Skip to main content
Log in

Birkhoff–James Orthogonality and the Zeros of an Analytic Function

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Bounds are obtained for the zeros of an analytic function on a disk in terms of the Taylor coefficients of the function. These results are derived using the notion of Birkhoff–James orthogonality in the sequence space \(\ell ^p\) with \(p \in (1, \infty )\), along with an associated Pythagorean theorem. It is shown that these methods are able to reproduce, and in some cases sharpen, some classical bounds for the roots of a polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso, J., Martini, H., Wu, S.: On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces. Aequ. Math. 83(1–2), 153–189 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bynum, W.L.: Weak parallelogram law for Banach spaces. Can. Math. Bull. 19(3), 269–275 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bynum, W.L., Drew, J.H.: A weak parallelogram law for \(\ell _p\). Am. Math. Mon. 79, 1012–1015 (1972)

    Article  MATH  Google Scholar 

  4. Cambanis, S., Hardin Jr., C.D., Weron, A.: Innovations and Wold decompositions of stable sequences. Probab. Theory Relat. Fields 79(1), 1–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carothers, N.L.: A Short Course on Banach Space Theory. London Mathematical Society Student Texts, vol. 64. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  6. Cheng, R., Harris, C.: Duality of the weak parallelogram laws on Banach spaces. J. Math. Anal. Appl. 404(1), 64–70 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, R., Harris, C.: Mixed norm spaces and prediction of S\(\alpha \)S moving averages. J. Time Ser. Anal. 36, 853–875 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, R., Miamee, A.G., Pourahmadi, M.: Regularity and minimality of infinite variance processes. J. Theor. Probab. 13(4), 1115–1122 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, R., Miamee, A.G., Pourahmadi, M.: On the geometry of \(L^p(\mu )\) with applications to infinite variance processes. J. Aust. Math. Soc. 74(1), 35–42 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng, R., Ross, W.T.: Weak parallelogram laws on Banach spaces and applications to prediction. Period. Math. Hungar. 71(1), 45–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, R., Ross, W.T.: An inner-outer factorization in \(\ell ^p\) with applications to ARMA processes. J. Math. Anal. Appl. 437, 396–418 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Terán, F., Dopico, F.M., Pérez, J.: New bounds for roots of polynomials based on Fiedler companion matrices. Linear Algebra Appl. 451, 197–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duren, P.L.: Theory of \(H^{p}\) Spaces. Pure and Applied Mathematics, vol. 38. Academic Press, New York (1970)

    Google Scholar 

  14. Garcia, S.R., Mashreghi, J., Ross, W.: Introduction to Model Spaces and Their Operators. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  15. Hsu, S.-P., Cheng, F.-C.: On infinite families of zero bounds of complex polynomials. J. Comput. Appl. Math. 256, 219–229 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ifantis, E.K., Kouris, C.B.: A Hilbert space approach to the localization problem of the roots of analytic functions. Indiana Univ. Math. J. 23:11–22 (1974)

  17. Ifantis, E.K., Kouris, C.B.: Lower bounds for the zeros for analytic functions. Numer. Math. 27:239–247 (1977)

  18. James, R.C.: Orthogonality and linear functionals in normed linear spaces. Trans. Am. Math. Soc. 61, 265–292 (1947)

    Article  MathSciNet  Google Scholar 

  19. Kalantari, B.: An infinite family of bounds on zeros of analytic functions and relationship to Smale’s bound. Math. Comp. 74(250), 203–220 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Marden, M.: Geometry of Polynomials, 2nd Ed. Mathematical Surveys, No. 3. American Mathematical Society, Providence (1966)

  21. Miamee, A.G., Pourahmadi, M.: Wold decomposition, prediction and parameterization of stationary processes with infinite variance. Probab. Theory Relat. Fields 79(1), 145–164 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. London Mathematical Society Monographs, vol. 26. New Series. The Clarendon Press, Oxford University Press, Oxford (2002)

  23. Smale, S.: Newton’s Method Estimates from Data at One Point, pp. 185–196. The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics. Springer, New York (1986)

  24. Wu, S.: A new sharpened and generalized version of Hölder’s inequality and its applications. Appl. Math. Comput. 197, 708–714 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William T. Ross.

Additional information

Communicated by Laurent Baratchart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, R., Mashreghi, J. & Ross, W.T. Birkhoff–James Orthogonality and the Zeros of an Analytic Function. Comput. Methods Funct. Theory 17, 499–523 (2017). https://doi.org/10.1007/s40315-017-0191-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-017-0191-5

Keywords

Mathematics Subject Classification

Navigation