Assessment of LMS–BPNN for f �(�) with reference data set of DDFC-NFM
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Fig. 12   Assessment of LMS–BPNN for �(�) with reference data set of DDFC-NFM
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5 � Conclusion

The technique of AI-based Levenberg–Marquardt scheme 
with backpropagated neural network (LMS–BPNN) had 
been used to analyze the problem of double-diffusive flow 
of nanofluid (DDFC-NFM) due to free convection over an 
inclined plane when Brownian motion and thermophoresis 
of tiny particles as the fluid flows through a porous medium 
are significant. The governing PDEs representing DDFC-
NFM are transformed into system of nonlinear ODEs by 
applying suitable transformation. The reference data set is 

generated from Lobatto III-A numerical solver by variation 
of magnetic field parameter (M), thermal Grashof number 
(Gr), angle of inclination ( � ), Brownian motion parameter 
(Nb), Dufour-solutal Lewis number (Ld), modified Dufour 
parameter (Nd) and thermophoresis parameter (Nt). The data 
sets as reference results are executed for training data (80%) 
validation data (10%) and testing data (10%) by operating 
LMS–BPNN solver. The proposed and reference outcomes 
verify the correctness of technique and are further endorsed 
through numerical and graphical illustration of mean square 

Fig. 13   Assessment of LMS–BPNN for �(�) with reference data set of DDFC-NFM
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error convergence plots, correlation regression analysis and 
histogram studies.

It is concluded that:

•	 The velocity increases with the increment in Gr.
•	 When the values of angle of inclination and magnetic 

field parameter increase, velocity profile decreases.
•	 The temperature profile increases with the increase in 

Nb, Nd and Nt.
•	 The solutal concentration profile increases with the 

enhancement of Ld.

•	 The increase in the modified Dufour parameter causes 
a decrease in solutal concentration profile.

•	 When thermophoresis parameter increases, the 
enhancement of nanoparticle volume frictions occurs.

•	 The increase in Brownian motion parameter leads to a 
decrease in nanoparticle volume frictions.

In future, one may work on different nanofluidic models 
[62–65] to solve a problem through backpropagated neural 
networks.

Fig. 14   Assessment of LMS–BPNN for �(�) with reference data set of DDFC-NFM
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