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Abstract In this paper, we present a numerical scheme based on the local discon-
tinuous Galerkin (LDG) method for the wave propagation of phase transition in a
slender cylinder by introducing new temporal auxiliary variables. The stability for
the LDG scheme is presented. In order to verify the validity of the LDG scheme, we
give the errors and accuracy order of a numerical example. Due to the interaction
between the dispersion and the material nonlinearity, some interesting wave patterns
occur for different pre-strains and impacts, such as the pattern with transformation
front and solitary wave and the pattern with rarefaction wave and solitary wave. We
also investigate the interaction of the transformation fronts and rarefaction waves, and
demonstrate this interesting wave phenomena.

Keywords Local discontinuous Galerkin method · Phase transition · Wave pattern ·
Slender cylinder
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1 Introduction

It is known in the nonlinear elasticity theory that the one-dimensional dynamics of
phase transitions in solids can be modeled by the basic field equations [hyperbolic–
elliptic partial differential equations (PDEs)]. For example, in the stress-induced
dynamic of phase transitions in one-dimensional bar, the model is governed by the
following system of conservation laws
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Fig. 1 A diagram of the
strain–stress function σ(γ )/μ
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{
γt − ux = 0,

ut − ρ−1σ(γ )x = 0,
(1.1)

where γ, u, ρ, and σ represent the strain, velocity, density, and stress, respectively.
If the strain–stress relation σ(γ ) is non-monotonic (see Fig. 1), the system (1.1) is
hyperbolic when σ ′(γ ) > 0 and elliptic when σ ′(γ ) < 0. Then we get a mixed
hyperbolic–elliptic system. However, when the solution occurs in the elliptic region,
the system is not well-posed. More specifically, the uniqueness of solution is difficult
to determine. Fortunately, many authors [1,2,6,15,17] (and the references therein)
have carried out studies and analysis to ensure the uniqueness of solution by imposing
additional conditions. For example, in [2], Abeyaratne neglected the effects of physical
information (e.g., the viscosity, capillarity, and heat conditions) to get the model (1.1).
However, Slemrod [15] reconsidered these neglected effects and first proposed the
viscosity–capillarity (VC) approach for Riemann solutions to ensure the uniqueness
of the solution. Abeyaratne and Knowles [1] introduced a kinetic relation which is an
additional condition to conquer the non-uniqueness. Vainchtein [17] considered two
dissipation mechanisms (heat conduction and the internal viscous dissipation of kinetic
origin) in a finite bar and added a viscoelastic term (μuxxt , where μ is the viscosity
coefficient) for dissipation to the Eq. (1.1) to ensure the uniqueness of the solution.
Dai [6] considered the effects of the radial deformation and traction-free condition
on the lateral surface when studying a slender circular cylinder, and introduced a
dispersive term to ensure the uniqueness of the solution. The experiments in [10–
13] also suggested that the lateral movement and the radial deformations for phase
transitions did play an important part.

For the mixed-type system of conservation laws (1.1), certain numerical schemes
have been used to compute the solutions based on the VC approach (see [3,16] and
the references therein). Cockburn and Gau [3] implemented a convergence study for
different viscosity and capillarity coefficients. Recently, Tian et al. [16] used the local
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Local Discontinuous Galerkin Method for the Impact-Induced Wave 395

discontinuous Galerkin (LDG) method to solve the propagation of phase transition
with different viscosity and capillarity coefficients in solids and fluids and presented
the error estimate for the LDG scheme. Moreover, Dai and Xu [7], based on the model
in Dai [6], made some approximation to the model by omitting the fourth-order terms
and obtained a high-order nonlinear equations. Then they applied the fifth-order finite
difference weighted essentially non-oscillatory (WENO) scheme to approximate the
convective term, and the higher-order central scheme to approximate the high-order
and nonlinear terms.

In this paper, we will reinvestigate the model in Dai [6] and obtain a system (see
the Eq. (3.1)) by introducing new temporal auxiliary variables rather than by asymp-
totic approximations in [6]. For this system, we apply the LDG method to carry out
numerical simulation and to demonstrate some interesting wave phenomena.

The discontinuous Galerkin (DG) method discussed here is a class of finite element
methods. It uses completely discontinuous piecewise polynomial space as the numeri-
cal solution space and the test function space in the spatial variables. Using DG method
is beneficial for parallel computing and maintaining the high-order accuracy due to
this completely local, element-based DG discretization. Additionally, the DG method
has the advantage of well hp-adaptation, which consists of local mesh refinement
and/or the adjustment of the polynomial order in individual elements. Furthermore, it
shares the excellent provable nonlinear stability. The DG method was generalized to
the LDG method by Cockburn and Shu [4] to solve the convection–diffusion systems.
Likewise, the LDG method enjoys all these excellent properties.

The basic idea of the LDG method is to rewrite equations with higher-order deriva-
tives as a first-order system, and to apply DG method to this system. Many studies on
the development of LDG method for the PDEs including the higher-order derivatives
have been carried out. For example, Yan and Shu developed the LDG method for
KdV-type equations including the third derivatives in [25], and for PDEs including
the higher-order derivatives (the fourth and fifth spatial derivatives) in [26]. Xu and
Shu further developed the LDG method for a series of nonlinear wave equations in
[19–24]. More general information about DG methods as well as their implementation
and applications can be found in the review paper by Cockburn and Shu [5].

The structure of this paper is as follows. In Sect. 2, we recall the model problem
and derive the dimensionless form of the equations. In Sect. 3, we apply the LDG
method to solve the dimensionless form. The time discretization is performed by the
third-order total variation diminishing (TVD) Runge–Kutta scheme. The stability for
the LDG method is presented in Sect. 4. We present the simulation results in Sect. 5.
In order to verify the validity of the LDG method, we give the errors and accuracy.
Moreover, we investigate some wave patterns for different pre-strains and different
impacts. A summary of the results and the concluding remarks are presented in the
final section.

2 The Model Problem and Its Dimensionless Form

In this section, we briefly recall the model problem introduced in Dai [6], and derive
the dimensionless form of the model problem.
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396 J. Jiang, Y. Xu

Dai [6] took into account the effect of other dimensions in a slender circular cylinder
with an incompressible phase-transitional material, and established a model equation
to model the propagation of phase transitions, which is written in the following form:

ωττ − ρ−1σx + 3

4
a2c2

T ωxxxx − 3

4
a2ωxxττ + 1

8
a2c−2

T ωττττ = 0, (2.1)

where CT = √
μ/ρ, μ, ρ, and a are the shear-wave speed, shear modulus, density,

and the radius of the slender cylinder, respectively. In this model, the last three high-
order terms can be regarded as dispersive effects under the influence of the radial
deformation. These high-order terms can smoothen out a strain discontinuity. Corre-
spondingly, a phase boundary can have a small thickness; we also call such a phase
boundary as a transformation front (see [7]).

According to [7], we make the same scaling transformation t = CT τ and introduce
the auxiliary variables

u = ωt , γ = ωx ,

and can get

{
γt − ux = 0,

ut − C−2
T ρ−1σx + 3

4 a2γxxx − 3
4 a2uxxt + 1

8 a2uttt = 0,
(2.2)

which is the system (6) in Dai [7]. Here u and γ can be regarded as velocity and strain.
This system adds three linear dispersive terms to the Eq. (1.1).

In this paper, we assume that the strain–stress function σ(γ ) is non-monotonic;
then the system becomes a mixed-type hyperbolic–elliptic system. According to [7],
a simple choice is a cubic polynomial written as

σ(γ ) = 3μ(D2γ
3 + D1γ

2 + γ ),

where D1 and D2 satisfy

D1 > 0, D2 < 0 and 3D2 < D2
1 < 4D2.

The case of D1 = −18, D2 = 100 is sketched in Fig. 1.
Further simplifying the Eq. (2.2), we make a scale transformation

σ̄ = C−2
T ρ−1σ = 1

μ
σ,

and obtain (σ̄ still denoted by σ )

γt − ux = 0, (2.3a)

ut − σx + 3

4
a2γxxx − 3

4
a2uxxt + 1

8
a2uttt = 0. (2.3b)

In [7], Dai and Xu made further approximation to the system (2.2) by omitting the
fourth-order small terms due to the perturbation coefficient a being small and then
obtained the following equations:
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⎧⎨
⎩

γt − ux = 0,

ut − C−2
T ρ−1σx + 3

4 a2(γ − C−2
T ρ−1σ)xxx

+ 1
8 a2(C−2

T ρ−1σγγ u2
x + C−4

T ρ−2σγ σxx )x = 0.

(2.4)

Although this system does not include a high-order temporal derivative, it introduces
nonlinear terms, increasing the difficulty in space discretization and in stability analy-
sis. For the nonlinear terms, Dai and Xu [7] used a higher-order central scheme to
approximate. In this paper, we introduce new temporal auxiliary variables for the Eqs.
(2.3a), (2.3b), and use the LDG method to solve (2.3a), (2.3b).

3 LDG Method and Time Discretization

In this section, we will present the LDG scheme to solve the high-order equations
(2.3a), (2.3b):

{
γt − ux = 0,

ut − σx + 3
4 a2γxxx − 3

4 a2uxxt + 1
8 a2uttt = 0.

3.1 Notation

The usual notation of the LDG scheme is adopted. First, we divide the interval I =
[xL , xR] into N cells as follows:

xL = x 1
2

< x 3
2

< · · · < xN+ 1
2

= xR .

We denote

I j =
(

x j− 1
2
, x j+ 1

2

)
, x j = 1

2

(
x j− 1

2
+ x j+ 1

2

)
, j = 1, . . . , N

as the cells and cell center points, respectively. h j = x j+ 1
2
− x j− 1

2
denotes the length

of each cell. We denote h = max
j

h j as the length of the largest cell. For simplicity

of analysis, we assume that the mesh is regular; that is, the ratio of h over h j for
j = 1, · · · , N is upper bounded by a fixed positive constant. We define

Vh = {v : v ∈ Pk(I j ), for x ∈ I j , j = 1, . . . , N }

as the discontinuous finite element space, where Pk(I j ) denotes all polynomials of
degree at most k on I j . Note that the functions in Vh are allowed to be discontinuous
across the element interfaces, which is very useful to enhance the numerical behaving.
If k = 0, the considered DG scheme is equivalent to the finite volume scheme. Here
and below, (uh)+

j+ 1
2

= uh(x+
j+ 1

2
) denotes the right limit of the function uh at the

discontinuity point x j+ 1
2
, likewise for u−

h . [uh] = u+
h − u−

h denotes the jump of uh at
each interface point.
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3.2 The LDG Scheme

In this subsection, we define our LDG scheme for the Eqs. (2.3a), (2.3b). First, we
introduce two temporal auxiliary variables v,w, and define

v = ut , w = vt .

We obtain four time evolution equations:

⎧⎪⎪⎨
⎪⎪⎩

γt − ux = 0,

ut − v = 0,

vt − w = 0,
1
8 a2wt + v − σx + 3

4 a2γxxx − 3
4 a2vxx = 0.

(3.1)

Then we rewrite (3.1) as a first-order system:

⎧⎪⎪⎨
⎪⎪⎩

γt − ux = 0,

ut − v = 0,

vt − w = 0,
1
8 a2wt + v − σx + 3

4 a2 px − 3
4 a2qx = 0,

(3.2)

and

⎧⎨
⎩

p − sx = 0,

s − γx = 0,

q − vx = 0,

(3.3)

where p, q, and s are the local auxiliary variables.
Due to the nonlinearity of the function σ(γ ), σ(γh) /∈ Vh . We need to define

σh ∈ Vh , s.t.

∫
I j

σhηdx −
∫
I j

σ(γh)ηdx = 0, for ∀ η ∈ Vh . (3.4)

The LDG scheme for (3.2) and (3.3) is formulated as follows: find uh, γh, vh, wh ∈
Vh such that, for all test functions φ1, φ2, . . . , φ7 ∈ Vh ,

∫
I j

(γh)tφ1dx +
∫
I j

uhφ1x dx − (ûhφ−
1 ) j+ 1

2
+ (ûhφ+

1 ) j− 1
2

= 0, (3.5)

∫
I j

(uh)tφ2dx −
∫
I j

vhφ2dx = 0, (3.6)

∫
I j

(vh)tφ3dx −
∫
I j

whφ3dx = 0, (3.7)
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1

8
a2

∫
I j

(wh)tφ4dx +
∫
I j

vhφ4dx +
⎛
⎜⎝

∫
I j

σhφ4x dx − (σ̂hφ−
4 ) j+ 1

2
+ (σ̂hφ+

4 ) j− 1
2

⎞
⎟⎠

−3

4
a2

⎛
⎜⎝

∫
I j

phφ4x dx − ( p̂hφ−
4 ) j+ 1

2
+ ( p̂hφ+

4 ) j− 1
2

⎞
⎟⎠

+3

4
a2

⎛
⎜⎝

∫
I j

qhφ4x dx − (q̂hφ−
4 ) j+ 1

2
+ (q̂hφ+

4 ) j− 1
2

⎞
⎟⎠ = 0, (3.8)

∫
I j

phφ5dx +
∫
I j

shφ5x dx − (ŝhφ−
5 ) j+ 1

2
+ (ŝhφ+

5 ) j− 1
2

= 0, (3.9)

∫
I j

shφ6dx +
∫
I j

γhφ6x dx − (γ̂hφ−
6 ) j+ 1

2
+ (γ̂hφ+

6 ) j− 1
2

= 0, (3.10)

∫
I j

qhφ7dx +
∫
I j

vhφ7x dx − (v̂hφ−
7 ) j+ 1

2
+ (v̂hφ+

7 ) j− 1
2

= 0. (3.11)

The “hat” terms in (3.5)–(3.11) at the cell I j boundary due to integration by parts
are the so-called “numerical fluxes.” To design a successful LDG scheme, it is very
important to design the numerical fluxes to ensure the stability of the numerical scheme.
The numerical fluxes in (3.5)–(3.11) are chosen as (here we have omitted the index
j + 1

2 of all quantities)

ûh =u+
h , σ̂h =σ−

h , p̂h = p−
h , q̂h =q−

h , ŝh =s+
h , γ̂h =γ −

h , v̂h =v+
h . (3.12)

We remark that the choice of the fluxes (3.12) is not unique; for example, we can also
choose the following numerical fluxes

ûh =u−
h , σ̂h =σ+

h , p̂h = p+
h , q̂h =q+

h , ŝh =s−
h , γ̂h =γ +

h , v̂h =v−
h . (3.13)

In fact, in the choice of the numerical fluxes, the crucial part is taking the pair ûh and
σ̂h, ûh and p̂h, ûh and q̂h, ûh and γ̂h, ŝh and γ̂h, v̂h and γ̂h from the opposite sides.

In the Sect. 4, we prove that the LDG discretization has a strong stability for both
the numerical fluxes (3.12) and (3.13).

Now the definition for the LDG scheme is completed.

3.3 Time Discretization

For the spatial discretization discussed above, we will use the time discretization, i.e.,
the third-order TVD Runge–Kutta method developed by Shu and Osher [14]. For the
ordinary differential equations

123



400 J. Jiang, Y. Xu

(Uh)t = Γ (Uh, t),

where Γ is a discretization of the spatial operator, the third-order TVD Runge–Kutta
method is given by

⎧⎪⎨
⎪⎩

U (1)
h = U n

h + 
tΓ (U n
h , tn),

U (2)
h = 3

4U n
h + 1

4U (1)
h + 1

4
tΓ (U (1)
h , tn + 
t),

U (n+1)
h = 1

3U n
h + 2

3U (2)
h + 2

3
tΓ
(

U (2)
h , tn + 1

2
t
)

.

(3.14)

4 The Stability Analysis for LDG Method

4.1 Stability Analysis for the Eqs. (2.3a), (2.3b)

In this subsection, we take into account the energy of the Eqs. (2.3a), (2.3b) in order
to analyze the stability of the LDG scheme. First, we define W (γ ) = ∫ γ

γ0
σ(ξ)dξ .

Multiplying (2.3a) by σ(γ ) and integrating on I , we get

∫
I

γtσ(γ )dx −
∫
I

uxσ(γ )dx = 0. (4.1)

Similarly, multiplying (2.3b) by u and integrating on I , we get

∫
I

ut udx −
∫
I

σx udx + 3

4
a2

∫
I

γxxx udx − 3

4
a2

∫
I

uxxt udx + 1

8
a2

∫
I

uttt udx = 0.

(4.2)

Summing up (4.1) and (4.2), and making some operation, we have

d

dt

∫
I

(
W (γ ) + 1

2
u2

)
dx

=
∫
I

uxσ + σx udx − 3

4
a2

∫
I

γxxx udx + 3

4
a2

∫
I

uxxt udx − 1

8
a2

∫
I

uttt udx

= uσ |I − 3

4
a2

⎛
⎝uγxx |I − γtγx |I + d

dt

∫
I

(
1

2
γ 2

x

)
dx

⎞
⎠

+3

4
a2

⎛
⎝uuxt |I − d

dt

∫
I

(
1

2
u2

x

)
dx

⎞
⎠ − 1

8
a2 d

dt

∫
I

(
1

2
(u2)t t − 3

2
u2

t

)
dx .

(4.3)
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Hence,

d

dt

∫
I

(
W (γ ) + 1

2
u2 + 3

4
a2

(
1

2
γ 2

x + 1

2
u2

x

)
+ 1

8
a2

(
1

2
(u2)t t − 3

2
u2

t

))
dx

=
(

uσ − 3

4
a2(uγxx − γtγx ) + 3

4
a2uuxt

)
|I . (4.4)

We define the energy for the Eqs. (2.3a), (2.3b)

E(t)=
∫
I

(
W (γ )+ 1

2
u2+ 3

4
a2

(
1

2
γ 2

x + 1

2
u2

x

)
+ 1

8
a2

(
1

2
(u2)t t − 3

2
u2

t

))
dx .

(4.5)

We can see that the effect of the radial deformation is reflected in the energy expression
E(t). In fact, the parameter a � 1; thus, there is a little effect for the energy. But for
the existence of these effect, the problem is well-posed.

4.2 Stability Analysis for the LDG Method

In this subsection, we would like to investigate the stability of the LDG scheme.
For (3.5) and (3.10), we take the temporal derivative and get

∫
I j

(γh)t tφ8dx +
∫
I j

(uh)tφ8x dx − (̂(uh)tφ
−
8 ) j+ 1

2
+ (̂(uh)tφ

+
8 ) j− 1

2
= 0, (4.6)

∫
I j

(sh)t tφ9dx +
∫
I j

(γh)tφ9x dx − (̂(γh)tφ
−
9 ) j+ 1

2
+ (̂(γh)tφ

+
9 ) j− 1

2
= 0. (4.7)

Since (4.6), (4.7), and (3.5)–(3.11) hold for any test function in Vh , we can take the
test functions as

φ1 =σh − 3

4
a2 ph + 3

4
a2qh, φ2 =uh − 3

4
a2(sh)t + 1

8
a2wh, φ3 =−1

8
a2vh, φ4 =uh,

φ5 = 3

4
a2(γh)t , φ7 = −3

4
a2(γh)t , φ8 = 3

4
a2(γh)t , φ9 = 3

4
a2(sh − (uh)t − vh).

Then summing up the eight Eqs. (4.6), (4.7), (3.5)–(3.9), and (3.11) and using the
definition of σh in (3.4) (take η = (γh)t ), we obtain

d

dt

∫
I j

(W (γh) + 1

2
u2

h + 3

4
a2

(
1

2
(γh)2

t + 1

2
s2

h

)
+ 1

8
a2

(
uhwh − 3

2
v2

h)

)
dx
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+
∫
I j

(uhσh x +σhuh x )dx−(̂uhσ−
h ) j+ 1

2
+(̂uhσ+

h ) j− 1
2
−(̂σhu−

h ) j+ 1
2

+ (̂σhu+
h ) j− 1

2

−3

4
a2

⎡
⎢⎣

∫
I j

(uh ph x + phuh x )dx − (̂uh p−
h ) j+ 1

2
+ (̂uh p+

h ) j− 1
2

− ( p̂hu−
h ) j+ 1

2

+( p̂hu+
h ) j− 1

2

⎤
⎥⎦

+ 3

4
a2

⎡
⎢⎣

∫
I j

(uhqh x + qhuh x )dx − (̂uhq−
h ) j+ 1

2
+ (̂uhq+

h ) j− 1
2

− (q̂hu−
h ) j+ 1

2

+(q̂hu+
h ) j− 1

2

⎤
⎥⎦

+3

4
a2

⎡
⎢⎣

∫
I j

((γh)t sh x + sh(γh)t x )dx − (̂(γh)t s
−
h ) j+ 1

2

+(̂(γh)t s
+
h ) j− 1

2
− (̂sh(γh)−t ) j+ 1

2
+ (̂sh(γh)+t ) j− 1

2

⎤
⎥⎦

+3

4
a2

⎡
⎢⎣

∫
I j

((γh)t (uh)t x + uht (γh)t x )dx − (̂(γh)t (uh)−t ) j+ 1
2

+ (̂(γh)t (uh)+t ) j− 1
2

− (̂(uh)t (γh)−t ) j+ 1
2

+ (̂(uh)t (γh)+t ) j− 1
2

⎤
⎥⎦

− 3

4
a2

⎡
⎢⎣

∫
I j

((γh)tvh x + vh(γh)t x )dx − (̂(γh)tv
−
h ) j+ 1

2
+ (̂(γh)tv

+
h ) j− 1

2

− (̂vh(γh)−t ) j+ 1
2

+ (̂vh(γh)+t ) j− 1
2

⎤
⎥⎦ = 0. (4.8)

For convenience, we define two auxiliary functions

F(α, β, α̂, β̂) j+ 1
2

= (α−β− − α̂β− − α−β̂) j+ 1
2

and
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G(α, β, α̂, β̂) j− 1
2

= (α−β− − α̂β− − α−β̂ − α+β+ + α̂β+ + α+β̂) j− 1
2
.

Then we have

d

dt

∫
I j

(
W (γh) + 1

2
u2

h + 3

4
a2

(
1

2
(γh)2

t + 1

2
s2

h

)
+ 1

8
a2

(
uhwh − 3

2
v2

h

))
dx

+ F(uh, σh, ûh, σ̂h) j+ 1
2

− F(uh, σh, ûh, σ̂h) j− 1
2

+ G(uh, σh, ûh, σ̂h) j− 1
2

− 3

4
a2(F(uh, ph, ûh, p̂h) j+ 1

2
− F(uh, ph, ûh, p̂h) j− 1

2
+ G(uh, ph, ûh, p̂h) j− 1

2
)

+ 3

4
a2(F(uh, qh, ûh, q̂h) j+ 1

2
− F(uh, qh, ûh, q̂h) j− 1

2
+ G(uh, qh, ûh, q̂h) j− 1

2
)

+ 3

4
a2(F(sh, γh t , ŝh,̂(γh)t ) j+ 1

2
− F(sh, γh t , ŝh,̂(γh)t ) j− 1

2

+ G(sh, γh t , ŝh,̂(γh)t ) j− 1
2
) + 3

4
a2(F(uht , γh t ,

̂(uh)t ,̂(γh)t ) j+ 1
2

− F(uht , γh t ,
̂(uh)t ,̂(γh)t ) j− 1

2
+ G(uht , γh t ,

̂(uh)t ,̂(γh)t ) j− 1
2
)

− 3

4
a2(F(vh, γh t , v̂h,̂(γh)t ) j+ 1

2
− F(vh, γh t , v̂h,̂(γh)t ) j− 1

2

+ G(vh, γh t , v̂h,̂(γh)t ) j− 1
2
) = 0. (4.9)

By the definition (3.12) or (3.13) of the numerical fluxes, it is very natural that
̂(γh)t = γ −

ht ,
̂(uh)t = u+

ht or ̂(γh)t = γ +
ht ,

̂(uh)t = u−
ht . Then after some algebraic

manipulation, we obtain

G(α, β, α̂, β̂) j− 1
2

= (α−β− − α̂β− − α−β̂ − α+β+ + α̂β+ + α+β̂) j− 1
2

= 0,

where (α, β)=(uh, σh), (uh, ph), (uh, qh), ((uh)t , (γh)t ), (sh, (γh)t ), (vh, (γh)t ).
Summing up the Eq. (4.9) on j , we easily obtain

d

dt

∫
I

(
W (γh) + 1

2
u2

h + 3

4
a2

(
1

2
(γh)2

t + 1

2
s2

h

)
+ 1

8
a2

(
uhwh − 3

2
v2

h

))
dx

= −(F(uh, σh, ûh, σ̂h)N+ 1
2

− F(uh, σh, ûh, σ̂h) 1
2
)

+ 3

4
a2(F(uh, ph, ûh, p̂h)N+ 1

2
− F(uh, ph, ûh, p̂h) 1

2
)

− 3

4
a2(F(uh, qh, ûh, q̂h)N+ 1

2
− F(uh, qh, ûh, q̂h) 1

2
)

− 3

4
a2(F(sh, γh t , ŝh,̂(γh)t )N+ 1

2
− F(sh, γh t , ŝh,̂(γh)t ) 1

2
)

− 3

4
a2(F

(
uht , γh t ,

̂(uh)t ,̂(γh)t

)
N+ 1

2

− F(uht , γh t ,
̂(uh)t ,̂(γh)t ) 1

2
)

+ 3

4
a2(F(vh, γh t , v̂h,̂(γh)t )N+ 1

2
− F(vh, γh t , v̂h,̂(γh)t ) 1

2
). (4.10)
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When the numerical fluxes are chosen as (3.12) or (3.13), the right-hand side of (4.10)
agrees with the right-hand side of (4.4). If the boundary conditions are periodic or
compact support, then we have

d

dt

∫
I

(
W (γh)+ 1

2
u2

h + 3

4
a2

(
1

2
(γh)2

t + 1

2
s2

h

)
+ 1

8
a2

(
uhwh − 3

2
v2

h

))
dx =0. (4.11)

5 Numerical Experiments

In this section, we will use the LDG scheme combined with the third-order explicit
TVD Runge–Kutta method (3.14) to simulate the Eqs. (2.3a), (2.3b), and present
numerical examples to illustrate the accuracy and capability of the LDG method.
Meanwhile, we will give the initial-boundary-value problem to present some interest-
ing wave patterns.

Example 1 Accuracy test for the Eqs. (2.3a), (2.3b).
According to Dai [7], the two-phase solutions for the Eqs. (2.3a), (2.3b) are written

in the following form:

{
γ = γ ++γ −

2 + γ +−γ −
2 tanh

(
− γ +−γ −

a

√
3D2

6−6ṡ2+ṡ4 (x − ṡt)
)

,

u = −ṡγ + ṡγ − − V,
(5.1)

where V is determined by the Rankine–Hugoniot jump condition (σ+−σ−)+ ṡ(u++
V ) = 0, (here we let u+ = 0), and the traveling velocity ṡ is

√
3D2γ +2 + 2D1γ + + 9D2 − 2D2

1

3D2
,

where γ + + γ − = − 2D1
3D2

. Note that (5.1) are not the exact solutions to the system
(2.4).

We take the parameters as a = 0.001, V = 0.05; therefore, we have γ + =
0.0291987, γ − = 0.0908013, and ṡ = 0.211225.

We compute the numerical simulation for the initial two-phase wave in the interval
I = [−0.05, 0.15] till the final time t = 0.1. Nature boundary conditions: ux =
0, γx = 0, vx = 0, wx = 0 at the left boundary are used. We give the L1 and
L∞ error and the numerical orders of accuracy for strain γ with Pk element when
k = 0, 1, 2, 3 and the meshes are uniform, see Table 1.

From Table 1, we can find that the method with pk elements gives a uniform (k+1)th
order of accuracy for γ in both the L1 and L∞ norms. The strain γ at t = 0.4 and
t = 0.6 when n = 128, 256 are shown in Fig. 2.

Example 2 Different pre-strains and different impacts.
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Table 1 Accuracy test for
solution γ to (2.3a), (2.3b),
c f l = 0.005,
t =
c f l
x3/a2, t = 0.1

pk n L1 error Order L∞ error Order

p0 32 6.72E−04 – 4.15E−02 –

64 4.03E−04 0.74 1.89E−03 1.13

128 3.27E−05 3.62 2.72E−03 2.79

256 1.31E−05 1.32 7.47E−04 1.87

512 6.62E−06 0.99 2.65E−04 1.50

1,024 3.29E−06 1.01 1.25E−04 1.08

2,048 1.64E−06 1.01 6.24E−05 1.00

p1 32 4.57E−04 – 3.20E−02 –

64 1.68E−04 1.44 9.79E−03 1.71

128 1.78E−05 3.24 1.95E−03 2.33

256 2.34E−06 2.92 3.06E−04 2.67

512 3.60E−07 2.70 5.24E−05 2.54

1,024 6.57E−08 2.45 1.02E−05 2.37

2,048 1.35E−08 2.29 2.20E−06 2.20

p2 32 1.92E−04 – 9.43E−03 –

64 1.56E−05 3.62 1.05E−03 3.17

128 1.31E−06 3.58 8.54E−05 2.61

256 1.37E−07 3.25 1.34E−05 2.67

512 1.64E−08 3.07 1.54E−06 3.12

1,024 1.49E−09 3.46 1.64E−07 3.22

2,048 1.90E−10 2.97 1.94E−08 3.08

p3 32 4.06E−05 – 2.01E−03 –

64 9.77E−07 5.37 5.29E−05 5.25

128 6.26E−08 3.96 6.99E−06 2.92

256 4.79E−09 3.71 3.98E−07 4.13

512 3.47E−10 3.79 3.56E−08 3.48

1,024 2.13E−11 4.03 2.31E−09 3.95

In this example, we discuss the initial-boundary-value problem for the Eqs. (2.3a),
(2.3b):

γ (x, 0)=γ0, u(x, 0)=0, for 0 < x < L , and u(0, t) =
{−V, 0 < t < T ∗,

0, t > T ∗,
(5.2)

where T ∗ is the duration of the impact, γ0(≥ 0) is the constant pre-strain, and V is the
constant velocity of a sudden impact (we shall consider only tensile impact V > 0).
γ0 = 0 means that the bar is assumed to be initially static in its undeformed state.
Moreover, in order to satisfy the well-posedness of the equations, we impose nature
boundary conditions at x = 0. The boundary condition u(0, t) generates an incoming
impact from the left end x = 0. We take L to be large enough such that there is no
disturbance at x = L at the time of interest; that is, u(t, L) = 0, γ (t, L) = 0.
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Fig. 2 The strain γ for (5.1) at t = 0.4 and 0.6 when n = 128, 256
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strong impact

(d)

0

00

Fig. 3 The diagram for the strain γ for various tensile impactor velocity V

In [9], Knowles described in detail the solutions in the three regimes of impactor
velocity when γ0 = 0, see Fig. 3. There is a pure fan response for a weak impact, there
are a two-wave and a fan-plus-shock response for a medium impact (distinguishing
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by dissipation) and there is pure shock-wave response for a strong impact. In the
following computation, we mainly compute the cases in Fig. 3(b) and (d).

In our computation, a uniformed mesh in [0, 2] is used for the LDG scheme, the
computational time t is to ensure that the waves do not propagate to the right boundary.
Moreover, the duration of the impacts is T ∗ = 1.5.

• The “analytical” solution for transformation front.

It is known that for the Eq. (1.1), a moving strain discontinuity at x = s(t), the
jump conditions can be written as

ṡ[ρu] + [σ ] = 0, (5.3)

ṡ[γ ] + [u] = 0, (5.4)

where ṡ is the velocity of the moving discontinuity.
Moreover, according to Dai [6], when σ(γ ) is non-convex, for a traveling wave

solution with transformation front, it has the third relations between the two phases,
which can be written as

[W (γ )] = [γ σ ] − ρ

2
ṡ2[γ 2]. (5.5)

Therefore, after some algebraic manipulation for three conditions (5.3)–(5.5), and
considering the behavior of the transformation front, we can have

γ + + γ − = −2D1

3D2
, (5.6)

ṡ =
√

σ(γ +) − σ(γ −)

γ + − γ − , (5.7)

u+ + V − √
(σ (γ +) − σ(γ −))(γ + − γ −) = 0, (5.8)

u+ = −
γ +∫
0

√
σ

′
(γ )dγ. (5.9)

Together with (5.6)–(5.9), we can get γ −, γ + and ṡ for the transformation front.

• The influence of the parameter a (see Fig. 4).

We consider the convergence of the solution when the mesh is refined. We take
a = 0.0006 and a = 0.001; for example, see Fig. 4. We find that when the mesh is
refined, the solution when a = 0.001 converges more quickly than when a = 0.0006.

Remark 1 Here and in the sequel, we choose a = 0.001 for our numerical computa-
tion.

• The relation between the velocity of transformation front ṡ and the pre-strain γ0
and the impact strength V (see Figs. 5, 6).
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Fig. 4 The strain γ with the parameter γ0 = 0.03, V = 0.03, P1 element, t = 1.0

Fig. 5 The strain γ with the
parameter γ0 = 0, P1 element,
n = 4,096, t = 1.0
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Fig. 6 The relation between the
pre-strain γ0 and the speed of
transformation front ṡ for
different impacts
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Fig. 7 The strain γ with γ0 = 0.03, V = 0.0103923, Pk , k = 1, 2, 3, 4 element, n = 4,096, t = 1.0

We investigate the relation between the velocity of transformation front ṡ and the
pre-strain γ0 and the impact strength V , see Figs. 5 and 6. From Fig. 5, We can see that
the transformation front moves more quickly with increasing V . Moreover, from Fig.
6, the velocity of transformation front becomes more and more large with γ0 becoming
large. We can conclude that the larger the parameters γ0 and V , the larger the velocity
ṡ (i.e., the more quickly the transformation front moves). Note that in Fig. 5, when V
is relatively small, some soliton-like waves occur.

• Wave patterns with different pre-strains and different impacts (see Figs. 7–11).

According to Dai [7], we list some typical cases to present some interesting wave
patterns.

1. γ0 = 0.03, V = 0.0103923; see Figs. 7 and 8.
2. γ0 = 0.0267979, V = 0.02; see Figs. 9 and 10.
3. γ0 = 0.02, V = 0.02; see Figs. 11 and 12.

For the above three cases, we give comparing figures of the solution γ using Pk, k =
1, 2, 3, 4 element when n = 4,096, and show the zoom-in figures (see Figs. 7, 9,
11); we also show the zoom-in figures when the mesh is refined (see Figs. 8, 10,
12). Moreover, from the zoom-in figures, we find that the numerical solution and the
analytic solution for transformation agree with each other.
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Fig. 8 The strain γ with γ0 = 0.03, V = 0.0103923, Pk , k = 3, 4 element, n = 2, 048, 4,096, t = 1.0
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Fig. 9 The strain γ with γ0 = 0.0267979, V = 0.02, Pk , k = 1, 2, 3, 4 element, n = 4,096, t = 1.5

From Fig. 7, we find that, comparing with Fig. 4, for the same pre-strain γ0 = 0.03,
when impact V changes from 0.03 to 0.0103923, some soliton-like waves arise while
the shock wave disappears. Moreover, the numerical solution and the analytic solution
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Fig. 10 The strain γ with γ0 = 0.0267979, V = 0.02, Pk , k = 3, 4 element, n = 2,048, 4,096, t = 1.5
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Fig. 11 The strain γ with γ0 = 0.02, V = 0.02, Pk , k = 1, 2, 3, 4 element, n = 4,096, t = 1.5

for transformation agree with each other. There are few reports about this phenomenon
of a solitary wave and a transformation front coexisting.
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Fig. 12 The strain γ with γ0 = 0.02, V = 0.02, Pk , k = 3, 4 element, n = 2,048, 4,096, t = 1.5
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Fig. 13 The strain γ for γ0 = 0.03, V = 0.03 at t = T/8, 2T/8, . . . , T, P1 element, n = 4,096, T =
3.6, [0, 4]
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Fig. 14 The strain γ for
γ0 = 0.03, V = 0.03 at
t = 1.5T, 2T, P1 element,
n = 8,192, [0, 8]
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From Figs. 9 and 11, we can see that for the same impact V = 0.02, there is only
a transformation front when γ0 = 0.0267979; when γ0 becomes relatively small, a
rarefaction wave occurs. More interestingly, soliton-like waves are formed for both
the cases. Moreover, from the zoom-in figures, we find that there is a small difference
at the solitary wave; when using the high-order element and refined mesh, the solitary
waves relatively lag behind. In this paper, we mainly study the new wave patterns,
thus we omit these details.

In fact, there are many situations according to γ0, and the above two cases are
typical of the interesting wave patterns.

• The interactions of rarefaction waves and transformation fronts (see Figs. 13, 14).

We will give the details of the interactions of rarefaction waves and transformation
fronts when γ0 = 0.03, V = 0.03. The computational interval is [0, 4], the duration
of the impacts is T ∗ = 0.5. We take n = 4, 096, T = 3.6. The numerical simulation
for t = T

8 , 2T
8 , . . . , T is shown in Fig. 13.

From Fig. 13(a), when t ≤ 0.5, the wave pattern is a right-going transformation
front (TF1) and a right-going shock wave (S1). When t ≥ 0.5, a new transformation
front (TF2) and a right-going rarefaction wave (R1) are generated. From Fig. 13(b),
we find that R1 propagates faster than the TF1 to the right, then it interacts with
TF1, and the magnitude changes from 0.0997 to 0.0951. Meanwhile, a new smaller
rarefaction wave (R2) is formed in the left, it will interact with TF2. Then a new right-
going rarefaction wave (TF3) is created, which will interact with TF1. As the time
evolves, the above process is repeated, and new rarefaction waves like R4 and R5
are generated (see Fig. 13(c), (d)). During the processes of interaction, rarefaction
waves are formed one by one until there is a small difference with the TF1 and
TF2.

From Fig. 14, we find that the TF1 and TF2 become more and more close with each
other.
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6 Concluding Remarks

We use the LDG method to solve a mixed-type hyperbolic–elliptic system, in a slender
cylinder, which includes material nonlinearity (due to the non-monotone of strain–
stress function) and dispersion terms (due to the effects of the geometrical size of the
cylinder). We give the stability for the LDG scheme. In order to verify the validity of
the LDG scheme, we give the errors and the accuracy of a numerical example. Due to
the interaction of the dispersion and the material nonlinearity, some interesting wave
patterns occur; such as the pattern with transformation front and solitary wave, the
pattern with rarefaction wave and solitary wave. We also investigate the interaction
of transformation fronts and rarefaction waves. It is worthy to be mentioned that the
model Eq. (2.1) introduced in Dai [6] is subject to criticism since the dissipation
effect is not taken into account (which is important in a phase transition). The model
(2.1) of Dai [6], although one-dimensional, takes into account some three-dimensional
effects. We can consider to add a viscoelastic term (μuxxt , where μ is the viscosity
coefficient) for dissipation to the Eq. (2.1), which has been used by some authors (see
[8,17,18]). Then, the resulting model is more physically sound and it is worthwhile
to do numerical investigations.

Acknowledgments Research supported by NSFC Grant Nos. 11371342, 11031007, FANEDD No.
200916, Fok Ying Tung Education Foundation No. 131003.
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