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Abstract: The ecological quality of inland areas is an important aspect of the United Nations Sustainable 
Development Goals (UN SDGs). The ecological environment of Northwest China is vulnerable to 
changes in climate and land use/land cover, and the changes in ecological quality in this arid region over 
the last two decades are not well understood. This makes it more difficult to advance the UN SDGs and 
develop appropriate measures at the regional level. In this study, we used the Moderate Resolution 
Imaging Spectroradiometer (MODIS) products to generate remote sensing ecological index (RSEI) on the 
Google Earth Engine (GEE) platform to examine the relationship between ecological quality and 
environment in Xinjiang during the last two decades (from 2000 to 2020). We analyzed a 21-year time 
series of the trends and spatial characteristics of ecological quality. We further assessed the importance of 
different environmental factors affecting ecological quality through the random forest algorithm using 
data from statistical yearbooks and land use products. Our results show that the RSEI constructed using 
the GEE platform can accurately reflect the ecological quality information in Xinjiang because the 
contribution of the first principal component was higher than 90.00%. The ecological quality in Xinjiang 
has increased significantly over the last two decades, with the northern part of this region having a better 
ecological quality than the southern part. The areas with slightly improved ecological quality accounted for 
31.26% of the total land area of Xinjiang, whereas only 3.55% of the land area was classified as having a 
slightly worsen (3.16%) or worsen (0.39%) ecological quality. The vast majority of the deterioration in 
ecological quality mainly occurred in the barren areas Temperature, precipitation, closed shrublands, 
grasslands and savannas were the top five environmental factors affecting the changes in RSEI. 
Environmental factors were allocated different weights for different RSEI categories. In general, the 
recovery of ecological quality in Xinjiang has been controlled by climate and land use/land cover during 
the last two decades and policy-driven ecological restoration is therefore crucial. Rapid monitoring of 
inland ecological quality using the GEE platform is projected to aid in the advancement of the 
comprehensive assessment of the UN SDGs. 
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1  Introduction 

Ecological sustainability is an important part of high-quality sustainable development worldwide. 
The ecological environment is becoming increasingly vulnerable to climate change and increased 
anthropogenic activities (Malhi et al., 2020). The global emergence of land degradation, with 
reduced vegetation cover and drought stress, challenges the advancement of the United Nations 
Sustainable Development Goals (UN SDGs). In response to global challenges, China has 
progressively implemented policies to improve ecological quality (Bryan et al., 2018), but the 
ecological quality in Northwest China, a typical arid region (Li et al., 2017), is more restricted. In 
addition to poor natural conditions (e.g., insufficient water resources, arid climate and drought 
conditions), water and land resources are unsustainably exploited (Zuo et al., 2018). When 
assessing China's progress in sustainable development, Northwest China was found to be in the 
lower part of the UN SDG index scores (Xu et al., 2020). It is therefore necessary to assess 
ecological quality with reference to the UN SDGs in Northwest China to balance regional 
differences in sustainable development. 

Traditional assessments of ecological quality are limited to small-scale areas, which are both 
time consuming and labor intensive (Li et al., 2020a). By contrast, remote sensing technology can 
be used to rapidly monitor the ecological environment on large scales (Ge et al., 2022a). Many 
remote sensing products have been developed and designed to effectively monitor changes in the 
eco-environment. Regional ecosystems are directly monitored through the normalized difference 
vegetation index (NDVI) (Pettorelli et al., 2005; Jiang et al., 2021) and the leaf area index (Hill et 
al., 2006; Xie et al., 2019), among others; these products are driven by spectral indices. Remote 
sensing technology can also monitor ecosystems indirectly using products such as the land 
surface temperature (LST) (Vlassova et al., 2014; Peng et al., 2018) and soil moisture content 
(Deng et al., 2016; Bradford et al., 2020), which are driven by physical models. However, 
ecological quality cannot be broadly interpreted using a single indicator, even if this reflects the 
results of a changing environment.  

To overcome the integrated and complex nature of ecological environments, various indices 
and products should be considered in synergistic calculations (Zheng et al., 2022). Synergistic 
indices can leverage the strengths of each indicator to maximize the approximation to the true 
ecological quality of the surface. The disturbance index can detect forest disturbance using the 
tasseled cap transformation indices (Healey et al., 2005). Ecosystem disturbance can be 
systematically evaluated by leveraging the strengths of the LST and enhanced vegetation index 
(EVI) (Mildrexler et al., 2009). The ecological quality index can be used to assess urban green 
space through several landscape indices (Tian et al., 2011). The relative importance of these 
individual indicators is the key to synergizing different indicators for integration into a 
comprehensive ecological index. 

In recent years, remote sensing ecological index (RSEI) has been effectively used to assess 
ecological quality by an aggregated approach, including greenness, humidity, dryness and heat 
indicators (Xu et al., 2018, 2019). These four indicators reflect the influence of the expansion of 
human activities, environmental suitability and the climate on different scales (Xu et al., 2018; 
Wu et al., 2021). The accuracy of RSEI has been verified on both local and regional scales (Yue et 
al., 2019; Xiong et al., 2021; Xu et al., 2021) and this index is therefore suitable for spatially 
evaluating regional-scale, long-term ecological quality. However, the characteristics of vegetation 
are clearly different in different regions and the traditional NDVI, as a covariate of RSEI, may not 
accurately reflect ecological quality in arid areas.  

The construction process of RSEI is computationally intensive, especially with large-scale 
evaluations. To solve this problem, researchers used the Google Earth Engine (GEE) platform to 
handle the analysis of large amounts of data (Gorelick et al., 2017; Tamiminia et al., 2020). It is 
both rapid and easy to build large-scale RSEI using the power of cloud computing services rather 
than local computing systems. Ecological quality at the local scale has been explored using the 
GEE platform (Xiong et al., 2021; Zheng et al., 2022). These studies suggested that the 
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computational efficiency of the GEE platform might provide support for assessing ecological 
quality at high temporal resolutions (Yang et al., 2019). This could avoid intensive computation 
and efficiency issues. Xinjiang Uygur Autonomous Region (abbreviated as Xinjiang) is located in 
arid regions of Northwest China. Several ecological issues are frequently present in this vast 
region, but the long-term ecological quality has not yet been quantitatively assessed. 

To fill this gap, the objectives of this study were: (1) to assess the ecological quality in Xinjiang 
from 2000 to 2020 based on RSEI; (2) to monitor the spatial and temporal changes in ecological 
quality in Xinjiang; and (3) to discuss the environmental factors influencing these changes in 
ecological quality. Rapid monitoring of inland ecological quality using the GEE platform is 
projected to aid in the advancement of the comprehensive assessment of the UN SDGs in arid 
regions. 

2  Materials and methods 

2.1  Study area 

Xinjiang, located in Northwest China, has an area of about 1.66×106 km2, accounting for 
one-sixth of the total land area of China. It has a complex landscape system with a 
mountain–oasis–desert landscape (Fig. 1). It is composed of three main mountain ranges from 
north to south (the Altay, Tianshan and Kunlun mountains) and two basins from north to south 
(the Junggar and Tarim basins). Geographically, Xinjiang is divided by the Tianshan Mountains 
into the northern part (northern Xinjiang) and the southern part (southern Xinjiang). It has a 
continental arid climate with little precipitation and high rates of evaporation. The annual average 
temperature is 7.6°C and the average annual precipitation is 158.0 mm. The average annual 
evapotranspiration is 365.7 mm (Yao et al., 2019). Evaporation exceeds precipitation and 
therefore groundwater and the seasonal melting of glaciers serve as the primary sources of 
freshwater recharge, although they are lost to evapotranspiration (Rodell et al., 2018). The 
vegetation is sparse and consists mainly of farmland and grassland, although the overall trend is 
toward greening for all vegetation types, particularly farmland (Ge et al., 2021; Guan et al., 
2021). The main cultivated crop is cotton, of which Xinjiang is the largest producer in China. 

 

Fig. 1  Overview of Xinjiang Uygur Autonomous Region (Xinjiang) in Northwest China. Note that the figure is 
based on the standard map (新 S(2021)023) of the Map Service System (https://xinjiang.tianditu.gov.cn/ 
main/bzdt.html) marked by the Xinjiang Uygur Autonomous Region Platform for Common Geospatial 
Information Services, and the standard map has not been modified. DEM, digital elevation model. 
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2.2  Data acquisition and processing  

We used products from the Moderate Resolution Imaging Spectroradiometer (MODIS), including 
the Terra Land Surface Reflectance (MOD19A1), the Terra Land Surface Temperature and 
Emissivity (MOD11A2) and the Terra Vegetation Indices (MOD13A1). We conducted the 
stitching, cropping, resampling and projection of these data in the GEE platform. We used the 
World Geodetic System 84 (WGS84, EPSG:4326) projection and the nearest neighbor method for 
resampling. We selected data for the time period 2000–2020 and calculated the annual averages 
for each year. 

We used the population and gross domestic product (GDP) to represent the overall 
socioeconomic development. We also used representative energy production and consumption 
data because Xinjiang is the energy base of China. Furthermore, we also used the total water 
resources because these are at the core of Xinjiang's socioeconomic development. We considered 
temperature and precipitation as the meteorological factors and the aerosol optical depth as a 
driver because Xinjiang is in the direct path of the prevailing westerly winds and therefore 
receives hazardous aerosols throughout the year. The area of land use represents the result of 
human–nature interactions. We considered the following factors affecting the ecological 
environment, including population, GDP, total energy production, total energy consumption, total 
water resources, temperature, precipitation, aerosol optical depth and the area of land use/land 
cover types. The aerosol optical depth data and the area of land use types used the Terra+Aqua 
MAIAC Land Aerosol Optical Depth (MCD19A2) and the Land Cover Type products, 
respectively. 

The land use data consisted of 17 classes of land use/land cover types from the International 
Geosphere–Biosphere Programme (https://developers.google.com/earth-engine/datasets/catalog/ 
MODIS_006_MCD12Q1), including forests (evergreen needleleaf, evergreen broadleaf, 
deciduous needleleaf, deciduous broadleaf and mixed broadleaf), closed and open shrublands, 
woody savannas, savannas, grasslands, permanent wetlands, croplands, urban and built-up lands, 
cropland/natural vegetation mosaics, permanent snow and ice, barren areas and water bodies. The 
area of land use/land cover types was counted in ArcGIS 10.3 software (Esri, Redlands, CA, 
USA). The aerosol optical depth data were the Optical_Depth_055 of the MCD19A2 products and 
these data were calculated as the annual mean of the study area. Other data (including population, 
GDP, total energy production, total energy consumption, total water resources, temperature and 
precipitation) were collected from the Xinjiang Statistical Yearbook (Statistic Bureau of Xinjiang 
Uygur Autonomous Region, 2001–2020). Data preprocessing was conducted in the GEE platform 
(https://code.earthengine.google.com/). 

2.3  Remote sensing ecological index (RSEI) 

RSEI comprehensively reflect a region's ecological quality because it consists of four indicators: 
greenness, dryness, wetness and heat (Xu et al., 2018). We used the EVI of the MOD13A1 
products to represent greenness (Zheng et al., 2020). We calculated the normalized difference 
impervious surface index (NDBSI) to express dryness and the wet component (Wet) driven by the 
tasseled cap transformation of MODIS to represent wetness (Zheng et al., 2020). We also used the 
LST from the LST_Day_1km of the MOD11A2 products to reflect heat. The calculation 
processes of NDBSI and the wet component have been reported previously (Zheng et al., 2020). 
The detailed information about the four indicators are shown in Table 1. 

The calculation process for RSEI is as follows: (1) standardization of the four indicators; (2) 
calculation of the principal components of the four indicators and the selection of the first 
principal component (PC1) as the initial RSEI (RSEI0); and (3) standardization of RSEI0. RSEI 
was calculated according to the Equations 1 and 2: 

 0RSEI 1 RSEI= − ,   (1) 

 0RSEI PC1[ (EVI,  NDBSI,  Wet,  LST)]f= ,   (2) 

where f represents the functional relationship. 
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Table 1  Main information of the selected four indictors for the construction of remote sensing ecological index 
(RSEI) 

Indicator Source Product Spatial resolution Temporal resolution 

Greenness EVI MOD13A1 0.5 km 16 d 

Dryness NDBSI MOD09A1 0.5 km 8 d 

Wetness  Wet  MOD09A1 0.5 km 8 d 

Heat  LST MOD11A2 1.0 km 8 d 

Note: EVI, enhanced vegetation index; LST, land surface temperature, NDBSI, normalized difference impervious surface indices; Wet, 
wet component. 

 
According to previous studies (Xu et al., 2018; Yue et al., 2019; Xiong et al., 2021), RSEI can 

be classified into five categories: excellent (0.8<RSEI≤1.0), good (0.6<RSEI≤0.8), moderate 
(0.4<RSEI≤0.6), fair (0.2<RSEI≤0.4) and poor (0.0<RSEI≤0.2). 

2.4  Change trend analysis of RSEI 

We used the time of the assessment of RSEI as a node to perform change analysis using the 
calculation reported by Yuan et al. (2021) (Fig. 2). This calculation determines the change trend of 
RSEI using the difference in RSEI at two different time points. There are three types of change 
trend: improved, stable and worsen. We calculated the trend of RSEI from the difference between 
the results in 2020 and 2000 using ArcGIS 10.3. The classification of the change trend of RSEI is 
shown in Table 2. 

 

Fig. 2  Schematic diagram of the change trend analysis of remote sensing ecological index (RSEI). ΔRSEI, 
difference of RSEI between 2020 and 2000. 
 

Table 2  Classification of the change trend of RSEI 

ΔRSEI Change trend ΔRSEI Change trend 

3.0 Significantly improved –1.0 Slightly worsen 

2.0 Improved –2.0 Worsen 

1.0 Slightly improved –3.0 Significantly worsen 

0.0 Stable   

Note: ΔRSEI, difference of RSEI between 2020 and 2000. 

2.5  Importance of influencing factors 

There are differences in the importance of the factors affecting RSEI. We determined the 
significance of the influencing factors using the random forest algorithm to clarify the importance 
of socioenvironmental factors. This algorithm is an integrated tree model that sets multiple weak 
learners into a single strong learner. It can manage a high number of input variables and provide a 
characteristic importance index for each variable to judge its importance in the model. In doing 
so, a variable is randomly re-predicted by adding noise interference to all the samples of 
out-of-bag data and this error is then re-calculated. If it changes significantly, then the variable is 
more important. The importance of the variable can be quantified by dividing the difference 
between the out-of-bag errors, and calculated twice by the number of regression trees. We 
conducted this method using the randomForest package within R (version 4.0.2). 
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3  Results 

3.1  Ecological quality of Xinjiang from 2000 to 2020 

Figure 3 shows the spatial variations in ecological quality in Xinjiang from 2000 to 2020. Overall, 
the ecological quality of northern Xinjiang was better than that of southern Xinjiang. Areas with 
excellent RSEI were often found in northern Xinjiang; for example, the Altay Mountains, the 
oases on the northern slopes of the Tianshan Mountains and the central Tianshan Mountains. The 
ecological quality of the areas south of the Tianshan Mountains (e.g., the Taklimakan Desert) was 
at risk. Areas with moderate RSEI were distributed in the oases and mountains surrounding the 
Taklimakan Desert. The ecological quality of eastern Xinjiang has been highly variable over the 
last two decades, which indicates that it is affected by environmental factors. 
 

 

Fig. 3  Spatial and temporal distribution of ecological quality in Xinjiang from 2000 to 2020 (a–u). Note that the 
figures are based on the standard map (新 S(2021)023) of the Map Service System (https://xinjiang.tianditu. 
gov.cn/main/bzdt.html) marked by the Xinjiang Uygur Autonomous Region Platform for Common Geospatial 
Information Services, and the standard map has not been modified. 
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The values of RSEI in Xinjiang generally increased from 2000 to 2020 (Fig. 4a), with an 
increase of 7.00% over the study period. The worst and best years of RSEI were in 2000 and 
2012, respectively. The higher the percentage of areas with fair and poor RSEI, the greater the 
risk of ecological degradation. The results show that the percentage of areas with low ecological 
quality (poor and fair RSEI) decreased from 52.41% in 2000 to 37.35% in 2020 (Fig. 4b). The 
areas with fair RSEI noticeably decreased in 2011 and 2018. These reduced areas later 
transitioned to areas with moderate RSEI, primarily in the southern Tianshan Mountains. The 
mean value of RSEI in Xinjiang was proportional to the percentage of areas with moderate RSEI. 
The increase in ecological quality in southern Xinjiang contributed to the overall ecological 
quality of the whole region. 

 
Fig. 4  Change of ecological quality in Xinjiang from 2000 to 2020. (a), change trend of mean RSEI (RSEImean); 
(b), area statistics under the five categories of RSEI (excellent, good, moderate, fair and poor). 

3.2  Spatial distribution of the change trend of environment quality in Xinjiang from 2000 
to 2020 

The overall ecological quality in Xinjiang was stable and improved slightly in terms of spatial 
distribution over the study period (Fig. 5). The areas with a slightly improved ecological quality 
accounted for 31.26% of the land in Xinjiang, with northern Xinjiang having a higher percentage 
than southern Xinjiang. The areas with improved ecological quality were mainly in the oases and 
foothills. The areas with a stable ecological quality accounted for 64.32% of the land in Xinjiang. 
The areas with a slightly worsen ecological quality made up only 3.16% of the land, mainly in the 
deserts, with a very minor fraction in the high mountains, and only 0.39% of the land area 
deteriorated. The land with a poor ecological quality was primarily concentrated in the 
Taklimakan Desert. Very few areas were classified as having significantly improved or 
significantly worsen ecological quality. 

We assessed the changes in land use/land cover in the areas with decreasing ecological quality. 
Most of the degradation in ecological quality occurred in places that were barren during 2000 and 
2020. More than 60.00% of the region (Xinjiang) was covered by non-vegetated barren areas 
(<10.00% vegetation cover) (Fig. 6). Changes within the barren areas accounted for 92.50% and 
84.25% of the areas with worsen and slightly worsen ecological quality, respectively. More than 
half of the areas with improved and slightly improved ecological quality also occurred in the 
barren areas, accounting for 74.40% and 58.75%, respectively (Fig. 6). These results indicate that, 
although there are few areas where the ecological quality has deteriorated, most of these areas 
were in the barren areas. However, ecological quality was still improved overall in the barren part 
of the eastern and mountainous regions of the study area. 

3.3  Analysis of the importance of factors influencing ecological quality 

RSEI in Xinjiang was mainly controlled by climatic conditions, but distinct levels of RSEI had 
differential responses to environmental factors (Fig. 7). Temperature and precipitation not only 
had a dominant role in average RSEI, but also had an important influence on the areas with fair 
RSEI. The aerosol optical depth ranked second in the importance in the areas with good RSEI, in 
addition to the two meteorological factors of temperature and precipitation. This indicates that the 
oases in northern Xinjiang were under stress in terms of the aerosol optical depth. 
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Fig. 5  Spatial distribution of changes in ecological quality in Xinjiang during 2000–2020. Note that the figure is 
based on the standard map (新 S(2021)023) of the Map Service System (https://xinjiang.tianditu.gov.cn/ 
main/bzdt.html) marked by the Xinjiang Uygur Autonomous Region Platform for Common Geospatial 
Information Services, and the standard map has not been modified. 
 

 

Fig. 6  Spatial distribution of the changes in ecological quality within barren and non-barren areas in Xinjiang 
during 2000–2020. Note that the figure is based on the standard map (新 S(2021)023) of the Map Service System 
(https://xinjiang.tianditu.gov.cn/main/bzdt.html) marked by the Xinjiang Uygur Autonomous Region Platform for 
Common Geospatial Information Services, and the standard map has not been modified.  
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Fig. 7  Importance of factors influencing the level of ecological quality in Xinjiang during 2000–2020. (a)–(f) 
are the importance of different influencing factors on average, excellent, good, moderate, fair and poor RSEI, 
respectively. T, temperature; P, precipitation; CS, closed shrublands; GL, grasslands; SV, savannas; WB, water 
bodies; AOD, aerosol optical depth; VM, vegetation mosaics; ENF, evergreen needleleaf forest; OS, open 
shrublands; TAW, total water resources; PSI, permanent snow and ice; DNF, deciduous needleleaf forest; MF, 
mixed forests; PW, permanent wetlands; GDP, gross domestic product; CL, croplands; BR, barren; EC, energy 
consumption; POP, population; DBF, deciduous broadleaf forest; EP, energy production; WS, woody savannas; 
UBL, urban and built-up lands. 

 
The permanent wetlands, grasslands and mixed forests significantly influenced the excellent, 

moderate and poor RSEI, respectively, indicating that the best and worst ecological quality levels 
were affected by the land use/land cover types. Closed shrublands ranked in the top five 
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influencing factors for almost all the ecological quality levels. Permanent wetlands, closed 
shrublands and total water resources had a similar importance for the areas with excellent RSEI, 
which suggests that these areas are influenced by variables centered on water resources. 
Grasslands, closed shrublands, savannas and vegetation mosaics emerged as the top influencing 
factors for the areas with moderate RSEI, which suggests that vegetation factors are key to the 
ecological quality of the region. Temperature, precipitation, water resources and vegetation all 
contributed to the ecological quality of Xinjiang. 

4  Discussion 

A single land surface factor is not a good indicator for assessing the quality of complex land 
surface ecosystems. The interactions between ecological factors require us to evaluate ecological 
quality using multiple factors. RSEI can effectively assess the ecological quality of the land 
surface (Yang et al., 2021). In this study, we calculated the eigenvalues and contributions of the 
principal components to prove the applicability of RSEI. The contributions of PC1 were all higher 
than 90.00%, indicating that RSEI could reflect the ecological quality of Xinjiang over the last 
two decades (Boori et al., 2021). The GEE platform, as a remote sensing big data processing 
platform, can rapidly and easily acquire the results of surface ecological quality (Gao et al., 
2021). Assessments of large-scale regional ecological quality based on the GEE platform have 
advantages over typical locally processed assessments. The UN SDGs have been highlighted by a 
number of countries and the GEE platform has been applied in large-scale ecological monitoring 
and evaluation (Bian et al., 2020; Wu et al., 2020; Deng et al., 2022). This will help to achieve the 
UN SDGs as soon as possible. 

The overall ecological quality in Xinjiang was improved from 2000 to 2020. The improved 
areas were not only in the oases, but also in the desert–oasis ecotone and deserts. The main reason 
for this change is that the climate in Xinjiang has become warmer and more humid; the increased 
precipitation has greatly improved the soil moisture content and habitats, leading to the recovery 
of vegetation (Guan et al., 2021). Warmer temperatures have also accelerated the melting of 
glaciers and glacial snowmelt is the main means of water recharge in arid areas. Adequate 
meltwater greatly replenishes ecological water needs and improves ecological quality. The 
dryland ecosystems of Xinjiang are extremely sensitive to climate change as a result of their 
inherently fragile ecology. 

The recent trend toward a warmer and more humid climate will help to improve the ecological 
quality in Xinjiang (Yao et al., 2021). This is consistent with our finding that temperature and 
precipitation control ecological quality. A warmer and more humid climate is ultimately 
manifested in the increased availability of water (Luo et al., 2019). Water resources are the key to 
the sustainable development of the land surface ecology in arid regions and are also relatively 
important in areas classified as excellent and good RSEI (Fig. 7b and c). Spatial and temporal 
differences in water resources contribute to the spatial and temporal heterogeneity in ecological 
quality. We therefore recommend that ecological restoration policies are developed with attention 
to the complexity of climate change and water resources. 

We observed that the ecological quality of southern Xinjiang was lower than that of northern 
Xinjiang almost every year and the ecological quality of eastern Xinjiang was vulnerable. This 
might be due to differences in climate, where climate change affects the distribution of natural 
vegetation and thus ecological quality (Ma et al., 2021). Northern Xinjiang has been reported to 
be more sensitive to precipitation than southern Xinjiang (Luo et al., 2019), consistent with our 
findings. The ecological quality of eastern Xinjiang, where the environmental conditions favor 
desertification, is easily impacted due to the scant vegetation generated by the dry climate (Jiang 
et al., 2019). Dust aerosols are also regional factors that affect ecological quality. Previous studies 
have shown that the Ebinur Lake region (in northern Xinjiang) and the Taklimakan Desert (in 
southern Xinjiang), which are major sources of dust, transport substantial amounts of atmospheric 
pollutants to the surrounding areas and degrade the ecological environment (Ge et al., 2016; Liu 
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et al., 2021). The transport of dust is controlled by the climate, with higher temperatures favoring 
the transport and movement of dust and precipitation suppressing the concentration and activity 
of dust. 

Land use/land cover was found to be relatively important in the assessment of ecological 
quality in Xinjiang (Fig. 7) and land use/land cover types with a higher density of vegetation 
cover have higher RSEI values (Zheng et al., 2022). Most of Xinjiang is barren and the barren 
areas that have not changed during the last two decades accounted for 68.31% of the total area of 
Xinjiang. The RSEI of the barren areas has been rated as poor or fair (Zheng et al., 2022), which 
is consistent with our results. However, our findings suggest that the ecological quality of these 
unchanged barren areas has also improved, which may be caused by a warmer and more humid 
climate. Improvements of ecological quality resulting from human activities were found in oases 
or the oasis–desert ecotone (grasslands); however, it is the trend of a warmer and more humid 
climate that has transformed these barren areas into grasslands (Gang et al., 2019). Grasslands, 
which are dominated by natural vegetation in arid regions of Northwest China, are influenced by 
the climate, water resources and human activities. Our results indicate that grasslands are 
important for the ecological quality in Xinjiang, although grassland restoration may reach the 
limits of sustainability in terms of water resources (Feng et al., 2016). 

Grasslands in Xinjiang have also been transformed to croplands, a transformation that 
accounted for 1.60% of the area of Xinjiang and ranked the second for land use/land cover 
change. Notably, a conversion from grasslands to croplands of >60.00% can result in slight soil 
salinization (Zhuang et al., 2021). The expansion of croplands also exacerbates the degradation of 
natural habitats (Tang et al., 2021). Fortunately, the area converted from grasslands to croplands 
(1.62%) was balanced by the increased area of grasslands (2.67%). The planned expansion of 
croplands can reduce ecosystem stress through such a balanced perspective. The Chinese 
government's objective is to achieve ecological and rural rejuvenation through coordinating and 
balancing agricultural output and ecological conservation in rural areas (Liu and Li, 2017; Liu et 
al., 2020). Intensive (Zhang et al., 2020; Feng et al., 2022) and precision (Wu et al., 2005; Xu et 
al., 2020 agriculture serves croplands and brings economic benefits, which will further contribute 
to the improvement of ecological quality in Xinjiang. The Chinese government focuses on rural 
ecological revitalization in Xinjiang through geographical indications of agricultural products, 
ecological certification and rural ecological revitalization (Chen et al., 2021). All these policies 
and measures help to mitigate the impact of cropland expansion on ecosystems. 

The improvement of ecological quality in Xinjiang cannot be achieved without policy 
encouragement from the Chinese government, which has been implementing a series of 
ecological restoration policies in a scientific manner. For instance, the Three-North Shelterbelt 
Program (Li et al., 2012; Zhang et al., 2016; Guo et al., 2022a) and the comprehensive 
management project in the Tarim River Basin (Xue et al., 2019) serve as good examples in China. 
In the last four decades, vegetation in Xinjiang has recovered, regional desertification has been 
improved and human activities have had a positive effect on the greening of the region's 
vegetation (Guan et al., 2021). Soils have been improved in some areas with native soil salinity 
due to the improvements in vegetation (Ge et al., 2022b). There is a trend of sustainable 
ecological development in the Tarim River Basin, where natural vegetation has improved and the 
conversion of natural vegetation to agricultural land has been halted (Xue et al., 2019; Guo et al., 
2020). Although there has been a deterioration in ecological quality locally in Xinjiang, this has 
not been caused by human activities and the vast majority of the deterioration has occurred in the 
unused barren areas. Although policy drivers have led the way to global greening (Chen et al., 
2019; Guo et al., 2022b), as shown by the ecological restoration in the Tarim River Basin, we also 
need to consider reducing the conversion of natural vegetation to agricultural lands. In addition, 
afforestation needs to consider the carrying capacity of the water resources because afforestation 
may lower the groundwater level in arid regions (Lu et al., 2018). 

The Chinese government has established nine national nature reserves in Xinjiang to 
demonstrate the effect of policy-driven actions (Fig. 8) (Wu et al., 2011). These reserves include 
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wetlands, shrublands and forests. Wetlands are the most crucial factor required for excellent RSEI 
(Fig. 7b) because they regulate water resources and serve as ecological barriers. According to 
statistics, ecological quality was improved in 21.03% of these national nature reserves, 1.04% of 
the area showed only slight improvement in ecological quality, 73.77% of area was stable and 
only 4.15% of the area had a slight deterioration. These deteriorating areas were concentrated in 
the Lop Nur Wild Camel National Nature Reserve and may have been caused by a shortage of 
water resources in the reserve due to the climate, which would increase its vulnerability (Xue et 
al., 2021). Wetlands, shrublands, forests and grasslands all have vital roles in the distinct levels of 
RSEI. These positive improvements may be the effects of national policy drivers. Policies of the 
River Chief System, Lake Chief System and Forest Chief Systems proposed in China (Li et al., 
2020b) have also been implemented and the management of ecological quality in Xinjiang will 
become more precise in the future. 

 

Fig. 8  Changes in ecological quality in national nature reserves in Xinjiang during 2000–2020. 1, Altun 
Mountains National Nature Reserve; 2, Bayanbulak National Nature Reserve; 3, Ebinur Lake Wetland National 
Nature Reserve; 4, Ganjiahu Haloxylon Forest National Nature Reserve; 5, Hanas National Nature Reserve; 6, 
Lop Nur Wild Camel National Nature Reserve; 7, Tarim Populus euphratica Forest National Nature Reserve; 8, 
Tomur National Nature Reserve; 9, West Tianshan Mountains National Nature Reserve. The data were from the 
China Nature Reserve Specimen Resource Sharing Platform (http://www.papc.cn/). 

5  Conclusions 

In this study, we constructed RSEI through the GEE platform to assess the ecological quality of 
Xinjiang from 2000 to 2020. We found that ecological quality in this arid region has improved 
due to both climate factors and human activities (changes in land use/land cover). The arithmetic 
power of the GEE platform supports large-scale ecological assessments. RSEI was sufficient to 
indicate the ecological quality in Xinjiang because the contribution of the first principal 
component was higher than 90.00%. The ecological quality of Xinjiang has improved and the 
average values of RSEI were increased by 7.00%. Ecological quality was slightly improved in 
31.26% of the area in Xinjiang and remained stable at 64.32% of the land area. About 3.16% of 
the land area deteriorated slightly and only 0.39% of the land area deteriorated. In particular, the 
slightly deteriorated or deteriorated areas were distributed in the unused barren lands. The 
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improvement in the ecological quality of Xinjiang was driven by the warmer and more humid 
climate, changes in land use/land cover and government policies. Changes in temperature, 
precipitation, closed shrublands, grasslands and savannas had the greatest effects on the RSEI. 
Among the areas with slightly improved and slightly worsen ecological quality in Xinjiang, 
84.25% and 74.40% of the areas, respectively, were in the barren areas. For the nine national 
nature reserves, 22.07% of the protected areas were restored (improved and slightly improved) 
and 73.77% were stable. The Chinese government achieves ecological and rural rejuvenation 
through coordinating and balancing agricultural output and ecological conservation in rural areas. 
Our results will contribute to the promotion of the UN SDGs in the inland drylands in Central 
Asia. 

Acknowledgements 

This study was supported by the Key Laboratory Open Subjects of Xinjiang Uygur Autonomous Region Science 
and Technology Department (2020D04038), the Key Project of Natural Science Foundation of Xinjiang Uygur 
Autonomous Region (2021D01D06) and the National Natural Science Foundation of China (41961059). We are 
especially grateful to the anonymous reviewers and editors for appraising our manuscript and for offering 
instructive comments. 

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article's 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. 

References 

Bian J, Li A, Lei G, et al. 2020. Global high-resolution mountain green cover index mapping based on Landsat images and 

Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 162: 63–76. 

Boori M S, Choudhary K, Paringer R, et al. 2021. Spatiotemporal ecological vulnerability analysis with statistical correlation 

based on satellite remote sensing in Samara, Russia. Journal of Environmental Management, 285: 112138, doi: 

10.1016/j.jenvman.2021.112138 

Bradford J B, Schlaepfer D R, Lauenroth W K, et al. 2020. Robust ecological drought projections for drylands in the 21st 

century. Global Change Biology, 26(7): 3906–3919. 

Bryan B A, Gao L, Ye Y, et al. 2018. China's response to a national land-system sustainability emergency. Nature, 559(7713): 

193–204. 

Chen C, Park T, Wang X, et al. 2019. China and India lead in greening of the world through land-use management. Nature 

Sustainability, 2: 122–129. 

Chen W J, Lu Y Q, Liu G L. 2021. Balancing cropland gain and desert vegetation loss: The key to rural revitalization in 

Xinjiang, China. Growth and Change, 53(3): 1122–1145. 

Deng L, Yan W, Zhang Y, et al. 2016. Severe depletion of soil moisture following land-use changes for ecological restoration: 

Evidence from northern China. Forest Ecology and Management, 366: 1–10. 

Deng Y, Jiang W, Wu Z, et al. 2022. Assessing surface water losses and gains under rapid urbanization for SDG 6.6.1 using 

long-term Landsat imagery in the Guangdong-Hong Kong-Macao Greater Bay Area, China. Remote Sensing, 14(4): 881, doi: 

10.3390/rs14040881 

Feng L, Chi B J, Dong H Z. 2022. Cotton cultivation technology with Chinese characteristics has driven the 70-year 

development of cotton production in China. Journal of Integrative Agriculture, 21(3): 597–609. 

Feng X, Fu B, Piao S, et al. 2016. Revegetation in China's Loess Plateau is approaching sustainable water resource limits. 

Nature Climate Change, 6: 1019–1022. 

Gang C, Gao X, Peng S, et al. 2019. Satellite observations of the recovery of forests and grasslands in Western China. Journal 



 WANG Jinjie et al.: Assessment of ecological quality in Northwest China… 1209 

 

 

of Geophysical Research: Biogeosciences, 124(7): 1905–1922. 

Gao W, Zhang S, Rao X, et al. 2021. Landsat TM/OLI-based ecological and environmental quality survey of Yellow River 

Basin, Inner Mongolia Section. Remote Sensing, 13(21): 4477, doi: 10.3390/rs13214477. 

Ge X, Ding J, Jin X, et al. 2021. Estimating agricultural soil moisture content through UAV-based hyperspectral images in the 

arid region. Remote Sensing, 13(8): 1562, doi: 10.3390/rs13081562. 

Ge X, Ding J, Teng D, et al. 2022a. Exploring the capability of Gaofen-5 hyperspectral data for assessing soil salinity risks. 

International Journal of Applied Earth Observation and Geoinformation, 112: 102969, doi: 10.1016/j.jag.2022.102969. 

Ge X, Ding J, Teng D, et al. 2022b. Updated soil salinity with fine spatial resolution and high accuracy: The synergy of 

Sentinel-2 MSI, environmental covariates and hybrid machine learning approaches. CATENA, 212: 106054, doi: 

10.1016/j.catena.2022.106054. 

Ge Y, Abuduwaili J, Ma L, et al. 2016. Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, 

in arid northwest China. Atmospheric Research, 178–179: 196–206. 

Gorelick N, Hancher M, Dixon M, et al. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote 

Sensing of Environment, 202: 18–27. 

Guan J, Yao J, Li M, et al. 2021. Assessing the spatiotemporal evolution of anthropogenic impacts on remotely sensed 

vegetation dynamics in Xinjiang, China. Remote Sensing, 13(22): 4651, doi: 10.3390/rs13224651. 

Guo B, Zang W, Yang F, et al. 2020. Spatial and temporal change patterns of net primary productivity and its response to 

climate change in the Qinghai-Tibet Plateau of China from 2000 to 2015. Journal of Arid Land, 12(1): 1–17. 

Guo B, Wei C, Yu Y, et al. 2022a. The dominant influencing factors of desertification changes in the source region of Yellow 

River: Climate change or human activity? Science of the Total Environment, 813: 152512, doi: 

10.1016/j.scitotenv.2021.152512. 

Guo B, Yang F, Fan J, et al. 2022b. The changes of spatiotemporal pattern of rocky desertification and its dominant driving 

factors in typical karst mountainous areas under the background of global change. Remote Sensing, 14(10): 2351, doi: 

10.3390/rs14102351. 

Healey S P, Cohen W B, Yang Z Q, et al. 2005. Comparison of tasseled cap-based Landsat data structures for use in forest 

disturbance detection. Remote Sensing of Environment, 97(3): 301–310. 

Hill M J, Senarath U, Lee A, et al. 2006. Assessment of the MODIS LAI product for Australian ecosystems. Remote Sensing of 

Environment, 101(4): 495–518. 

Jiang L, Jiapaer G, Bao A, et al. 2019. Monitoring the long-term desertification process and assessing the relative roles of its 

drivers in Central Asia. Ecological Indicators, 104: 195–208. 

Jiang L, Liu Y, Wu S, et al. 2021. Analyzing ecological environment change and associated driving factors in China based on 

NDVI time series data. Ecological Indicators, 129: 107933, doi: 10.1016/j.ecolind.2021.107933. 

Li J, Pei Y, Zhao S, et al. 2020a. A review of remote sensing for environmental monitoring in China. Remote Sensing, 12(7): 

1130, doi: 10.3390/rs12071130. 

Li J, Shi X, Wu H, et al. 2020b. Trade-off between economic development and environmental governance in China: An analysis 

based on the effect of river chief system. China Economic Review, 60: 101403, doi: 10.1016/j.chieco.2019.101403. 

Li M M, Liu A, Zou C, et al. 2012. An overview of the ''Three-North'' Shelterbelt project in China. Forestry Studies in China, 

14: 70–79. 

Li Y, Zhang C, Wang N, et al. 2017. Substantial inorganic carbon sink in closed drainage basins globally. Nature Geoscience, 

10: 501–506. 

Liu J, Ding J, Rexiding M, et al. 2021. Characteristics of dust aerosols and identification of dust sources in Xinjiang, China. 

Atmospheric Environment, 262: 118651, doi: 10.1016/j.atmosenv.2021.118651. 

Liu Y, Li Y. 2017. Revitalize the world's countryside. Nature, 548: 275–277. 

Liu Y, Zang Y, Yang Y. 2020. China's rural revitalization and development: Theory, technology and management. Journal of 

Geographical Sciences, 30: 1923–1942. 

Lu C, Zhao T, Shi X, et al. 2018. Ecological restoration by afforestation may increase groundwater depth and create potentially 

large ecological and water opportunity costs in arid and semiarid China. Journal of Cleaner Production, 176: 1213–1222. 

Luo M, Liu T, Meng F, et al. 2019. Identifying climate change impacts on water resources in Xinjiang, China. Science of the 

Total Environment, 676: 613–626. 

Ma X, Zhu J, Yan W, et al. 2021. Projections of desertification trends in Central Asia under global warming scenarios. Science 

of the Total Environment, 781: 146777, doi: 10.1016/j.scitotenv.2021.146777. 



1210 JOURNAL OF ARID LAND 2022 Vol. 14 No. 11  

 

 

Malhi Y, Franklin J, Seddon N, et al. 2020. Climate change and ecosystems: threats, opportunities and solutions. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 375(1794): 20190104, doi: 10.1098/rstb.2019.0104. 

Mildrexler D J, Zhao M, Running S W. 2009. Testing a MODIS global disturbance index across North America. Remote 

Sensing of Environment, 113(10): 2103–2117. 

Peng J, Jia J, Liu Y, et al. 2018. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in 

urban areas. Remote Sensing of Environment, 215: 255–267. 

Pettorelli N, Vik J O, Mysterud A, et al. 2005. Using the satellite-derived NDVI to assess ecological responses to environmental 

change. Trends in Ecology & Evolution, 20(9): 503–510. 

Rodell M, Famiglietti J S, Wiese D N, et al. 2018. Emerging trends in global freshwater availability. Nature, 557: 651–659. 

Statistic Bureau of Xinjiang Uygur Autonomous Region. 2001–2020. Xinjiang Statistical Yearbook. Beijing: China Statistics 

Press. (in Chinese) 

Tamiminia H, Salehi B, Mahdianpari M, et al. 2020. Google Earth Engine for geo-big data applications: A meta-analysis and 

systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164: 152–170. 

Tang L, Ke X, Chen Y, et al. 2021. Which impacts more seriously on natural habitat loss and degradation? Cropland expansion 

or urban expansion? Land Degradation & Development, 32(2): 946–964. 

Tian Y, Jim C Y, Tao Y, et al. 2011. Landscape ecological assessment of green space fragmentation in Hong Kong. Urban 

Forestry & Urban Greening, 10(2): 79–86. 

Vlassova L, Perez-Cabello F, Nieto H, et al. 2014. Assessment of methods for land surface temperature retrieval from Landsat-5 

TM images applicable to multiscale tree-grass Ecosystem modeling. Remote Sensing, 6(5): 4345–4368. 

Wu B, Tian F, Zhang M, et al. 2020. Cloud services with big data provide a solution for monitoring and tracking sustainable 

development goals. Geography and Sustainability, 1(1): 25–32. 

Wu C C, Chen X W, Tao Y C, et al. 2005. Research on the application mode of spatial information technology for precision 

agriculture in Xinjiang. Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS 

'05. Seoul: IEEE. 

Wu H, Guo B, Fan J, et al. 2021. A novel remote sensing ecological vulnerability index on large scale: A case study of the 

China-Pakistan Economic Corridor region. Ecological Indicators, 129: 107955, doi: 10.1016/j.ecolind.2021.107955. 

Wu R, Zhang S, Yu D W, et al. 2011. Effectiveness of China's nature reserves in representing ecological diversity. Frontiers in 

Ecology and the Environment, 9(7): 383–389. 

Xie X, Li A, Jin H, et al. 2019. Assessment of five satellite-derived LAI datasets for GPP estimations through ecosystem 

models. Science of the Total Environment, 690: 1120–1130. 

Xiong Y, Xu W, Lu N, et al. 2021. Assessment of spatial–temporal changes of ecological environment quality based on RSEI 

and GEE: A case study in Erhai Lake Basin, Yunnan province, China. Ecological Indicators, 125: 107518, doi: 

10.1016/j.ecolind.2021.107518. 

Xu D, Yang F, Yu L, et al. 2021. Quantization of the coupling mechanism between eco-environmental quality and urbanization 

from multisource remote sensing data. Journal of Cleaner Production, 321: 128948, doi: 10.1016/j.jclepro.2021.128948. 

Xu H, Wang M, Shi T, et al. 2018. Prediction of ecological effects of potential population and impervious surface increases 

using a remote sensing based ecological index (RSEI). Ecological Indicators, 93: 730–740. 

Xu H, Wang Y, Guan H, et al. 2019. Detecting ecological changes with a remote sensing based ecological index (RSEI) 

produced time series and change vector analysis. Remote Sensing, 11(20): 2345, doi: 10.3390/rs11202345. 

Xu W, Yang W, Chen S, et al. 2020. Establishing a model to predict the single boll weight of cotton in northern Xinjiang by 

using high resolution UAV remote sensing data. Computers and Electronics in Agriculture, 179: 105762, doi: 

10.1016/j.compag.2020.105762. 

Xu Z, Chau S N, Chen X, et al. 2020. Assessing progress towards sustainable development over space and time. Nature, 577: 

74–78. 

Xue L, Wang J, Zhang L, et al. 2019. Spatiotemporal analysis of ecological vulnerability and management in the Tarim River 

Basin, China. Science of the Total Environment, 649: 876–888. 

Xue Y, Li J, Zhang Y, et al. 2021. Assessing the vulnerability and adaptation strategies of wild camel to climate change in the 

Kumtag Desert of China. Global Ecology and Conservation, 29: e01725, doi: 10.1016/j.gecco.2021.e01725. 

Yang X, Meng F, Fu P, et al. 2021. Spatiotemporal change and driving factors of the eco-environment quality in the Yangtze 

River Basin from 2001 to 2019. Ecological Indicators, 131: 108214, doi: 10.1016/j.gecco.2021.e01725. 

Yang Z, Chen Y, Wu Z, et al. 2019. Spatial heterogeneity of the thermal environment based on the urban expansion of natural 



 WANG Jinjie et al.: Assessment of ecological quality in Northwest China… 1211 

 

 

cities using open data in Guangzhou, China. Ecological Indicators, 104: 524–534. 

Yao J, Hu W, Chen Y, et al. 2019. Hydro-climatic changes and their impacts on vegetation in Xinjiang, Central Asia. Science of 

the Total Environment, 660: 724–732. 

Yao J, Mao W, Chen J, et al. 2021. Recent signal and impact of wet-to-dry climatic shift in Xinjiang, China. Journal of 

Geographical Sciences, 31: 1283–1298. 

Yuan B, Fu L, Zou Y, et al. 2021. Spatiotemporal change detection of ecological quality and the associated affecting factors in 

Dongting Lake Basin, based on RSEI. Journal of Cleaner Production, 302: 126995, doi: 10.1016/j.jclepro.2021.126995. 

Yue H, Liu Y, Li Y, et al. 2019. Eco-environmental quality assessment in China's 35 major cities based on remote sensing 

ecological index. IEEE Access, 7: 51295–51311. 

Zhang Y, Peng C, Li W, et al. 2016. Multiple afforestation programs accelerate the greenness in the 'Three North' region of 

China from 1982 to 2013. Ecological Indicators, 61: 404–412. 

Zhang Z, Xia F, Yang D, et al. 2020. Spatiotemporal characteristics in ecosystem service value and its interaction with human 

activities in Xinjiang, China. Ecological Indicators, 110: 105826, doi: 10.1016/j.ecolind.2019.105826. 

Zheng Z, Wu Z, Chen Y, et al. 2020. Exploration of eco-environment and urbanization changes in coastal zones: A case study 

in China over the past 20 years. Ecological Indicators, 119: 106847, doi: 10.1016/j.ecolind.2020.106847. 

Zheng Z, Wu Z, Chen Y, et al. 2022. Instability of remote sensing based ecological index (RSEI) and its improvement for time 

series analysis. Science of the Total Environment, 814: 152595, doi: 10.1016/j.scitotenv.2021.152595. 

Zhuang Q, Shao Z, Huang X, et al. 2021. Evolution of soil salinization under the background of landscape patterns in the 

irrigated northern slopes of Tianshan Mountains, Xinjiang, China. CATENA, 206: 105561, doi: 

10.1016/j.catena.2021.105561. 

Zuo L, Zhang Z, Carlson K M, et al. 2018. Progress towards sustainable intensification in China challenged by land-use change. 

Nature Sustainability, 1: 304–313. 


