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Abstract This paper studies the nonhomogeneous quadratic programming problem
over a second-order cone with linear equality constraints. When the feasible region
is bounded, we show that an optimal solution of the problem can be found in poly-
nomial time. When the feasible region is unbounded, a semidefinite programming
(SDP) reformulation is constructed to find the optimal objective value of the original
problem in polynomial time. In addition, we provide two sufficient conditions, under
which, if the optimal objective value is finite, we show the optimal solution of SDP
reformulation can be decomposed into the original space to generate an optimal so-
lution of the original problem in polynomial time. Otherwise, a recession direction
can be identified in polynomial time. Numerical examples are included to illustrate
the effectiveness of the proposed approach.
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1 Introduction

Consider the following nonhomogeneous quadratic optimization problem over a
second-order cone with linear equality constraints (QP-SOC in short):

VQP-SOC := min F(x) = xTQx + 2cTx

s.t. Ax = b,

x ∈ L,

(QP-SOC)

where Q ∈ R
n×n is a symmetric matrix which is not necessary to be positive semidef-

inite, c ∈ R
n, A ∈ R

m×n, b ∈ R
m and L = {x ∈ R

n | √
xTHx � f Tx} is a general

second-order cone with H ∈ R
n×n being a symmetric positive definite matrix and

f ∈ R
n (see [22]).

The second-order cone is a special Bishop–Phelps cone, which has been proven to
be useful in functional analysis and vector optimization [4, 9]. A class of cardinality-
constrained portfolio selection problems can also be reformulated as a second-order
cone constrained quadratic optimization problem [7, 18]. Some studies of optimiza-
tion problems over L can be found in [1–3, 6]. Recently, linear conic programming
has received much attention for solving quadratic optimization problems [5]. Sturm
and Zhang introduced cones of nonnegative quadratic functions and reformulated a
nonconvex quadratic program as a linear conic program [21]. Guo et al. [12] con-
struct a sequence of linear conic programs to solve quadratic optimization problems
over one first-order cone. Tian et al. provided a computable representation of non-
convex homogeneous quadratic programming problems over a union of second-order
cones using linear matrix inequalities (LMIs) [22]. Consequently, polynomial-time
interior-point algorithms [15] become applicable for this type of problems. For a gen-
eral nonhomogeneous quadratic programming problem over a second-order cone, Jin
et al. [14] provided an exact computable representation based on LMIs. Although the
optimal value of problem (QP-SOC) can be obtained in polynomial time [14], there
is no known polynomial-time algorithm in the literature to find the optimal solution
of problem (QP-SOC) yet. Eichfelder and Povh studied reformulations of nonconvex
quadratic programs over convex cones with linear equalities, the optimal solution of
the original problem was not obtained either [9]. In particular, when the feasible re-
gion is unbounded, the optimal objective value may be infinite, or the optimal solution
is unattainable even when the optimal objective value is finite. In this paper, we in-
tend to address these issues for quadratic optimization problems over a second-order
cone with linear equality constraints.

By incorporating the concept of recession cones [17], we deal with the problem de-
pending on the boundedness of its feasible region. For the bounded case, we construct
a redundant constraint to bound the second-order cone such that the original prob-
lem can be transformed into a lower-dimensional problem with one convex quadratic
constraint in addition to the linear equality constraints. An equivalent linear conic
program is then derived. Since the cone of nonnegative quadratic functions over one
convex quadratic constraint has an explicit representation and decomposition [21],
a polynomial-time algorithm applies for finding an optimal solution of the original
problem. For the unbounded case, following the work of [10] and [14], we present
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an equivalent semidefinite programming (SDP) reformulation to find the optimal ob-
jective value of the original problem in polynomial time. Under two sufficient con-
ditions, if the optimal objective value is finite, we can obtain an optimal solution of
the original problem in polynomial time by decomposing the solution of the SDP re-
formulation. Otherwise, we show a way to find in polynomial time a direction along
which the objective value goes to minus infinity.

The rest of the paper is arranged as follows. Notations and preliminaries are pre-
sented in Sect. 2. In Sect. 3, we study the problem with a bounded feasible region.
A polynomial-time algorithm is presented to find an optimal solution in this case. In
Sect. 4, the problem with an unbounded feasible region is studied. A polynomial-time
algorithm is presented. Under two sufficient conditions, the algorithm either finds an
optimal solution, when the optimal objective value is finite, or finds a recession di-
rection along which the objective value goes to minus infinity. Numerical examples
are included to illustrate the proposed approaches in Sect. 5. Conclusion follows in
Sect. 6.

2 Notations and Preliminaries

Some notations are adopted in this paper. Let R++ be the set of positive real numbers,
R

n+ the first orthant of Rn and N+ the set of positive integers. For a vector x ∈ R
n,

let xi denote the ith component and xi:j (1 � i < j � n) a subvector formed by the
elements of x from xi to xj . For vectors a, b ∈ R

n, a ◦ b = (a1b1, a2b2, · · · , anbn)
T

is the Hadamard product of a and b. Sn denotes the set of all n × n real symmetric
matrices and Sn+ the set of all n × n symmetric positive semidefinite matrices. For
a matrix U ∈ Sn, U � 0 means U is positive semidefinite while U � 0 means U is
not positive semidefinite, and U � 0 means U is positive definite. Diag(U) denotes
an n-dimensional vector whose ith element is the ith diagonal element of U and In

the n×n-dimensional identity matrix. For matrices A and B of the same size, denote
A · B = trace(ABT) =∑i

∑
j AijBij , where Aij and Bij denote the elements in the

ith row and j th column of A and B , respectively. For a cone C, C∗ denotes its dual
cone. For a set W ⊆ R

n, cl(W) stands for the closure of W and int(W) the interior
of W .

2.1 Properties of General Second-Order Cone

Several new properties of the general second-order cone are derived in this subsec-
tion. Notice that a cone is called a proper cone if and only if it is a pointed, closed
and convex cone with a non-empty interior [3]. Then we have the following.

Lemma 2.1 If L = {x ∈ R
n | √

xTHx � f Tx} is a proper cone, then f TH−1f −
1 > 0.

Proof Since L can be seen as the intersection of xT(H − ff T)x � 0 and f Tx �
0, we have H − ff T

� 0. Otherwise, H − ff T can be decomposed as BTB for
some nonzero matrix B ∈ Sn and L ⊆ {x ∈ R

n | Bx = 0}, which contradicts the
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properness of L. Using Schur Lemma [3], we have
[ 1 f T

f H

]
� 0, or, equivalently,

f TH−1f − 1 > 0. �

Lemma 2.2 For a general second-order cone L with f TH−1f − 1 > 0, its dual

L∗ = {x ∈R
n | √xTH−1x �

√
1

f TH−1f −1
(H−1f )Tx}.

Proof Set U = H
1
2 and y = Ux. L can then be rewritten as L = {y ∈ R

n |√yTy �
(U−1f )Ty}. According to [19], U−1f can be orthogonally transformed into β =
(0, · · · ,0,‖U−1f ‖2) through the Householder transformation P = I −2wwT, where

w = U−1f −β

‖β−U−1f ‖2
and P = P T = P −1. Setting z = Py, L is equivalent to {z ∈ R

n |√
zTz � (PU−1f )Tz = βTz}. Because the dual cone of this standard second-order

cone is {z ∈ R
n | √

zTz � s(en)Tz}, where s =
√

‖U−1f ‖2
2

‖U−1f ‖2
2−1

and en = (0, · · · ,0,1)T,

we have

L∗ = {(PU)Tz
∣
∣
√

zTz � s
(
en
)T

z
}

=
{

x ∈R
n

∣
∣
∣
∣

√
xTH−1x �

√
1

f TH−1f − 1

(
H−1f

)T
x

}

.
�

Corollary 2.1 L is a proper cone if and only if f TH−1f − 1 > 0.

Proof When f TH−1f − 1 > 0, L∗ is a pointed cone. Since L is closed, convex and
pointed, L = (L∗)∗ is also solid. Therefore, L is proper. Together with Lemma 2.1,
we know L is a proper cone if and only if f TH−1f − 1 > 0. �

Without loss of generality, in this paper, we always assume that L is a proper cone.
Otherwise, we can discuss the problem in a lower-dimensional space.

2.2 Properties of Recession Cone

Definition 2.1 [17] Given a convex set C ⊆ R
n and a direction d ∈R

n, we say that C

recedes in the direction of d if and only if x +λd ∈ C for every λ � 0 and x ∈ C. The
set of all such vectors d , including d = 0, is called the recession cone of C, denoted
as 0+C.

It is easy to prove the following lemmas by the definition of recession cone.

Lemma 2.3 0+{x ∈ R
n | Ax = b} = {d ∈ R

n | Ad = 0} and 0+L = {d ∈ R
n |

d ∈ L}, where L is a second-order cone.

The recession cone has the following property:

Lemma 2.4 [17, Corollary 8.3.3] Given closed convex sets B and C in R
n with non-

empty intersection, 0+(B ∩ C) = 0+B ∩ 0+C.
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According to [17], the boundedness of a closed and convex set can be fully decided
by its recession cone.

Lemma 2.5 [17] A non-empty, closed and convex set C ⊆ R
n is bounded if and only

if 0+C = {0}.

Following [10] and [9], define Feas(QP-SOC) := {x : x is feasible to problem
(QP-SOC)}. We assume that Feas(QP-SOC) is non-empty, which can be easily veri-
fied by solving a second-order cone programming problem. By applying the concept
of recession cone, the boundedness of Feas(QP-SOC) is discussed in the next sub-
section.

2.3 Boundedness of Feas(QP-SOC)

Since Feas(QP-SOC) is a closed and convex set, from Lemmas 2.3, 2.4 and 2.5, we
have

Lemma 2.6 The recession cone 0+Feas(QP-SOC) = {d ∈ R
n | Ad = 0, d ∈ L}.

Moreover, Feas(QP-SOC) is bounded if and only if 0+Feas(QP-SOC) = {0}.

Notice that when 0+Feas(QP-SOC) = {0}, although the feasible region is
bounded, the intersection of each linear equality constraint with L may be un-
bounded. However, we can construct a redundant linear equality constraint such that
its intersection with L is a bounded set that contains Feas(QP-SOC).

Lemma 2.7 If 0+Feas(QP-SOC) = {0}, then there exists an α = ∑m
i=1 kiα

i ∈
int(L∗), where αi ∈ R

n are row vectors of A and ki ∈ R, i = 1, · · · ,m. Moreover,
the set {x ∈ L | αTx =∑m

i=1 kibi} is bounded.

Proof Let N (A) = {d ∈ R
n | Ad = 0}, then its orthogonal complementary space

N (A)⊥ = R(AT) = ∑m
i=1 kiα

i , where R(AT) is the range of AT. For any x ∈ L,
it can be uniquely decomposed as x = x1 + x2, where x1 ∈ N (A) and x2 ∈ R(AT).
Since 0+Feas(QP-SOC) = {0}, i.e., L ∩N (A) = {0}, we know x2 = 0 if and only if
x = 0. Denote the projection of L into N (A) as L1 and that into R(AT) as L2. Since
L is a proper cone and L∩N (A) = {0}, L2 is also a pointed cone. If not, let y ∈ L2,
−y ∈ L2 and y �= 0, then there exist x̄1 = y1 + y �= 0 ∈ L and x̄2 = y2 + (−y) �=
0 ∈ L, where y1, y2 ∈ L1. Since L is a proper cone, x̄1 + x̄2 = y1 + y2 ∈ L∩N (A).
By L ∩ N (A) = {0}, we have x̄1 = −x̄2 ∈ L, which contradicts the fact that L is
a pointed cone. In the lower-dimensional subspace R(AT), denote the dual cone of
L2 as (L2)∗. According to the duality theory of a cone [3], (L2)∗ has relative inte-
rior points with respect to R(AT). For each relative interior point z ∈ (L2)∗ and any
x = x1 + x2 ∈ L with x1 ∈N (A), x2 ∈R(AT) and x �= 0, we have

z ∈ R
(
AT) and 〈z, x〉 = 〈z, x1〉+ 〈z, x2〉= 〈z, x2〉> 0.

Therefore, z ∈ int(L∗) ∩R(AT). Since R(AT) ∩ int(L∗) �= ∅, we know there exists
an α = ∑m

i=1 kiα
i ∈ int(L∗). The recession cone 0+{x ∈ L | αTx = ∑m

i=1 kibi} =
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{d ∈ L | αTd = 0} = {0}, consequently, the set {x ∈ L | αTx = ∑m
i=1 kibi} is

bounded. �

Based on Lemma 2.7, when Feas(QP-SOC) is bounded, a redundant constraint
αTx =∑m

i=1 ki((α
i)Tx) =∑m

i=1 kibi can be constructed such that the set {x ∈ L |
αTx =∑m

i=1 kibi} is bounded. To obtain this redundant constraint, we need to find
an interior α in the dual cone L∗. This can be achieved by solving the following
convex program:

VCPP := min −v

s.t. α =
m∑

i=1

kiα
i,

(α, v) ∈
{
y ∈ R

n+1
∣
∣
√

yTB̃y � f̃ Ty
}
,

0 � v � 1, ki ∈R, i = 1, · · · ,m.

(CPP)

where B̃ = [
H−1 0

0 1

]
and f̃ =

√
1

f TH−1f −1

[
H−1f

0

]
. Notice that problem (CPP) is a

second-order cone program with a linear objective, which can be solved in polyno-
mial time [1].

Corollary 2.2 Feas(QP-SOC) is bounded if and only if the optimal value of prob-
lem (CPP) is negative, i.e., VCPP < 0.

In the following section, we will develop a polynomial-time algorithm to solve
problem (QP-SOC) when its feasible region is bounded.

3 Bounded Case

According to Lemma 2.7 and Corollary 2.2, when Feas(QP-SOC) is bounded, prob-
lem (QP-SOC) can be equivalently written as

VQP-SOC1 := min F(x) = xTQx + 2cTx

s.t. Ax = b,

x ∈F = L∩
{

x ∈ R
n

∣
∣
∣
∣ α

Tx =
m∑

i=1

kibi

}

.

(QP-SOC1)

Note that α ∈ L∗. If
∑m

i=1 kibi = 0 and b = 0, then Feas(QP-SOC) = {0}. Other-
wise, F is bounded and has a relative interior point. Moreover, since L = {x ∈ R

n |
xT(H − ff T)x � 0, f Tx � 0}, F = {x ∈ R

n | xT(H − ff T)x � 0, f Tx � 0, αTx =∑m
i=1 kibi}. We now show that the constraint f Tx � 0 is redundant in F .

Lemma 3.1 If F �= ∅, then the set {x ∈ R
n | xT(H − ff T)x � 0, f Tx < 0, αTx =∑m

i=1 kibi} = ∅. Consequently, f Tx � 0 is redundant in F .
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Proof The recession cone 0+F = {d ∈ R
n | d ∈ L, αTd = 0}. Since α is an inte-

rior point of L∗, 0+F = {0}. Suppose x0 ∈ F , if there exists a y0 ∈ R
n such that

y0
T(H − ff T)y0 � 0, f Ty0 < 0, αTy0 =∑m

i=1 kibi , then we have −y0 ∈ L. Since L
is a convex cone, x0 − y0 ∈ L and αT(x0 − y0) = αTx0 −αTy0 = 0. Hence, x0 − y0 ∈
0+F = {0} and x0 = y0. This contradicts the fact of f Tx0 � 0 and f Ty0 < 0. There-
fore, the set {x ∈ R

n | xT(H − ff T)x � 0, f Tx < 0, αTx = ∑m
i=1 kibi} = ∅ and

f Tx � 0 is a redundant constraint in F . �

Based on Lemma 3.1, F = {x ∈ R
n | xT(H − ff T)x � 0, αTx =∑m

i=1 kibi} by
removing f Tx � 0. Since α �= 0, without loss of generality, we may assume that

α1 �= 0. Then x1 = 1
α1

(
∑m

i=1 kibi − αT
2:nx2:n). Suppose that Q = [Q11 qT

q Q̄

]
, c = [ c1

c̄

]
,

A = [
A11 dT

a Ā

]
, α = [ α1

ᾱ

]
and H − ff T = [

u hT

h H̄

]
, then problem (QP-SOC1) can be

reformulated as an equivalent quadratic program in the (n−1)-dimensional subspace.

VQP-SOC2 := min F̃ (y) = yTQ̃y + 2c̃Ty

s.t. Ãy = b̃,

yTH̃y + 2d̃Ty + t̃ � 0,

y ∈R
n−1,

(QP-SOC2)

where

Q̃ = Q̄ − 1

α1
ᾱqT − 1

α1
qᾱT + Q11

α2
1

ᾱᾱT, c̃ = c̄ − Q11s

α1
ᾱ − c1

α1
ᾱ + sq,

Ã =
[
dT − A11

α1
ᾱT

Ā − 1
α1

aᾱT

]

, b̃ = b −
[
A11s

sa

]

H̃ = H̄ − 1

α1
ᾱhT − 1

α1
hᾱT + u

α2
1

ᾱᾱT,

d̃ = −us

α1
ᾱ + sh, t̃ = us2, s =

∑m
i=1 kibi

α1
.

Notice that there is a constant difference of Q11s
2 + 2c1s between the optimal objec-

tive values of VQP-SOC1 and VQP-SOC2.
Denote F̃ = {y ∈R

n−1 | yTH̃y + 2d̃Ty + t̃ � 0}, then we have the next lemma.

Lemma 3.2 If Feas(QP-SOC) is bounded with a non-empty relative interior, then F̃

is bounded and has an interior point. Moreover, H̃ � 0 in problem (QP-SOC2).

Proof Since the feasible region F in problem (QP-SOC1) is non-empty and bounded
with relative interior points, F̃ , the projection of F into an (n − 1)-dimensional sub-
space, is bounded and has an interior point [11]. Suppose that H̃ has a negative eigen-
value λ0 with y0 being the corresponding eigenvector, then

(βy0)
TH̃ (βy0) + 2d̃T(βy0) + t̃ = λ0β

2‖y0‖2
2 + 2βd̃Ty0 + t̃ ,
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which goes to minus infinity as β → ∞. This causes a contradiction to the bounded-
ness of F . Hence we have H̃ � 0. �

Therefore, for problem (QP-SOC) with a bounded feasible region, we can obtain
its optimal solution by solving problem (QP-SOC2). Here we first reformulate the
problem into a linear conic program and then decompose the optimal solution in the
matrix space to get an optimal solution of problem (QP-SOC2).

Definition 3.1 [21] Given a set W ⊆ R
n, the cone of nonnegative quadratic functions

over W is defined as

DW =
{[

z0 zT

z Z

]

∈ Sn+1
∣
∣
∣
∣ x

TZx + 2zTx + z0 � 0,∀x ∈ W
}

. (3.1)

Its dual cone D∗
W is

D∗
W = cl

({∑

i

λi

[
1
xi

][
1
xi

]T

: λi � 0, xi ∈ W

})

, (3.2)

which is the closed convex cone generated by

G =
{

X =
[

1
x

][
1
x

]T

∈ Sn+1 : x ∈ W

}

. (3.3)

Eichfelder and Povh proved that, for a closed and bounded set W , under some
conditions, the quadratic optimization problem over W together with several linear
equalities is equivalent to a linear conic program over the cone D∗

W in the sense that
they have the same optimal value. The linear constraints can be transformed into
LMIs in the conic program [10]. A more detailed discussion can be found in [14]. As
a direct corollary of Lemma 8 in [14], we have the next theorem.

Theorem 3.1 The optimal value VQP-SOC2 is equal to the optimal value of

VLCoP1 := min

[
0 c̃T

c̃ Q̃

]

·
[

1 yT

y Y

]

s.t. Ãy = b̃, Diag
(
ÃY ÃT)= b̃ ◦ b̃,

[
1 yT

y Y

]

∈ D∗
F̃ .

(LCoP1)

Notice that F̃ is a convex quadratic constraint. According to [21], D∗
F̃ has explicit

LMI representations and decompositions.

Lemma 3.3 [21, Theorem 1] For F̃ = {y ∈ R
n−1 | yTH̃y + 2d̃Ty + t̃ � 0},

D∗
F̃ =

{

Z ∈ Sn+
∣
∣
∣
∣

[
t̃ d̃T

d̃ H̃

]

· Z � 0

}

. (3.4)
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Lemma 3.3 shows that problem (LCoP1) is a linear conic program over the cone
Sn+ with some LMIs, which can be solved in polynomial time. To decompose the
optimal solution of problem (LCoP1) to the original Euclidean space for finding the
optimal solutions of problem (QP-SOC2), we need the next result.

Lemma 3.4 [21, Proposition 3] Let B ∈ Sn and X ∈ Sn+. Suppose that rank(X) = r ,
then B · X � 0 if and only if there exists a rank-one decomposition of X such that
X =∑r

i=1 xi(xi)T and (xi)TBxi � 0 for i = 1, · · · , r .

Since F̃ is closed, bounded and convex, by applying the polynomial-time Proce-

dure 1 of [21], the optimal solution
[ 1 yT

y Y

] ∈ D∗
F̃ can be decomposed as

[
1 yT

y Y

]

=
p∑

i=1

λi

[
1
yi

][
1
yi

]T

,

where yi ∈ F̃, λi � 0, i = 1, · · · ,p. Moreover, we can derive from the arguments of
[10] that if we can decompose the solution of the linear conic program in the matrix
space to the original Euclidean space, the linear constraints are satisfied automati-
cally. The result is stated as follows:

Theorem 3.2 For the optimal solution
[ 1 yT

y Y

]
of problem (LCoP1), if

[ 1 yT

y Y

] =
∑p

i=1 λi

[ 1
yi

][ 1
yi

]T
with λi � 0, yi ∈ F̃ , then Ãyi = b̃, i = 1, · · · ,p, and each yi

is an optimal solution of problem (QP-SOC2).

Proof If
[ 1 yT

y Y

] = ∑p

i=1 λi

[ 1
yi

][ 1
yi

]T is the optimal solution of problem (LCoP1),

the constraints of problem (LCoP1) imply that
∑p

i=1 λi = 1, y =∑p

i=1 λiy
i and Y =

∑p

i=1 λiy
i(yi)T. Then, for every row vector α̃j of matrix Ã, we have

p∑

i=1

λi

(
α̃j
)T

yi = b̃j and
p∑

i=1

λi

((
α̃j
)T

yi
)2 = b̃2

j for j = 1, · · · ,m.

It follows that

0 =
p∑

i=1

λi

((
α̃j
)T

yi
)2 −

(
p∑

i=1

λi

(
α̃j
)T

yi

)2

=
p∑

i=1

λi

(
(
α̃j
)T

yi −
p∑

k=1

λk

(
α̃j
)T

yk

)2

� 0.

Hence we have

(
α̃j
)T

yi =
p∑

k=1

λk

(
α̃j
)T

yk = b̃j for i = 1, · · · ,p and j = 1, · · · ,m.
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Consequently, Ãyi = b̃ for all i = 1, · · · ,p.
Since yi is feasible to problem (QP-SOC2), we have

VQP-SOC2 �
p∑

i=1

λi

((
yi
)T

Q̃yi + 2c̃Tyi
)

=
p∑

i=1

λi

[
0 c̃T

c̃ Q̃

]

·
[

1 (yi)T

yi yi(yi)T

]

=
[

0 c̃T

c̃ Q̃

]

·
(

p∑

i=1

λi

[
1
yi

][
1
yi

]T
)

= VLCoP1 = VQP-SOC2,

where the last equality follows from Theorem 3.1. Therefore, VQP-SOC2 = (yi)TQ̃yi

+ 2c̃Tyi for any i = 1, · · · ,p. Hence, yi is an optimal solution of problem
(QP-SOC2) for i = 1, · · · ,p. �

Based on the results obtained in this section, we can design a polynomial-time
algorithm to solve problem (QP-SOC) with a bounded feasible region.

Algorithm 1: Polynomial-time algorithm for solving problem (QP-SOC) with a
bounded feasible region

Step 1 For a given problem (QP-SOC), if Feas(QP-SOC) = ∅, return that problem
(QP-SOC) is not feasible. Otherwise, calculate the dual cone of L, construct and
solve the corresponding second-order programming problem (CPP). If the optimal
value of problem (CPP) is 0 or the problem is not feasible, return that Feas(QP-
SOC) is unbounded. Otherwise, record the optimal solution α, ki, i = 1, · · · ,m, and
go to Step 2.

Step 2 Add the redundant constraint αTx = ∑m
i=1 kibi to problem (QP-SOC) and

construct problem (QP-SOC2).
Step 3 Construct and solve the equivalent linear conic program (LCoP1). Decom-

pose the optimal solution
[ 1 yT

y Y

]
of problem (LCoP1) using Procedure 1 in [21] to

get
[ 1 yT

y Y

]=∑p

i=1 λi

[ 1
yi

] · [ 1
yi

]T.

Step 4 For each yi, i = 1, · · · ,p, set xi
1 = 1

α1
(
∑m

j=1 kjbj − αT
2:nyi), xi

2:n = yi . Re-

turn xi, i = 1, · · · ,p, as the optimal solutions of problem (QP-SOC).

Since each step in the proposed algorithm can be completed in polynomial time,
we can solve problem (QP-SOC) in polynomial time when the feasible region is
bounded. Because each yi is an optimal solution to problem (QP-SOC2) according
to Theorem 3.2, the corresponding xi in Step 4, i = 1, · · · ,p, is an optimal solution
of problem (QP-SOC).

4 Unbounded Case

In this section, we study problem (QP-SOC) when its feasible region is unbounded.
We will treat its optimal objective value and optimal solution separately. In Sect. 4.1,
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problem (QP-SOC) is reformulated into an SDP problem. Then the optimal objec-
tive value of problem (QP-SOC) can be obtained in polynomial time by solving the
equivalent SDP reformulation. In Sect. 4.2, two sufficient conditions are derived for
decomposing the optimal solution of SDP reformulation into the original space. Un-
der these two conditions, in Sect. 4.3, an optimal solution of problem (QP-SOC)
can be found in polynomial time if the optimal objective value is finite. Otherwise,
as shown in Sect. 4.4, a recession direction can be found in polynomial time along
which the objective value goes to minus infinity. A polynomial-time algorithm is then
proposed to solve problem (QP-SOC) with an unbounded feasible region in Sect. 4.5.

4.1 Optimal Objective Value

A polynomial-time algorithm is shown here to obtain the optimal objective value of
problem (QP-SOC) using the SDP techniques. Similar to the discussion of Theo-
rem 3.1, problem (QP-SOC) is equivalent to the following linear conic program:

VLCoP2 := min

[
0 cT

c Q

]

·
[

1 xT

x X

]

s.t. Ax = b, Diag
(
AXAT)= b ◦ b,

[
1 xT

x X

]

∈ D∗
L.

(LCoP2)

Our goal is to solve problem (LCoP2) and decompose the optimal solution prop-
erly. Recently, Jin et al. [14] provided an LMI representation of the cone of non-
negative quadratic functions over a non-empty set {(x, y) ∈ R

n1 × R
n2 | ‖x‖2 �

a1 + aT
2 x + aT

3 y} with a1 ∈ R, a2 ∈ R
n1 and a3 ∈ R

n2 . Similarly, we can derive an
LMI representation of D∗

L as follows:

D∗
L =

{

U =
[
χ xT

x X

]

∈ Sn+1
∣
∣
∣
∣U � 0,

√
xTHx � f Tx,

(
ff T − H

) · X � 0

}

.

(4.1)

Problem (QP-SOC) can then be represented as the following equivalent semidefi-
nite program:

VSP := min F̄ (Z) =
[

0 cT

c Q

]

· Z

s.t. Ax = b, Diag
(
AXAT)= b ◦ b,

√
xTHx � f Tx,

(
ff T − H

) · X � 0,

Z =
[

1 xT

x X

]

� 0.

(SP)

Consequently, the optimal value of problem (QP-SOC) can be computed in poly-
nomial time using interior-point algorithms [15]. The optimal solution of problem
(QP-SOC) is discussed in the next three subsections.
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By Definition 3.1, D∗
L is the closed and convex cone generated by {X =

[ 1
x

][ 1
x

]T ∈ Sn+1 : x ∈ L}. Denote

Feas(SP) = {Z : Z is feasible to (SP)
}
. (4.2)

Eichfelder and Povh [9] provided a theoretical proof for the existence of the decom-
position form for any Z ∈ Feas(SP):

Lemma 4.1 [9] For each feasible point Z ∈ Feas(SP),

Z =
p∑

i=1

γi

[
1
xi

][
1
xi

]T

+
q∑

j=1

βj

[
0
dj

][
0
dj

]T

,

where γi > 0,
∑p

i=1 γi = 1, βj > 0, xi ∈ L, dj ∈ L, Axi = b and Adj = 0 for i =
1, · · · ,p, j = 1, · · · , q .

For simplicity, we call the vectors xi , i = 1, · · · ,p, and dj , j = 1, · · · , q , as the
decomposition vectors. However, Lemma 4.1 is a theoretical proof and only states the
existence of a decomposition for Z ∈ Feas(SP). It remains to be a problem of how
to find the decomposition vectors. We will provide a polynomial-time constructive
proof to obtain the decomposition of any Z ∈ Feas(SP) under some proper conditions
to generate an optimal solution or a recession direction of problem (QP-SOC).

4.2 Sufficient Conditions for Obtaining Decomposition Vectors in Polynomial Time

Notice that the optimal solution x of problem (SP) is a feasible solution to problem
(QP-SOC). If

√
xTHx = f Tx, then x is a boundary point of L and the direction along

x is an extreme ray of L. If
√

xTHx < f Tx, then x is an interior point of L, and x

can be represented as the convex combination of two boundary points as shown in
the next lemma.

Lemma 4.2 Let x be feasible to problem (QP-SOC) and Ṽ = [
f T

xTH

]
. If there exists

d ∈R
n such that Ṽ d = 0 and dTHd = (f Tx)2 − xTHx, then x = 1

2v1 + 1
2v2, where

v1 = x + d, v2 = x − d are boundary points of L, i.e.,
√

(vi)THvi = f Tvi , i = 1,2.

Proof We only need to prove v1 and v2 are boundary points of L. Based on the
selection of d ,

(
vi
)T

Hvi = (x ± d)TH(x ± d) = xTHx ± 2xTHd + dTHd

= (f Tx
)2 = [f T(x ± d)

]2 = (f Tvi
)2

.

Since H is positive definite and f Tx � 0,
√

(vi)THvi = f Tvi , i = 1,2. �

Remark 4.1 If x is a boundary point of L, i.e.,
√

xTHx = f Tx, then d = 0
and v1 = v2 = x. Otherwise, since Ṽ is a 2 × n-dimensional matrix, for n > 2,



Quadratic Optimization over a Second-Order Cone with Linear 29

the linear equation system Ṽ d = 0 always has a nontrivial solution d̃ , then d =
d̃√

d̃THd̃

√
(f Tx)2 − xTHx satisfies dTHd = (f Tx)2 −xTHx. Therefore, for any fea-

sible solution x of problem (QP-SOC), we can always find two boundary points to
represent it.

Based on Lemma 4.2, we have the first sufficient condition as shown in the next
theorem under which the decomposition vectors can be obtained in polynomial time.

Theorem 4.1 Let Z = [
1 xT

x X

]
be a feasible solution of problem (SP). Assume the

conditions in Lemma 4.2 are satisfied and v1 = x + d, v2 = x − d be defined as in
Lemma 4.2. If X − xxT � ddT, then Z can be decomposed in polynomial time as

Z =
p∑

i=1

γi

[
1
xi

][
1
xi

]T

+
q∑

j=1

βj

[
0
dj

][
0
dj

]T

, (4.3)

where γi > 0,
∑p

i=1 γi = 1, βj > 0, xi ∈ L, dj ∈ L, Axi = b and Adj = 0, i =
1, · · · ,p, j = 1, · · · , q .

Proof For any feasible solution Z =[ 1 xT

x X

]
of problem (SP), x is feasible to problem

(QP-SOC). According to Lemma 4.2, there exist v1 and v2 such that x = 1
2v1 + 1

2v2

and
√

(vi)THvi = f Tvi , i.e., (ff T − H)(vi(vi)T) = 0. Also, (ff T − H) · (X −
1
2v1(v1)T − 1

2v2(v2)T) = (ff T − H) · X � 0. Therefore,

Z = 1

2

[
1
v1

][
1
v1

]T

+ 1

2

[
1
v2

][
1
v2

]T

+
[

0 0
0 X − 1

2v1(v1)T − 1
2v2(v2)T

]

.

Denote X̃ = X − 1
2v1(v1)T − 1

2v2(v2)T. If X − xxT � ddT, then

X̃ = X − xxT −
(

1

4
v1(v1)T + 1

4
v2(v2)T − 1

4
v1(v2)T − 1

4
v2(v1)T

)

= X − xxT − ddT � 0.

According to Lemma 3.4, there exists a rank-one decomposition for X̃ such that X̃ =∑q

j=1 dj (dj )T and (dj )T(ff T − H)dj � 0 for j = 1, · · · , q , where q = rank(X̃).

We can choose dj such that f Tdj � 0, therefore,
√

(dj )THdj � f Tdj , i.e., dj ∈ L.
Thus,

Z =
p∑

i=1

γi

[
1
xi

][
1
xi

]T

+
q∑

j=1

βj

[
0
dj

][
0
dj

]T

,

where γi > 0,
∑p

i=1 γi = 1, βj > 0, xi ∈ L and dj ∈ L, i = 1, · · · ,p, j = 1, · · · , q .
We now need to prove that Axi = b and Adj = 0. According to the constraints of
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problem (SP), for each row vector αk of A, we have

p∑

i=1

γi

(
αk
)T

xi = bk and
p∑

i=1

γi

((
αk
)T

xi
)2 +

q∑

j=1

βj

((
αk
)T

dj
)2 = b2

k .

Consequently, according to Cauchy–Schwarz inequality,

(
p∑

i=1

γi

)(
p∑

i=1

γi

((
αk
)T

xi
)2 +

q∑

j=1

βj

((
αk
)T

dj
)2
)

= b2
k =

(
p∑

i=1

γi

(
αk
)T

xi

)2

holds if and only if

(
αk
)T

dj = 0 and
√

γi

(
αk
)T

xi = τk
√

γi,

i = 1, · · · ,p, j = 1, · · · , q, k = 1, · · · ,m,

where τk = τk(
∑p

i=1 γi) =∑p

i=1 γi(α
k)Txi = bk , we have Axi = b and Adj = 0 for

i = 1, · · · ,p, j = 1, · · · , q . �

Remark 4.2 If x is a boundary point of L, i.e.,
√

xTHx = f Tx, then d = 0 and the
condition of Theorem 4.1 is satisfied automatically. In this case, the decomposition
vectors can be obtained in polynomial time without the assumptions in Lemma 4.2.

Theorem 4.1 depends on the existence of the vector d . The next sufficient condi-
tion depends on the solution of problem (SP) itself.

Theorem 4.2 For any feasible solution Z = [
1 xT

x X

]
of problem (SP), there ex-

ists a rank-one decomposition for X such that X = ∑r
i=1 xi(xi)T and xi ∈ L for

i = 1, · · · , r , where r = rank(X). Moreover, if the optimal value of the following con-
vex problem:

VOP := min ‖Mγ − x‖2

s.t. γ � 0,

‖γ ‖2 � 1

(OP)

is 0, where M = [x1; · · · ;xr ] ∈R
n×r , then Z = [ 1 xT

x X

]
can be decomposed as

Z =
r∑

i=1,γi>0

γ 2
i

[
1
xi

γi

][
1
xi

γi

]T

+ (1 − ‖γ ‖2
2

)
[

1
0

][
1
0

]T

+
r∑

i=1,γi=0

[
0
xi

][
0
xi

]T

.

Proof For any feasible solution Z = [ 1 xT

x X

]
of problem (SP), since X � 0 and (ff T −

H) · X � 0, according to Lemma 3.4, there exists a rank-one decomposition for X

such that X =∑r
i=1 xi(xi)T and (xi)T(ff T − H)xi � 0 for i = 1, · · · , r , where r =
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rank(X). We can choose xi such that f Txi � 0, consequently,
√

(xi)THxi � f Txi ,
i.e., xi ∈ L. If x =∑r

i=1 γix
i , where γi � 0,

∑r
i=1 γ 2

i � 1, then Z can be written as

Z =
r∑

i=1,γi>0

γ 2
i

[
1
xi

γi

][
1
xi

γi

]T

+ (1 − ‖γ ‖2
2

)
[

1
0

][
1
0

]T

+
r∑

i=1,γi=0

[
0
xi

][
0
xi

]T

.

Similar to the proof of Theorem 4.1, we can show that Axi

γi
= b for i such that γi > 0

and Axi = 0 for i such that γi = 0. Let M = [x1; · · · ;xr ], then x can be represented
as x =∑r

i=1 γix
i such that γi � 0 and

∑r
i=1 γ 2

i � 1, if and only if VOP = 0. �

Note that the convex quadratic programming problem (OP) is polynomial-time
solvable.

Remark 4.3 Under the conditions in Theorem 4.1, it can be seen through the proof
that any feasible solution can be decomposed as in (4.3) with p � 2, while p may
be greater than 2 in Theorem 4.2. Therefore, the conditions in Theorem 4.1 do not
dominate the conditions in Theorem 4.2. Moreover, the conditions in Theorem 4.2 are
easier to be verified than those in Theorem 4.1. However, there are cases satisfying
Theorem 4.1 but not satisfying Theorem 4.2. Examples are given in Sect. 5.

Denote the optimal solution of problem (SP) as Z̄. If VSP > −∞, for the decom-
position of Z̄ =∑p

i=1 γi

[ 1
x̄i

][ 1
x̄i

]T +∑q

j=1 βj

[ 0
d̄j

][ 0
d̄j

]T as in (4.3), we have

VSP =
p∑

i=1

γi

((
x̄i
)T

Qx̄i + 2cTx̄i
)+

q∑

j=1

βj

(
d̄j
)T

Qd̄j .

We would like to find an optimal solution from this decomposition. Otherwise, a
recession direction along which the objective value decreases to minus infinity is
pursued. These two issues are addressed in the next two subsections, respectively.

4.3 Optimal Solution When VSP > −∞

Theorem 4.3 If VSP is finite with an attainable optimal solution Z̄ =∑p

i=1 γi

[ 1
x̄i

]×
[ 1

x̄i

]T + ∑q

j=1 βj

[ 0
d̄j

][ 0
d̄j

]T, then (d̄j )TQd̄j = 0 for j = 1, · · · , q , and x̄i , i =
1, · · · ,p, are optimal solutions of problem (QP-SOC).

Proof On one hand, if there exists a k ∈ {1, · · · , q} such that (d̄k)TQd̄k > 0,
then

∑p

i=1 γi

[ 1
x̄i

][ 1
x̄i

]T + ∑q

j=1,j �=k βj

[ 0
d̄j

][ 0
d̄j

]T ∈ Feas(SP) is a better solution

than Z̄ with the objective value reduced by βk(d̄
k)TQd̄k . On the other hand, if

there exists a k ∈ {1, · · · , q} such that (d̄k)TQd̄k < 0, then
∑p

i=1 γi

[ 1
x̄i

][ 1
x̄i

]T +
∑q

j=1,j �=k βj

[ 0
d̄j

][ 0
d̄j

]T + λ
[ 0

d̄k

][ 0
d̄k

]T ∈ Feas(SP) for any λ > 0 with the objective
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value going to −∞ as λ → +∞. This contradicts the finiteness of the objective opti-
mal value. Therefore, (d̄j )TQd̄j = 0 for j = 1, · · · , q . Moreover,

VSP = VQP-SOC �
p∑

i=1

γi

[
1
x̄i

]T[0 cT

c Q

][
1
x̄i

]

=
[

0 cT

c Q

]

· Z̄ = VSP.

Therefore,
[ 1

x̄i

]T[ 0 cT

c Q

][ 1
x̄i

]= VQP-SOC. Since x̄i , i = 1, · · · ,p, are feasible to prob-
lem (QP-SOC), they are optimal solutions of problem (QP-SOC). �

Notice that problem (SP) is a linear conic program and the cone involved is non-
polyhedral. Unlike the polyhedral cone, if VSP is finite, the optimal solution may
not be attainable [13, 16]. However, the optimal value can be approximated by a se-
quence of linear conic programs with bounded feasible regions. Specifically, we can
construct the following problem:

VSPμ := min F̄ (Y ) =
[

0 cT

c Q

]

· Z

s.t. Ax = b, Diag
(
AXAT)= b ◦ b,

√
xTHx � f Tx,

(
ff T − H

) · X � 0,

Z =
[

1 xT

x X

]

� 0, ‖Z‖ � μ,

(SPμ)

where μ > 0 is sufficiently large such that |VSPμ − VSP| < ε for a given ε > 0. If the
optimal solution of problem (SPμ) can be decomposed according to Theorem 4.1 or
4.2, then we can obtain an approximate solution of problem (QP-SOC). Examples are
given in Sect. 5.

4.4 Recession Direction When VSP = −∞

When VSP is infinite, we first consider the following problem:

VQP-SOC∞ := min dTQd

s.t. Ad = 0,

d ∈ L, ‖d‖2 �K,

(QP-SOC∞)

where K > 0 is a given constant to make the problem bounded. Then we have the
next result.

Theorem 4.4 If VSP = −∞ and VQP-SOC∞ < 0, then VQP-SOC → −∞ along the
optimal solution of problem (QP-SOC∞).

Proof If VQP-SOC∞ < 0 with an optimal solution d∗, then d∗ ∈ 0+Feas(QP-SOC).
For any feasible solution x ∈ Feas(QP-SOC),



Quadratic Optimization over a Second-Order Cone with Linear 33

(
x + λd∗)TQ

(
x + λd∗)+ 2cT(x + λd∗)

= [(d∗)TQd∗]λ2 + 2
(
xTQd∗ + cTd∗)λ + xTQx + 2cTx.

Since (d∗)TQd∗ < 0, the objective value at x + λd∗ will go to −∞ as λ → ∞. �

Theorem 4.4 provides a sufficient condition to find the direction along which the
objective value of problem (QP-SOC) goes to −∞. Notice that problem (QP-SOC∞)
is a quadratic programming problem and we only need to verify the sign of its optimal
objective value. Similar to the detection of a copositive matrix [8] and the derivations
of problem (SPμ), the sign of the optimal objective value of problem (QP-SOC∞) is
the same as the following semidefinite programming problem [23]:

VSP∞ := min F̄ (Y ) = Q · D
s.t. Diag

(
ADAT)= 0,

(
ff T − H

) · D � 0,

D � 0, ‖D‖� K2.

(SP∞)

Therefore, when VSP = −∞, we first solve problem (SP∞). If VSP∞ < 0 and the op-
timal solution

[
1 dT

d D

]
can be decomposed according to Theorem 4.1 or 4.2, we can

obtain a solution d∗ such that (d∗)TQd∗ < 0 and VQP-SOC → −∞ along d∗. More-
over, since d is in the optimal solution of problem (SP∞), it is feasible to problem
(QP-SOC∞). If dTQd < 0, it is a direction along which VQP-SOC goes to −∞.

4.5 Polynomial-Time Algorithm for Problem (QP-SOC) with an Unbounded
Feasible Region

Based on the results obtained in Sects. 4.1 to 4.3, we can design a polynomial-time
algorithm to solve problem (QP-SOC) with an unbounded feasible region under some
proper conditions.

Algorithm 2: Polynomial-time algorithm for problem (QP-SOC) with an un-
bounded feasible region
Step 1 For a given problem (QP-SOC), if Feas(QP-SOC) = ∅, return that problem

(QP-SOC) is infeasible. Otherwise, calculate the dual cone of L, construct and solve
the corresponding second-order programming problem (CPP). If the optimal value
of problem (CPP) is negative, return that Feas(QP-SOC) is bounded and apply Algo-
rithm 1 to solve the problem. Otherwise, construct problem (SP), record the optimal
value VSP and the optimal solution Z̄ and go to Step 2.

Step 2 If VSP = −∞, go to Step 4. If VSP > −∞ and the optimal solution Z̄ of
problem (SP) is unattainable, go to Step 3. Otherwise, the optimal solution Z̄ of
problem (SP) is attainable. If Z̄ can be decomposed as Z̄ =∑p

i=1 γi

[ 1
x̄i

][ 1
x̄i

]T +
∑q

j=1 βj

[ 0
d̄j

][ 0
d̄j

]T according to Theorem 4.1 or 4.2, return x̄i , i = 1, · · · ,p, as the
optimal solutions of problem (QP-SOC) with the optimal value being VSP. If the
decomposition vectors cannot be obtained, return that the optimal objective value is
VSP while the optimal solution is not found.
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Step 3 Construct and solve the linear conic program (SPμ) with μ > 0 being suf-
ficiently large such that |VSPμ − VSP| < ε for a given ε > 0. If the optimal

solution Z̄ of problem (SPμ) can be decomposed as Z̄ = ∑p

i=1 γi

[ 1
x̄i

][ 1
x̄i

]T +
∑q

j=1 βj

[ 0
d̄j

][ 0
d̄j

]T according to Theorem 4.1 or 4.2, return x̄i , i = 1, · · · ,p, as
the approximate optimal solutions of problem (QP-SOC) with the approximate op-
timal value being VSPμ . Otherwise, return that the optimal objective value is VSP
while the optimal solution is not found.

Step 4 Solve problem (SP∞) and record the optimal solution
[

1 dT

d D

]
. If dTQd <

0, return that d is a direction along which VQP-SOC goes to −∞. If
[

1 dT

d D

]
can

be decomposed as
[

1 dT

d D

]=∑p

i=1 γi

[ 1
d̄ i

][ 1
d̄ i

]T +∑q

i=p+1 βj

[ 0
d̄j

][ 0
d̄j

]T according

to Theorem 4.1 or 4.2 and (d̄k)TQd̄k < 0 for some 1 � k � q , then return that
VQP-SOC → −∞ along d̄k . Otherwise, return that the optimal solution of problem is
−∞ while the recession direction is not found.

5 Numerical Examples

In this section, numerical examples are presented to illustrate the proposed approach.
All examples were computed on a personal computer with 2.26 GHz Intel Core 2
Duo CPU, 2 Gb of RAM, using Matlab R2012a-based SeDuMi solver [20] with a
feasibility/optimality tolerance of 10−4.

Example 5.1 Consider the problem (QP-SOC) with

Q =

⎡

⎢
⎢
⎢
⎢
⎣

3.403 1 −0.535 5 −1.179 8 −0.502 4 −0.922 4
−0.535 5 −2.130 5 0.929 0 −1.681 4 1.061 3
−1.179 8 0.929 0 0.434 6 −0.794 1 −1.742 0
−0.502 4 −1.681 4 −0.794 1 0.412 9 0.245 1
−0.922 4 1.061 3 −1.742 0 0.245 1 −2.665 6

⎤

⎥
⎥
⎥
⎥
⎦

,

c = (−1.169 1,0.168 3,−3.434 7,−0.825 6,0.375 1)T,

A =
[−1.731 1 −0.685 1 −1.130 2 1.149 4 1.057 4
−2.297 1 0.263 5 −0.214 1 −0.040 9 −0.518 0

]

,

b = (0.488 9,0.956 6)T,

H =

⎡

⎢
⎢
⎢
⎢
⎣

5.253 2 4.385 3 0.113 2 1.616 9 2.486 7
4.385 3 10.053 8 −3.103 9 0.591 5 2.520 1
0.113 2 −3.103 9 2.628 2 1.428 5 2.170 9
1.616 9 0.591 5 1.428 5 2.251 8 3.334 7
2.486 7 2.520 1 2.170 9 3.334 7 7.260 1

⎤

⎥
⎥
⎥
⎥
⎦

,

f = (0.237 2,0.235 3,0.153 3,0.943 9,0.041 2)T.

The optimal value of problem (CPP) is VCPP = −1 < 0. By Corollary 2.2, the
feasible region of this problem is bounded and we can use Algorithm 1 to solve
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problem (QP-SOC). A redundant constraint αTx = (ATk)Tx = kTb can be con-
structed in Step 2, where α = (−32.299 2,1.193 9,−5.763 5,2.779 5,−3.168 1)T

and k = (2.842 2,11.919 0)T. By solving problem (LCoP1) in Step 3, the optimal
solution
[

1 yT

y Y

]

=

⎡

⎢
⎢
⎢
⎣

1.000 0 58.693 2 100.505 0 452.235 0 −265.716 0
58.693 2 3 444.895 2 5 898.960 1 26 543.193 0 −15 595.722 3
100.505 0 5 898.960 1 10 101.255 0 45 451.878 7 −26 705.786 6
452.235 0 26 543.193 0 45 451.878 7 204 516.495 2 −120 166.075 3

−265.716 0 −15 595.722 3 −26 705.786 6 −120 166.075 3 70 604.992 7

⎤

⎥
⎥
⎥
⎦

is obtained. Since Y = yyT, the optimal solution is rank-one and y is an optimal
solution of problem (QP-SOC2) according to Theorem 3.2. In Step 4 of the algorithm,
an optimal solution x = (48.820 0,58.693 2,100.505 0,452.235 0,−265.716 0)T of
problem (QP-SOC) is constructed with the optimal value VQP-SOC = −262 683.

Remark 5.1 Although the optimal value of this problem can also be obtained by
solving problem (SP), the optimal solution of problem (SP)

⎡

⎢
⎢
⎢
⎢
⎣

1.000 0 48.819 9 58.693 8 100.503 4 452.232 6 −265.714 7
48.819 9 2 383.389 5 2 865.430 0 4 906.578 2 22 077.999 9 −12 972.194 3
58.693 8 2 865.430 0 3 444.963 2 5 898.933 6 26 543.275 2 −15 595.820 5
100.503 4 4 906.578 2 5 898.933 6 10 100.954 8 45 450.998 4 −26 705.280 7
452.232 6 22 077.999 9 26 543.275 2 45 450.998 4 204 514.653 0 −120 165.043 6

−265.714 7 −12 972.194 3 −15 595.820 5 −26 705.280 7 −120 165.043 6 70 604.416 4

⎤

⎥
⎥
⎥
⎥
⎦

is not a rank-one matrix and further decomposition is needed. Since the general
method for rank-one decomposition is not fully explored, it is nontrivial job to obtain
the optimal solution of the original problem. In contrast, the proposed algorithm in
this paper can fully solve this problem in polynomial time.

Example 5.2 Consider the problem (QP-SOC) with

Q =

⎡

⎢
⎢
⎣

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎤

⎥
⎥
⎦ , c = (−1,−1,0,0)T,

H = I4, f = (0,0,0,
√

2)T, A = [1 −1 0 0
]
, b = 0.

Since ±AT /∈ L∗, the feasible region of this problem is unbounded and it is easy
to verify that (0,0,−1,1)T is a recession direction. By applying Algorithm 2, the
optimal solution of problem (SP) is unattainable but an approximate optimal objective
value VSPμ = −1.000 0 can be obtained by solving problem (SPμ) with μ = 1 500
and the optimal solution is
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Z =
[

1 xT

x X

]

=

⎡

⎢
⎢
⎢
⎢
⎣

1.000 0 0.499 9 0.499 9 −26.085 2 26.094 8
0.499 9 0.249 9 0.249 9 −13.040 4 13.045 2
0.499 9 0.249 9 0.249 9 −13.040 4 13.045 2

−26.085 2 −13.040 4 −13.040 4 698.037 1 −698.293 6
26.094 8 13.045 2 13.045 2 −698.293 6 698.550 3

⎤

⎥
⎥
⎥
⎥
⎦

.

Note that x is feasible to problem (QP-SOC) but Z is not a rank-one matrix. There-
fore, the optimal solution of problem (QP-SOC) cannot be obtained directly. How-
ever, x is a boundary point of L, and the solution Z satisfies the conditions in Theo-
rem 4.1. Then Z can be decomposed as

Z =
[

1 xT

x X

]

=
[

1
x

][
1
x

]T

+
[

0
d1

][
0
d1

]T

,

where d1 = (0,0,−4.195 4,4.196 9)T. Since the optimal value is finite, according to
Theorem 4.3, x = (0.499 9,0.499 9,−26.085 2,26.094 8)T is an approximate optimal
solution of problem (QP-SOC).

Remark 5.2 Actually, the optimal solution of the problem is x = ( 1
2 , 1

2 , α,

√
α2 + 1

2 )T

with α < 0 and |α| being arbitrarily large, which is unattainable and the optimal value
is −1 [13]. However, when μ is sufficiently large in problem (SPμ), we can obtain an
approximate solution. Since we can obtain the decomposition for the optimal solution
of problem (SPμ), the decomposition vector x is a good approximation to the opti-
mal solution of problem (QP-SOC) in the sense that there is only a small difference
between their objective values.

Remark 5.3 Note that we can also decompose X according to Theorem 4.2 such
that X = ∑2

i=1 xi(xi)T, where x1 = (−0.038 4,−0.038 4,−2.179 4,2.180 1)T and
x2 = (0.498 4,0.498 4,−26.330 4,26.340 0)T. By solving problem (OP), the optimal
value is 0.008 7 and Z does not satisfy the conditions of Theorem 4.2. Therefore, the
conditions in Theorem 4.2 do not dominate the ones in Theorem 4.1.

Example 5.3 Consider the problem (QP-SOC) with

Q =

⎡

⎢
⎢
⎣

0.856 4 0.936 0 0.353 5 0.696 3
0.936 0 1.354 2 0.273 0 0.059 2
0.353 5 0.273 0 −2.950 3 1.209 5
0.696 3 0.059 2 1.209 5 −0.701 9

⎤

⎥
⎥
⎦ ,

c = (0.835 3,1.036 9,−0.066 9,−1.734 1)T,

H =

⎡

⎢
⎢
⎣

5.762 5 0.178 3 2.310 0 −0.936 7
0.178 3 4.165 7 1.196 2 −1.564 4
2.310 0 1.196 2 1.419 5 −1.202 8

−0.936 7 −1.564 4 −1.202 8 1.644 0

⎤

⎥
⎥
⎦ ,
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f = (0.762 1,0.456 5,0.018 5,0.821 4)T,

A = [
0.000 0 −0.317 9 1.095 0 −1.874 0

]
, b = 0.444 7.

Since ±AT /∈ L∗, the feasible region of this problem is unbounded and (−2.548 6,

−0.020 0,8.278 8,4.840 8)T is a recession direction. The optimal value is also un-
bounded by solving problem (SP). In this case, problem (SP∞) is constructed to
find the direction along which the optimal value goes to minus infinity. By solving
problem (SP∞) with K = 1 000, the optimal value is VSP∞ = −1 519.5. Hence, the
optimal value goes to minus infinity along a direction based on Theorem 4.4. The
optimal solution is

[
1 dT

d D

]

=

⎡

⎢
⎢
⎢
⎢
⎣

1.000 0 −0.061 1 0.004 6 0.211 3 0.122 7
−0.061 1 70.175 7 −12.199 5 −221.227 3 −127.122 9
0.004 6 −12.199 5 2.121 3 38.458 4 22.099 0
0.211 3 −221.227 3 38.458 3 697.419 1 400.755 2
0.122 7 −127.122 9 22.099 1 400.755 1 230.284 3

⎤

⎥
⎥
⎥
⎥
⎦

,

where d is a feasible solution to problem (QP-SOC∞) but not a boundary point of
L. However, VOP = 0, M = [d1;d2;d3], where d1 = (0.018 2,−0.019 6,0.003 9,

0.005 1)T, d2 = (−0.179 6,0.016 9,0.526 0,0.304 1)T, d3 = (−8.375 2,1.456 2,

26.403 5,15.172 1)T and γ = (0.331 5,0.037 6,0.007 2)T. Therefore, according to
Theorem 4.2, the optimal solution can be decomposed as

[
1 dT

d D

]

=
3∑

i=1

γ 2
i

[
1
di

γi

][
1
di

γi

]T

+ (1 − ‖γ ‖2
2

)
[

1
0

][
1
0

]T

.

Consequently, d1, d2 and d3 are the directions along which the optimal solution goes
to minus infinity.

The three examples show that the proposed approach can effectively solve problem
(QP-SOC).

6 Conclusion

In this paper, we have studied the nonhomogeneous quadratic programming problem
over a second-order cone with linear equality constraints. We dealt with the prob-
lem depending on the boundedness of the feasible region. When the feasible region
is bounded, the problem is reformulated as a linear conic program on the cone of
nonnegative quadratic functions over a convex quadratic constraint, which can then
be solved in polynomial time to obtain an optimal solution of the original problem.
When the feasible region is unbounded, the problem is reformulated as an SDP prob-
lem and the optimal objective value of the original problem can be obtained in poly-
nomial time. Two sufficient conditions are derived, under which, if the optimal ob-
jective value is finite, an optimal solution of the original problem can be obtained
by decomposing the optimal solution of the SDP problem into the original feasible
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region in polynomial time. Otherwise, a recession direction along which the optimal
objective value goes to minus infinity can be found in polynomial time. Numerical
examples are included to illustrate the effectiveness of the proposed algorithms. The
results obtained in this paper may motivate the study of quadratic optimization prob-
lems over a more general cone in the future.
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