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Abstract In this paper we develop a new technique to prove existence of solutions
of Fokker–Planck equations on Hilbert spaces for Kolmogorov operators with non-
trace-class second order coefficients or equivalently with an associated stochastic
partial differential equation (SPDE) with non-trace-class noise. Applications include
stochastic 2D and 3D-Navier–Stokes equations with non-trace-class additive noise.
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1 Introduction

Our aim is to solve the infinite dimensional Fokker–Planck Equation

L∗μ = 0, μ|t=0 = μ0 (FPE)

in a space of measure valued solutions of the form μt dt where μt are probability
measures on H . The problem has been studied intensively in recent years (see e.g.,
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[4–6, 8, 20] and the references therein). Concerning existence there are two different
approaches to infinite dimensional Fokker–Planck equations depending on whether
the second order coefficient of the corresponding Kolmogorov operator L (see below)
is of trace class or not. The first case is studied in detail in [8] (including also the case
of continuity equations whose second order coefficient is identically zero) and the
approach is based on the method of Lyapunov functions. This method, however, so
far could not be implemented when the second order coefficient is not of trace class.
This case has been studied in [5] and [20], using an approximation technique, based
on solving the stochastic differential equations associated to the approximating Kol-
mogorov operator Ln. Then suitable accumulation points are proved to be solutions
of the limiting given Fokker–Planck equation. The results in [5] and [20] are, how-
ever, very limited in applications, e.g., essentially only Fokker–Planck equations as-
sociated to stochastic reaction–diffusion and Burgers equations with non-trace-class
noise (including white noise) or combinations of such are covered.

In this paper we develop a new general approach for this “non-trace-class case”
which applies to a much wide class of examples, including in particular, the Fokker–
Planck equation of the stochastic 2D and 3D Navier–Stokes equations with non-trace-
class noise (see Sect. 5.2 below). For the sake of simplicity we restrict ourselves to
the case where the second coefficient of L is constant. In the language of stochastic
equations we restrict ourselves to additive noise.

The Kolmogorov operator L in equation (FPE) above is defined as

(Lu)(x, t) := ∂u

∂t
(x, t) +

∞∑

i=1

ai
(
∂2
xi

u
)
(x, t) +

∞∑

i=1

bi(x, t)(∂xi
u)(x, t)

on all functions u : H × [0, T ] → R which are smooth and finite dimensional (also
called cylindrical). Here H is a separable Hilbert space (norm ‖.‖H , inner product
〈., .〉H ), (en) is a c.o.s. in H , Hn is the span of e1, . . . , en, πn the corresponding
finite dimensional projection, and the attribute “finite dimensional” to u means that
u(t, x) = u(πnx, t) for all x, for some n ∈ N and un : Rn × [0, T ] → R. Here and
below we shall always identify Hn with R

n fixing (en).
The ideas of the present work are general, in particular the approach by an aux-

iliary Fokker–Planck Equation on a product space. We develop them under quite
general assumptions which include basic cases like stochastic semilinear parabolic
equations with linear growth (but see also Remark 14) and, mainly, stochastic 2D
and 3D Navier–Stokes equations. A direct solution of the Fokker–Planck equation
corresponding to these equations when the noise has the covariance of the class con-
sidered here (not trace class or as general as possible) is new; for other approaches
to the existence of solutions for the stochastic 2D and 3D Navier–Stokes equations,
especially in the direction of general covariance, see for instance [1, 2, 10, 13] in 2D
and [11, 14–18] in 3D.

2 Assumptions and Main Result

The numbers ai ≥ 0 and the measurable functions bi : H ×[0, T ] →R are subject to
a series of assumptions. We do not assume the finite trace condition

∑∞
i=1 ai < ∞ as
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in [4, 8], but we do not allow dependence on (x, t) (hence our applications restrict to
additive noise).

Let E ⊂ H be a separable Banach space with dense continuous injection. Denote
the norm in E by ‖.‖E . We assume ei ∈ E and other conditions below.

We assume that the bi have the structure

bi(x, t) = −α2
i xi + f i(x, t)

with real numbers α2
i > 0 and continuous functions f i : H × [0, T ] → R. The basic

assumption on the sequences (ai), (α2
i ) is

lim
i→∞α2

i = ∞,

∞∑

i=1

ai

α2
i

< ∞. (2.1)

Concerning the sequence of functions f i(x, t), we assume
∣∣f i(x, t)

∣∣ ≤ Ci

(
1 + ‖x‖p0

H

)
, f i(·, t) locally Lipschitz in x, (2.2)

uniformly in t ∈ [0, T ]
for some Ci > 0, p0 ≥ 1.

Denote by V the Hilbert space

V =
{

x ∈ H : ‖x‖2
V :=

∞∑

i=1

α2
i x

2
i < ∞

}

where xi = 〈x, ei〉H . It is compactly embedded in H , by assumption (2.1). Let
V ′ be the dual space of V and let us use the identification H = H ′, so that
V ⊂ H ⊂ V ′, with dense injections. We write 〈., .〉 for the dual pairing between
V ′ and V , so 〈x, y〉 = 〈x, y〉H when x ∈ H , y ∈ V . Note that then πn has a natu-
ral extension from H to V ′. We assume also that the Banach space E ∩ V is dense
in H .

We assume that there is a Borel function f : E ×[0, T ] → V ′ such that f i(x, t) =
〈f (x, t), ei〉 (in other words, we assume that the series f (x, t) := ∑∞

i=1 f i(x, t)ei

converges in V ′ for all x ∈ E and t ∈ [0, T ]), and on f we assume for some C,
k0 ∈ (0,∞) and η ∈ (0,1)

〈
f (v + z, t), v

〉 ≤ η‖v‖2
V + C‖v‖2

H

(‖z‖2
E + 1

) + C‖z‖k0
E + C (2.3)

for all z ∈ E, v ∈ E∩V . When f grows more than linearly, this assumption embodies
a form of cancellation.

Let (βi(t))t≥0 be a sequence of independent Wiener processes on a probability
space (Ω,F ,P ) with normal filtration (Ft )t≥0. Then the series of stochastic inte-
grals, parametrized by λ ≥ 0,

Zλ
t :=

∞∑

i=1

∫ t

0
e−(t−s)(α2

i +λ)
√

ai dβi(s)ei (2.4)
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defines a continuous Gaussian process in H , by assumption (2.1). Our last assumption
on E is that

Zλ· is an L2∨k0(0, T ;E)-valued Gaussian variable (2.5)

and for every r > 0 one has

lim
λ→∞P

(∫ T

0

∥∥Zλ
t

∥∥2
E

dt > r2
)

= 0. (2.6)

Let (A,D(A)) and (Q,D(Q)) denote the self-adjoint linear operators

D(A) =
{

x ∈ H :
∞∑

i=1

(
α2

i 〈x, ei〉H
)2

< ∞
}

, Ax = −
∞∑

i=1

α2
i 〈x, ei〉H ei,

D(Q) =
{

x ∈ H :
∞∑

i=1

(
ai〈x, ei〉H

)2
< ∞

}
, Qx =

∞∑

i=1

ai〈x, ei〉H ei.

Then Zλ
t , t ≥ 0, defined in (2.4), can be rewritten as

Zλ
t =

∫ t

0
e(t−s)(A−λ)

√
QdWs, t ≥ 0,

which is a continuous Gaussian process in H , with trace-class covariance (by as-
sumption (2.1))

Qλ
t =

∫ t

0
es(A−λ)Qes(A−λ) ds, t ≥ 0.

By assumption (2.5), Zλ· is an L2(0, T ;E)-valued Gaussian variable and solves the
linear stochastic equation in H

dZλ
t = AZλ

t dt + √
QdWt − λZt dt, Zλ

0 = 0.

Remark 1 Under a natural condition on etA, t ≥ 0, (2.5) with Z0
t replacing Zλ

t actu-
ally implies (2.6). Indeed, under the assumption that the restriction of etA, t ≥ 0, is a
strongly continuous semigroup on E, (2.6) holds. This can be proved as follows: fix
i ∈ N. Then by Itô’s product rule

eλt

∫ t

0
eα2

i s dβi(s) =
∫ t

0
eλseα2

i s dβi(s) +
∫ t

0

∫ s

0
eα2

i r dβi(r)λeλs ds.

Hence
∫ t

0
e−(t−s)(α2

i +λ) dβi(s) =
∫ t

0
e−(t−s)α2

i dβi(s)

−
∫ t

0

∫ s

0
e−(t−r)α2

i dβi(r)λe−λ(t−s) ds.
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Multiplying by
√

ai ei and taking summation over i ∈ N (here the convergence holds
in H ), we obtain

Zλ
t =

∫ t

0
e(t−s)A

√
QdWt −

∫ t

0
e(t−s)A

∫ s

0
e(s−r)A

√
QdWr λe−λ(t−s) ds

= Z0
t − (

1 − e−λt
)∫ t

0
e(t−s)AZ0

s ρλ(t − s) ds,

where ρλ(t −s) = 1[0,t](s)(1−e−λt )−1λe−λ(t−s) weakly converges to the Dirac mea-
sure in t as λ → ∞.

Hence, since Z0
t ∈ E for dt-a.e. t ∈ [0, T ], it follows that

lim
λ→∞

∫ T

0

∥∥Zλ
t

∥∥2
E

dt = 0 P –a.s., (2.7)

in particular (2.6) holds.
More precisely,

(∫ T

0

∥∥∥∥Z0
t −

∫ t

0
e(t−s)AZ0

s ρλ(t − s) ds

∥∥∥∥
2

E

dt

)1/2

=
(∫ T

0

∥∥∥∥
∫ t

0

(
Z0

t − e(t−s)AZ0
s

)
ρλ(t − s) ds

∥∥∥∥
2

E

dt

)1/2

≤
(∫ T

0
T

∫ t

0

∥∥Z0
t − esAZ0

t−s

∥∥2
E

ρλ(s) ds dt

)1/2

≤ T 1/2
[∫ T

0

∫ T

0

∥∥Z0
t − Z0

t−s

∥∥2
E

dt ρλ(s) ds

]1/2

+ T 1/2
[∫ T

0

∫ T −s

0

∥∥(
1 − esA

)
Z0

t

∥∥2
E

dt ρλ(s) ds

]1/2

.

Since for P -a.e. ω ∈ Ω the first inner integral is continuous and bounded in s ∈ [0, T ],
this implies (2.7).

Remark 2 The limit property in assumption (2.6) is needed because of the power 2
of ‖z‖2

E in the term C‖v‖2
H (‖z‖2

E + 1) of assumption (2.3), which is a sort of critical

value case; if instead we took the term C‖v‖2
H (‖z‖β

E + 1) with β < 2 in (2.3), we
only need Zλ· being L2(0, T ;E)-valued, but this is too restrictive for applications to
Navier–Stokes equations.

We define D(L) to be the linear space of finite dimensional regular functions u :
H ×[0, T ] →R, i.e., u(t, x) = uN(〈e1, x〉, . . . , 〈eN, x〉, t) such that uN ∈ C

2,1
b (RN ×

[0, T ]) and u(x,T ) = 0. D(L) is then a (point and measure) separating class.
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Definition 3 A family of Borel probability measures (μt (dx))t∈[0,T ] on H , measur-
able in t , is a solution of the Fokker–Planck equation (FPE) above if

∫ T

0

∫

H

‖x‖p0
H μt(dx)dt < ∞,

where p0 is given in assumption (2.2), and

∫ T

0

∫

H

(Lu)(x, t)μt (dx) dt +
∫

H

u(x,0)μ0(dx) = 0

for all u ∈ D(L).

The double integral in the above formulation is then well defined (see Remark 6
below) because of (2.2) and the assumed moment condition. We can now state our
main theorem.

Theorem 4 Under the assumptions (2.1)–(2.6), for any Borel probability measure
μ0 on H such that

∫

H

‖x‖p1
H μ0(dx) < ∞

for some p1 > p0, equation (FPE) has a solution.

In Sect. 5 we shall give two examples: the case of measurable drift of at most
linear growth and the 2D and 3D Navier–Stokes equations.

3 Auxiliary Fokker–Planck Equation on Product Space

On finite dimensional regular functions ũ(v, z, t), ũ : H × H × [0, T ] → R, more
precisely for ũ ∈ D(L̃), where D(L̃) is defined analogously to D(L) with H × H

replacing H , define the auxiliary Kolmogorov operator

(L̃ũ)(v, z, t) := ∂ũ

∂t
(v, z, t) +

∞∑

i=1

((
ai∂2

zi
− (

α2
i + λ

)
zi∂zi

)
ũ
)
(v, z, t)

+
∞∑

i=1

(−α2
i vi + f i(v + z, t) + λzi

)
(∂vi

ũ)(v, z, t).

Here λ ≥ 0 is a parameter. In the simplest cases (application to drifts of at most linear
growth, for instance) we could simply take λ = 0, but for some applications we need
suitable values of λ. The trick of this parameter has been introduced in [9] to prove
the existence of random attractors for the Navier–Stokes equations, and here it will
be used to prove moment estimates for solutions.
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Definition 5 A family of Borel probability measures (μ̃t (dv, dz))t∈[0,T ] on H × H ,
measurable in t , is a solution of the Fokker–Planck equation on product space

L̃∗μ̃ = 0, μ̃|t=0 = μ̃0, (F̃PE)

if
∫ T

0

∫

H×H

(‖v‖p0
H + ‖z‖p0

H

)
μ̃t (dv, dz) dt < ∞,

where p0 is given in assumption (2.2), and
∫ T

0

∫

H×H

(L̃ũ)(v, z, t)μ̃t (dv, dz) dt +
∫

H×H

ũ(v, z,0)μ̃0(dv, dz) = 0

for all ũ ∈ D(L̃).

Remark 6 The double integral in the above formulation is well defined. Indeed, when
ũ ∈ D(L̃), the term

∑∞
i=1((a

i∂2
zi

− (α2
i + λ)zi∂zi

)̃u)(v, z, t) reduces to a finite sum
and we have the bound

∣∣∣∣∣

∞∑

i=1

((
ai∂2

zi
− (

α2
i + λ

)
zi∂zi

)
ũ
)
(v, z, t)

∣∣∣∣∣ ≤ C + C‖z‖H

which is integrable with respect to μ̃t (dv, dz) dt by the integrability assumption of
the definition. Similarly, the term

∞∑

i=1

(−α2
i vi + f i(v + z, t) + λzi

)
(∂vi

ũ)(v, z, t)

reduces to a finite sum and we have the bound
∣∣∣∣∣

∞∑

i=1

(−α2
i vi + f i(v + z, t) + λzi

)
(∂vi

ũ)(v, z, t)

∣∣∣∣∣

≤ C‖v‖H + C

N∑

i=1

∣∣f i(v + z, t)
∣∣ + C‖z‖H

for some N > 0, and thus by our main assumptions this is dominated by

C‖v‖H + CN,p

(
1 + ‖v‖p0

H + ‖z‖p0
H

) + C‖z‖H ,

which is again integrable with respect to μ̃t (dv, dz) dt .

Remark 7 Let πi : H × H → H , i = 1,2, denote the canonical projections and fix
t ∈ [0, T ]. Then μ̃t ◦ π−1

2 = the law of Zλ
t = NQt , i.e., the mean zero Gaussian

measure on H with covariance operator Qt , where

Qt :=
∫ t

0
e−2s(A+λ)Qds.
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Indeed, it is easy to check that (μ̃t ◦ π−1
2 )(dx) dt solves (FPE) with L replaced by

L0u := ∂u

∂t
+

∞∑

i=1

(
ai∂2

zi
− (

α2
i + λ

)
zi

)
∂zi

u,

with domain D(L) (as above) and μ0 = δ0. But for this Fokker–Planck equation
(NQt )t∈[0,T ] is the unique solution.

Remark 8 In Definition 5 it is sufficient to assume
∫ T

0

∫

H×H

(‖v + z‖p0
H + ‖v‖H + ‖z‖H

)
μ̃t (dv, dz) dt < ∞.

Lemma 9 If μ̃t (dv, dz) dt is a solution of (F̃PE) on product space and if μ̃0 and μ0
are related by the condition

∫

H×H

ϕ(v + z)μ̃0(dv, dz) =
∫

H

ϕ(x)μ0(dx) (3.1)

then μt(dx), defined for all t ∈ [0, T ] as
∫

H

ϕ(x)μt (dx) :=
∫

H×H

ϕ(v + z)μ̃t (dv, dz), ϕ ∈ Cb(H), (3.2)

is a weak solution of (FPE).

Proof Step 1. Let u ∈ D(L). Define

ũ(v, z, t) := u(v + z, t).

Then we have

(Lu)(v + z, t) = ∂u

∂t
(v + z, t) +

∞∑

i=1

ai
(
∂2
xi

u
)
(v + z, t)

+
∞∑

i=1

bi(v + z, t)(∂xi
u)(v + z, t)

(L̃ũ)(v, z, t) = ∂u

∂t
(v + z, t) +

∞∑

i=1

((
ai∂2

xi
− (

α2
i + λ

)
zi∂xi

)
u
)
(v + z, t)

+
∞∑

i=1

(−α2
i vi + f i(v + z, t) + λzi

)
(∂xi

u)(v + z, t)

= ∂u

∂t
(v + z, t) +

∞∑

i=1

ai
(
∂2
xi

u
)
(v + z, t)

+
∞∑

i=1

(−α2
i (vi + zi) + f i(v + z, t)

)
(∂xi

u)(v + z, t).
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So, we deduce

(Lu)(v + z, t) = (L̃ũ)(v, z, t).

Step 2. The integrability condition of Definition 3 holds, since by definition of
μt(dx), we have

∫ T

0

∫

H

‖x‖p0
H μt(dx)dt =

∫ T

0

∫

H×H

‖v + z‖p0
H μ̃t (dv, dz) dt

≤ Cp0

∫ T

0

∫

H×H

(‖v‖p0
H + ‖z‖p0

H

)
μ̃t (dv, dz) dt < ∞.

Step 3. By definition of μt(dx), we have

∫ T

0

∫

H

(Lu)(x, t)μt (dx) dt =
∫ T

0

∫

H×H

(Lu)(v + z, t)μ̃t (dv, dz) dt.

Hence, by the previous step, with ũ(v, z, t) := u(v + z, t),

∫ T

0

∫

H

(Lu)(x, t)μt (dx) dt =
∫ T

0

∫

H×H

(L̃ũ)(v, z, t)μ̃t (dv, dz) dt.

This and (3.1) imply the claim of the lemma. �

Remark 10 For a given Borel probability measure μ0 on H it is easy to find a Borel
probability measure μ̃0 on H × H such that (3.1) holds. Simply, define

μ̃0(dv, dz) := ε(0,x)(dv, dz)μ0(dx)

where ε(0,x) is the Dirac measure in (0, x) ∈ H × H . Then clearly (3.1) holds. Then
the second marginal of μ̃0 is just μ0. Another choice with first marginal equal to μ0

is μ̃0 = μ0 ⊗ δ0. Hence any convex combination of these two satisfies (3.1).

Thus, to prove existence of solutions of (FPE), it is sufficient to solve the auxiliary
Fokker–Planck equation (F̃PE), with suitable initial condition.

4 Existence Theorem for the Auxiliary Equation ( ˜FPE)

In this section we want to prove the existence of a solution to the equation (called
above (F̃PE))

∫ T

0

∫

H×H

(L̃ũ)(v, z, t)μ̃t (dv, dz) dt +
∫

H×H

ũ(v, z,0)μ̃0(dv, dz) = 0

with the initial condition μ̃0 = μ0 ⊗ δ0. This initial condition satisfies (3.1). One can
decompose μ̃0 in other ways (see Remark 10).
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Theorem 11 Let the assumptions (2.1)–(2.6) hold and let μ0 be a Borel probability
measure on H such that

∫

H

‖x‖p1
H μ0(dx) < ∞

for some p1 > p0. Then there exists λ0 ≥ 0 such that for every λ ≥ λ0 equation (F̃PE)
has a solution.

The proof is given in the following subsections. By Lemma 9, this proves our main
Theorem 4.

4.1 A Consequence of Fernique’s Theorem

Proposition 12 For every K > 0 there is λ0 > 0 such that for all λ ≥ λ0

E
[
e
∫ T

0 K‖Zλ
t ‖2

Edt
] ≤ e

1
4 + e2

e2 − 1
. (4.1)

Proof Since Zλ· is a Gaussian r.v. in the Banach space L2(0, T ;E), Fernique’s theo-
rem states that there exists γ0 > 0 such that

E
[
eγ

∫ T
0 ‖Zλ

t ‖2
E dt

]
< ∞

for all γ ∈ (0, γ0). We need a relation between λ and γ0, so we use the following ver-
sion of Fernique’s theorem (see [12]): given an L2(0, T ;E)-valued Gaussian variable
Z, if two real numbers γ, r > 0 satisfy

log

(
1 − P(‖Z‖L2(0,T ;E) ≤ r)

P (‖Z‖L2(0,T ;E) ≤ r)

)
+ 32γ r2 ≤ −1,

then

E
[
e
γ ‖Z‖2

L2(0,T ;E)
] ≤ e16γ r2 + e2

e2 − 1
.

Now, given K > 0, choose r = 1
8
√

K
. By assumption (2.6), there exists λ0 > 0

such that

P

(∫ T

0

∥∥Zλ
t

∥∥2
E

dt ≤ r

)
≥ 1

e−3/2 + 1
, ∀λ ≥ λ0.

Then

log

(
1 − P(

∫ T

0 ‖Zλ
t ‖2

E dt ≤ r)

P (
∫ T

0 ‖Zλ
t ‖2

E dt ≤ r)

)
≤ −3

2
.

Therefore,

log

(
1 − P(‖Zλ· ‖L2(0,T ;E) ≤ r)

P (‖Zλ· ‖L2(0,T ;E) ≤ r)

)
+ 32Kr2 ≤ −1.
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By the previous version of Fernique’s theorem we have

E
[
e
K‖Zλ· ‖2

L2(0,T ;E)
] ≤ e

1
4 + e2

e2 − 1
.

The proof is complete. �

4.2 Approximating Problem, Moment Estimate

We use the same notations and objects of the previous subsection but we enlarge, if
necessary, the filtered probability space (Ω,F , (Ft )t≥0,P ) in such a way that there
exists an F0-measurable r.v. V (0) with law μ0. Set

Anx = −
n∑

i=1

α2
i 〈x, ei〉H ei, fn(x, t) =

n∑

i=1

f i(x, t)ei = πnf (x, t)

(the latter equality is true only for x ∈ E). Consider the finite dimensional system in
πn(H) for the unknown Vn(t), driven by the known Gaussian process Zλ

t defined in
the previous section:

dVn(t)

dt
= AnVn(t) + fn

(
Vn(t) + Zλ

t , t
) + λπn

(
Zλ

t

)
, Vn(0) = πnV (0).

This is a random differential equation. For each n ∈ N and λ > 0, as a stochastic
equation, it has a unique global continuous Ft -adapted solution Vn (a strong solu-
tion, in the stochastic sense). Indeed, given any continuous path of Zλ· , this follows
from the local Lipschitz property of each f i , and assumption (2.3). (See e.g., [19,
Theorem 3.1.1].) Whence a unique global solution is established for P -a.e. ω ∈ Ω

(those for which Zλ· (ω) is continuous) and it is an adapted process, by uniqueness.
Notice that Zλ

t ∈ E for dt-a.e. t ∈ [0, T ] and Vn(t) ∈ E ∩ V (because πn(H) ⊂
E ∩V ) for every t ∈ [0, T ], with probability one. Thus we may apply the inequalities
of our assumptions with z = Zλ

t and v = Vn(t).
Using the notations of inner product and norm of H also in Hn, from assumption

(2.3) we have

1

2

d‖Vn‖2
H

dt
− 〈AnVn,Vn〉H ≤ ∣∣〈fn

(
Vn + Zλ, t

)
,Vn

〉
H

∣∣ + λ
∥∥Zλ

∥∥
H

‖Vn‖H

≤ η〈AnVn,Vn〉H + C‖Vn‖2
H

(∥∥Zλ
∥∥2

E
+ 1

)

+ C
∥∥Zλ

∥∥k0
E

+ C + λ2
∥∥Zλ

∥∥2
H

+ ‖Vn‖2
H .

Just in order to unify some expressions, and without restriction, let us assume from
now on that k0 ≥ 2; otherwise it is only a matter of keeping explicitly the term‖Zλ‖2

H .
With possibly changing constants C, we have

d‖Vn‖2
H

dt
− 〈AnVn,Vn〉H ≤ C‖Vn‖2

H

(∥∥Zλ
∥∥2

E
+ 1

) + (
C + λ2)∥∥Zλ

∥∥k0
E

+ C. (4.2)
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By Gronwall’s lemma we get (using also ‖Vn(0)‖2
H ≤ ‖V (0)‖2

H )

∥∥Vn(t)
∥∥2

H
≤ eIλ(0,t)

∥∥V (0)
∥∥2

H
+

∫ t

0
eIλ(s,t)

((
C + λ2)∥∥Zλ

s

∥∥k0
E

+ C
)
ds,

where

Iλ(s, t) = C

∫ t

s

(∥∥Zλ
r

∥∥2
E

+ 1
)
dr

and thus

∥∥Vn(t)
∥∥2

H
≤ eIλ(0,T )

[∥∥V (0)
∥∥2

H
+

∫ T

0

((
C + λ2)∥∥Zλ

s

∥∥k0
E

+ C
)
ds

]
.

We have denoted the constant in I (s, t) by C to emphasize that it is not a generic
constant, but the one obtained so far in that estimate; it does not depend on λ, neither
on n nor on ω.

Notice that this inequality gives us

∥∥Vn(t)
∥∥

H
≤ e

1
2 Iλ(0,T )

[∥∥V (0)
∥∥

H
+

(∫ T

0

((
C + λ2)∥∥Zλ

s

∥∥k0
E

+ C
)
ds

)1/2]
(4.3)

so we are not limited to work in the sequel with powers of ‖Vn(t)‖H greater than 2.
Let p1 > p0 be the value given in the assumptions of the theorem.

Lemma 13 For every p ∈ (p0,p1), there exists λp ≥ 0 and Cp > 0 such that, using
the process Zλp in the previous construction, we have

E
[

sup
t∈[0,T ]

∥∥Vn(t)
∥∥p

H

]
≤ Cp (4.4)

for every n ∈N.

Proof From inequality (4.3) we deduce

∥∥Vn(t)
∥∥p

H
≤ Cp,T e

p
2 Iλ(0,T )

[∥∥V (0)
∥∥p

H
+

(∫ T

0

((
C + λ2)∥∥Zλ

s

∥∥k0
E

+ C
)
ds

)p/2]
,

hence, for every q, q ′ ∈ (1,∞) such that 1
q

+ 1
q ′ = 1,

E
[

sup
t∈[0,T ]

∥∥Vn(t)
∥∥p

H

]

≤ Cp,q,T E
[
e

pq
2 Iλ(0,T )

]1/q
E

[∥∥V (0)
∥∥pq ′]1/q ′

+ Cp,q,T E
[
e

pq
2 Iλ(0,T )

]1/q
E

[(∫ T

0

((
C + λ2)∥∥Zλ

s

∥∥k0
E

+ C
)
ds

)pq ′/2]1/q ′

.
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Choose q ′ such that pq ′ = p1: this gives us E[‖V (0)‖pq ′
H ] < ∞. Choose λ, depend-

ing on p,q,C, such that E[e pq
2 Iλ(0,T )] < ∞: this is possible because of Proposi-

tion 12. Finally, for those values of the parameters, the last expected value of the last
inequality is finite because Zλ· is a Gaussian variable in Lk0(0, T ;E), see assump-
tion (2.5). The proof is complete. �

4.3 An Additional Estimate

Inequality (4.2) also gives us

−
∫ T

0
〈AnVn,Vn〉H ds ≤ ∥∥Vn(0)

∥∥2
H

+ C

∫ T

0
‖Vn‖2

H

(∥∥Zλ
∥∥2

E
+ 1

)
ds

+ (
C + λ2)

∫ T

0

∥∥Zλ
∥∥k0

E
ds + CT .

Recalling the definition of the Hilbert space V given in the introduction, we have
proved our additional estimate:

∫ T

0

∥∥Vn(s)
∥∥2

V
ds ≤ ∥∥Vn(0)

∥∥2
H

+ C

∫ T

0
‖Vn‖2

H

(∥∥Zλ
∥∥2

E
+ 1

)
ds

+ (
C + λ2)

∫ T

0

∥∥Zλ
∥∥k0

E
ds + CT .

In fact, for our later purposes we may simplify it as follows:

∫ T

0

∥∥Vn(s)
∥∥2

V
ds ≤ C sup

[0,T ]
‖Vn‖4

H +
(∫ T

0

∥∥Zλ
∥∥k0∨2

E
ds

)2

+ C (4.5)

for all n ∈ N with a new constant C, depending also on λ and T , but independent of
n and ω.

4.4 Approximating Fokker–Planck Equation

Given n ∈ N define D(L̃n) to be the span of all functions ũn : Hn × H × [0, T ] → R

such that

ũn(v, z, t) = ũn,N

(
v, 〈e1, z〉, . . . , 〈eN , z〉, t),

for some ũn,N ∈ C
2,1
b (Hn × HN × [0, T ]) (i.e., C2 on Hn × HN and C1 on [0, T ])

and ũn(v, z, T ) = 0. Consider on Hn × H the Fokker–Planck equation

∫ T

0

∫

Hn×H

(L̃nũn)(v, z, t)μ̃n
t (dv, dz) dt

+
∫

Hn×H

ũn(v, z,0)μ̃n
0(dv, dz) = 0, ∀ũn ∈ D(L̃n), (F̃PEn)
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where for (v, z, t) ∈ Hn × H × [0, T ]

(L̃nũn)(v, z, t) := ∂ũn

∂t
(v, z, t) +

∞∑

i=1

((
ai∂2

zi
− (

α2
i + λ

)
zi∂zi

)
ũn

)
(v, z, t)

+
n∑

i=1

(−α2
i vi + f i(v + z, t) + λzi

)
(∂vi

ũn)(v, z, t).

The initial measure μ̃n
0 is, by definition, the projection on Hn ×H of the given initial

datum μ̃0.
Let (Vn,Z

λ) be the process constructed in the previous section. For n ∈ N, t ∈
[0, T ], define μ̃n

t (dv, dz) to be the law of (Vn(t),Z
λ
t ). Then clearly μ̃n

t (dv, dz) dt

solves (F̃PEn) by Itô’s formula. Replacing ũn(v, z, t) in (F̃PEn) by ϕ(t )̃un(v, z, t)

for ϕ ∈ C0([0, T )) we easily see that (F̃PEn) is equivalent to
∫

Hn×H

u(v, z, t)μ̃n
t (dv, dz)

=
∫

Hn×H

u(v, z,0)μ̃n
0(dv, dz)

+
∫ t

0

∫

Hn×H

L̃nu(v, z, s)μ̃n
s (dv, dz) ds, ∀t ∈ [0, T ], u ∈ D

(
L̃n

)
.

(See [7, Remark 1.2] for details.) Hence an easy consideration shows that the above
equation also holds for all ϕ ∈FC2

b , i.e., all functions ϕ : H × H → R of the form

ϕ(v, z) = ϕN

(〈e1, v〉, . . . , 〈eN, v〉, 〈e1, z〉, . . . , 〈eN, z〉),
where N ∈ N, ϕN ∈ C2

b(RN ×R
N). Hence it follows from Remark 6 and Lemma 13

that for every ϕ ∈ FC2
b the R-valued maps

t → μ̃n
t (ϕ) :=

∫

Hn×H

ϕ(v, z) μ̃n
t (dv, dz), n ∈ N,

are equicontinuous on [0, T ].

4.5 Passage to the Limit

Step 1. Convergence of a subsequence of μ̃n
t , n ∈ N, for all t ∈ [0, T ].

First we extend μ̃n
t from a measure on Hn ×H to a measure on H ×H as follows.

Let H⊥
n be the orthogonal complement of Hn in H , δ0 the Dirac measure on H⊥

n with
mass at 0 ∈ H⊥

n and Λ : Hn × H⊥
n × H → H × H defined by

Λ
((

vn, v
⊥
n , z

)) = (
vn + v⊥

n , z
)
, vn ∈ Hn, v⊥

n ∈ H⊥
n , z ∈ H.

Then the image under Λ of the measure μ̃n
t (dvn, dz)⊗δ0(dv⊥

n ) extends μ̃n
t to H ×H .

Let us also denote this extension by μ̃n
t . Then we have for any integrable function
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g : H × H → R

∫

H×H

g(v, z)μ̃n
t (dv, dz)

=
∫

Hn×H⊥
n ×H

g
(
vn + v⊥

n , z
)
μ̃n

t (dvn, dz) ⊗ δ0
(
dv⊥

n

)

=
∫

Hn×H

g(vn, z)μ̃
n
t (dvn, dz) ⊗ δ0

(
dv⊥

n

)

=
∫

H×H

g
(
πn(v), z

)
μ̃n

t (dv, dz). (4.6)

Furthermore, by Remark 7 and Lemma 13 for each t ∈ [0, T ]

sup
n∈N

∫

H×H

(‖v‖p
H + ‖z‖2

H

)
μ̃n

t (dv, dz) < +∞, (4.7)

for any p given in Lemma 13. Closed balls in H × H are compact and metrizable
with respect to the weak topology τw . Hence by [3, Theorem 8.6.7] and a diago-
nal argument we can find a subsequence μ̃

nk
t , k ∈ N, such that (μ̃

nk
t ) converges τw-

weakly to a probability measure μ̃t on H × H as k → ∞ for all t ∈ [0, T ] ∩ Q.
Now let t ∈ [0, T ] \ Q. We claim that also for such t the sequence (μ̃

nk
t ) converges

τw-weakly to some probability measure μ̃t on H × H . Since by (4.7) also (μ̃
nk
t )

has τw-convergent subsequences, we only have to identify the limit points. So, let
nkl

, l ∈ N, be a subsequence such that (μ̃
nkl
t ) τw-weakly converges to some probabil-

ity measure ν̃t on H × H as l → ∞. Then by the equicontinuity proved in Sect. 4.4
we have for all ϕ ∈FC2

b (which are all weakly continuous)

∫

H×H

ϕ dν̃t = lim
l→∞

∫

H×H

ϕ dμ̃
nkl
t

= lim
l→∞ lim

s→t, s∈Q

∫

H×H

ϕ dμ̃
nkl
s = lim

s→t, s∈Q

∫

H×H

ϕ dμ̃s.

Since FC2
b is a measure separating class, this proves our claim.

Step 2. Convergence of a subsequence of μ̃n
t (dv, dz) dt .

Let (γi) ⊂ [1,∞) such that

γi ↑ ∞,

∞∑

i=1

γi

ai

α2
i

< ∞.
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Define the operator Γ on H by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Γ x :=
∞∑

i=1

γ
1/2
i 〈x, ei〉ei,

D(Γ ) :=
{

x ∈ H :
∞∑

i=1

γi〈x, ei〉2 < ∞
}

.

Then Γ has compact level sets and furthermore

E
[∥∥Γ

(
Zλ

t

)∥∥2
H

] =
∞∑

i=1

γia
i

∫ t

0
e−2(t−s)(α2

i +λ) ds

= 1

2

∞∑

i=1

γi

ai

α2
i + λ

(
1 − e−2t (α2

i +λ)
)

≤ 1

2

∞∑

i=1

γi

ai

α2
i

=: Cγ < ∞.

Hence it follows from (2.5), (4.5) and Lemma 13

sup
n∈N

∫ T

0

∫

H×H

(‖v‖2
V + ‖Γ z‖2

H

)
μ̃n

t (dv, dz) dt < ∞.

But the function (v, z) → ‖v‖2
V + ‖Γ v‖2

H has compact level sets on H × H , hence
(selecting a subsequence if necessary) μ̃

nk
t (dv, dz) dt , where nk, k ∈ N, is as in

Step 1, weakly converges to a finite measure μ̃(dt, dv, dz) on [0, T ] × H × H as
k → ∞. But for u ∈ D(L̃) we then have by Lebesgue’s dominated convergence the-
orem

∫ T

0

∫

H×H

u(v, z, t)μ̃t (dv, dz) dt

= lim
k→∞

∫ T

0

∫

H×H

u(v, z, t) μ̃
nk
t (dv, dz) dt

=
∫ T

0

∫

H×H

u(v, z, t)μ̃(dt, dv, dz).

Since D(L̃) is a measure separating class, it follows that μ̃(dt, dv, dz) = μ̃t (dv,

dz) dt . So μ̃
nk
t (dv, dz) dt → μ̃t (dv, dz) dt weakly on H × H × [0, T ] as k → ∞.

Step 3. Passage to the limit.
Just to simplify notations, assume that the whole sequence (μ̃n

t (dv, dz) dt)n∈N
weakly converges to μ̃t (dv, dz) dt on [0, T ] × H × H . We have to prove that
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μ̃t (dv, dz) dt is a solution of (F̃PE). Since we have μ̃n
0 → μ̃0 weakly on H × H

we only need to prove that

lim
n→∞

∫ T

0

∫

H×H

(L̃nũ)(v, z, t)μ̃n
t (dv, dz) dt

=
∫ T

0

∫

H×H

(L̃ũ)(v, z, t)μ̃t (dv, dz) dt

for all ũ ∈ D(L̃). Below we fix such a ũ. Let m ∈ N such that

ũ(v, z, t) = ũ(πmv,πmz, t)

and let n ≥ m. By (4.6) the above equation follows from

lim
n→∞,n≥m

∫ T

0

∫

H×H

ψ(v, z, t)μ̃n
t (dv, dz) dt

=
∫ T

0

∫

H×H

ψ(v, z, t)μ̃t (dv, dz) dt, (4.8)

where

ψ(v, z, t) = −
m∑

i=1

(
α2

i + λ
)
zi∂zi

ũ(πmv,πmz, t)

+
m∑

i=1

(−α2
i vi + λzi

)
∂vi

ũ(πmv,πmz, t)

+
m∑

i=1

f i(v + z, t)∂vi
ũ(v, z, t).

Note that ψ is a continuous function, but not bounded. So, we cannot pass to the limit
in (4.8) just by the weak convergence of μ̃n

t dt to μ̃t dt on H × H × [0, T ] proved in
Step 2 above. But we can argue similarly as in the proof of Vitali’s theorem. Let us
give the details.

By assumption (2.2) we have

∣∣ψ(v, z, t)
∣∣ ≤ c

(
1 + ‖v‖p0

H + ‖z‖p0
H

)
. (4.9)

For R ∈ (0,∞) we define

ψR := ψ ∧ R ∨ (−R),

then

ψ = ψR + (ψ − ψR),
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where

|ψ − ψR| ≤ 1{|ψ |≥R}2|ψ |.
Hence by Step 2 it suffices to show that

lim sup
R→∞

sup
n∈N

∫ T

0

∫

H×H

1{|ψ |≥R}|ψ |dμ̃n
t dt = 0 (4.10)

and

lim sup
R→∞

∫ T

0

∫

H×H

1{|ψ |≥R}|ψ |dμ̃t dt = 0. (4.11)

But we have by the Hölder inequality for every δ ∈ (0,∞)

∫ T

0

∫

H×H

1{|ψ |≥R}|ψ |dμ̃n
t dt ≤

(∫ T

0

∫

H×H

|ψ |1+δ dμ̃n
t dt

) 1
1+δ

×
(

1

R

∫ T

0

∫

H×H

|ψ |dμ̃n
t dt

) δ
1+δ

.

By Lemma 13 and (4.9) this implies (4.10). Note that by Step 2 and Lemma 13 it
follows by lower continuity that

∫ T

0

∫

H×H

(‖v‖p
H + ‖z‖p

H

)
μ̃t (dv, dz) dt < ∞,

for all p ∈ (p0,p1). Hence (4.11) follows similarly (even easier) as (4.10) above.

5 Examples

5.1 Measurable Linear Growth Drift

Let f : H × [0, T ] → H be a measurable map such that
∥∥f (x, t)

∥∥
H

≤ C
(
1 + ‖x‖H

)
, t ∈ [0, T ], x ∈ H

for some constant C > 0. Denote by f i(t, x) its components. Assume that (2.1) holds.
Then, with E = H , also the other assumptions hold. The proof of assumptions (2.2)
and (2.5) is elementary. We have

〈
f (v + z, t), v

〉
H

≤ C
(
1 + ‖v + z‖H

)‖v‖H ≤ C′‖v‖2
H + C′‖z‖2

H + C′′

which implies (2.3). Finally,

E
[∥∥Zλ

t

∥∥2
H

] =
∞∑

i=1

(
1 − e−2t (α2

i +λ)
) ai

2(α2
i + λ)

≤
∞∑

i=1

ai

2(α2
i + λ)

.



Fokker–Planck Equations for SPDE with Non-trace-class Noise 299

Hence

P

(∫ T

0

∥∥Zλ
t

∥∥2
E

dt > r2
)

≤ r−2E

[∫ T

0

∥∥Zλ
t

∥∥2
H

dt

]
= r−2

∫ T

0
E

[∥∥Zλ
t

∥∥2
H

]
dt

= 1

2
r−2T

∞∑

i=1

ai

α2
i + λ

which implies (2.6). Note that (2.4) follows from (2.1). Hence Theorem 4 holds.

Remark 14 Similarly as in [20] we can also treat stochastic partial differential equa-
tions on H = L2(0,1) whose drift is the sum of the Dirichlet Laplacian, a reaction–
diffusion and a Burgers type part. However, in contrast to [20] (and also [5, 7]) we
need to assume that the reaction part is of at most quadratic growth. The details are
straightforward.

5.2 Navier–Stokes Equations

Consider the stochastic Navier–Stokes equations

du + (u · ∇u + ∇p)dt = ν�udt +
∞∑

i=1

√
aiei dβi(s),

divu = 0,

u|t=0 = u0

on the torus D = [0,2π]d , d = 2,3, with periodic boundary conditions.
We introduce the Hilbert space H defined as the closure in L2(D,Rd) of the set of

all ϕ ∈ C∞(D,Rd) which satisfy the periodic boundary conditions and divϕ = 0; H

is a closed strict subspace of L2(D,Rd) and we shall denote the orthogonal projection
from L2(D,Rd) to H by PH . We assume u0 ∈ H . We introduce also the Hilbert space
V of all periodic ϕ ∈ H 1(D,Rd) such that divϕ = 0; and D(A) = H 2(D,Rd) ∩ V .
Then we introduce the so called Stokes operator A : D(A) ⊂ H → H defined as
Aϕ = PH (ν�ϕ) (in fact, in the case of periodic boundary conditions, one can show
that Aϕ = ν�ϕ). Since A−1 is compact, there exists a complete orthonormal system
{ei} of eigenvectors of A, with eigenvalues {−α2

i }, that we order such that 0 < α2
1 ≤

α2
2 ≤ · · · . One can show that, with these new concepts and notations, the space V

defined in Sect. 2 and the space V defined here coincide.
Let B(., .) : D(A) × V → H be defined as

B(ϕ,ψ) = −PH (ϕ · ∇ψ). (5.1)

The expression
∫
D

B(ϕ,ψ)(x)θ(x) dx, ϕ ∈ D(A), ψ ∈ V , θ ∈ H , extends to
ϕ,ψ, θ ∈ V , and several other classes of functions. For smooth fields ϕ, ψ , θ ∈ H

we have
〈
B(ϕ,ψ), θ

〉 = −〈
B(ϕ, θ),ψ

〉
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by a simple integration by parts, and this identity extends by density to several spaces
of weaker fields.

Using the previous set-up we may formally write the stochastic Navier–Stokes
equations in abstract form (the pressure disappears since PH (∇p) = 0):

du = (
Au + B(u,u)

)
dt +

∞∑

i=1

√
aiei dβi(s).

See [15] for a review on the 3D stochastic Navier–Stokes equations and further details
on the set-up.

To connect this equation with the abstract framework of this paper we consider the
space E = Cper(D;Rd) ∩ H , where Cper(D;Rd) is the space of periodic continuous
vector fields on D, introduce the functions f i : [0, T ] × H → R defined as

f i(t, x) = −〈
B(x, ei), x

〉 =
∫

D

(
x(ξ) · ∇)

ei(ξ) · x(ξ) dξ

and consider the sequences {α2
i } and {ai} above. As remarked above, since∫

D
B(ϕ,ψ)(x)θ(x) dx extends to ϕ,ψ, θ ∈ V , there exists f (t, x) with values in

V ′ such that f i(x, t) = 〈f (x, t), ei〉; it is given by B(x, x), when x ∈ D(A).
We assume that ai has the form

ai = α−ε
i

for some ε such that

ε > 0, for d = 2,

ε > 1, for d = 3.

This guarantees assumption (2.1). Indeed, on the torus D, the family of eigenvectors
{ei}i∈N of A can be written (see [21]) in the form {eα,k} with k ∈ Z

d∗ = Z
d\{0} and α

which varies in the finite set {1, . . . , d − 1} and their associated eigenvalues, indexed
in the form {α2

k }k∈Zd∗ (for each k ∈ Z
d∗ the eigenvalue α2

k has multiplicity d − 1),

are given by α2
k = ‖k‖2. If we use the complex valued notation, one has eα,k(ξ) =

cα,ke
ik·ξ where, for each k, the set of vectors {cα}α∈{1,...,d−1} is an orthonormal basis

of the space in R
d orthogonal to k.

Hence we may rewrite
∑∞

i=1
ai

α2
i

as

∑

k∈Zd∗

‖k‖−2−ε

and this series converge in d = 2 for every ε > 0, and in d = 3 for every ε > 1.
We claim that under these conditions all the assumptions of the paper are verified

and thus Theorem 4 holds. Let us check the assumptions.
The eigenvectors ei and their derivatives are bounded functions and thus assump-

tion (2.2) holds with p0 = 2.
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We have, for smooth fields v, z,

〈
f (v + z, t), v

〉 =
∫

D

(
(v + z) · ∇)

(v + z) · v dξ =
∫

D

(
(v + z) · ∇)

z · v dξ

= −
∫

D

(
(v + z) · ∇)

v · z dξ ≤ η‖v‖2
H 1(D)

+ Cη

∥∥|z| |v + z|∥∥2
L2(D)

≤ η‖v‖2
H 1(D)

+ 2Cη‖z‖2
L∞(D) ‖z‖2

L2(D)
+ 2Cη‖z‖2

L∞(D) ‖v‖2
L2(D)

and the inequality extends to all z ∈ E, v ∈ E ∩V . Thus (2.3) holds true, with k0 = 4.
Finally, assumptions (2.5) and (2.6) are true under the condition imposed above

on {α2
i } and {ai}. To show this, we have to use the theory of Sect. 5.5.1 of [12] and

the explicit form of the eigenfunctions ei of the Stokes operator A. Since we need
the bounds of this reference with a precise control of the constants, we have repeated
some of the computations in the next lemma.

Lemma 15 Assume ai = α−ε
i with ε as above. Then the random field

Zλ
t (ξ) =

∞∑

i=1

∫ t

0
e−(t−s)(α2

i +λ)
√

ai dβi(s)ei(ξ)

has a continuous modification in (t, ξ) and satisfies assumptions (2.5) and (2.6).

Proof The eigenfunctions ei have the properties ei ∈ C1(D;Rd), |ei(ξ)| ≤ C,
|∇ei(ξ)| ≤ Cαi , required in Sect. 5.5.1 of [12]. We have also the other property

asked in that reference, namely
∑∞

i=1
ai

(α2
i )1−δ

< ∞ for some δ > 0, and precisely,

for the sequel, we take δ = ε
4 , then

∞∑

i=1

ai

(α2
i )

1− ε
4

< ∞.

Indeed, the previous series is equal to
∑

k∈Zd∗ ‖k‖−2− ε
2 < ∞ with the equivalent lan-

guage of the indexes k ∈ Z
d∗ . Hence Theorem 5.20 of [12] applies and gives us the

existence of a continuous modification of Zλ
t (ξ) in (t, ξ). Let us be more precise

from the quantitative viewpoint. In the sequel, we write Zλ
t (ξ) for each one of its d

components, for notational simplicity. It is sufficient to prove assumptions (2.5) and
(2.6) for each component of Zλ

t (ξ).
Lemma 5.19 of [12] gives us the estimate

E
[∣∣Zλ

t (ξ) − Zλ
t

(
ξ ′)∣∣2] ≤ C1(λ)

∣∣ξ − ξ ′∣∣ ε
4 , ∀t ∈ [0,∞),

where

C1(λ) := C1

∞∑

i=1

aiα
ε
4
i

α2
i + λ
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for some constant C1 > 0. Indeed

E
[∣∣Zλ

t (ξ) − Zλ
t

(
ξ ′)∣∣2]

= E

[∣∣∣∣∣

∞∑

i=1

∫ t

0
e−(t−s)(α2

i +λ)
√

ai dβi(s)
(
ei(ξ) − ei

(
ξ ′))

∣∣∣∣∣

2]

=
∞∑

i=1

∣∣ei(ξ) − ei

(
ξ ′)∣∣2

∫ t

0
e−2(t−s)(α2

i +λ)ai ds

≤ C

∞∑

i=1

aiα
ε
4
i

α2
i + λ

∣∣ξ − ξ ′∣∣ ε
4

because
∣∣ei(ξ) − ei

(
ξ ′)∣∣ ≤ Cα

ε
4
i

∣∣ξ − ξ ′∣∣ ε
4 .

Then

E
[∣∣Zλ

t (ξ) − Zλ
t

(
ξ ′)∣∣2m] ≤ Cm(λ)

∣∣ξ − ξ ′∣∣ εm
4 , ∀t ∈ [0,∞),

where

Cm(λ) := CmC1(λ)m

for some constant Cm > 0. We remark also the easier estimate

E
[∣∣Zλ

t (ξ)
∣∣2m] ≤ C̃m(λ) := C̃mC̃1(λ)m, ∀t ∈ [0,∞),

where

C̃1(λ) = C̃1

∞∑

i=1

ai

α2
i + λ

for some constant C̃1 > 0.
Given α ∈ (0,1), for the Wα,2m(D)-norm, we have the estimate

E

[∫

D

∣∣Zλ
t (ξ)

∣∣2m
dξ

]
+ E

[∫

D

∫

D

|Zλ
t (ξ) − Zλ

t (ξ ′)|2m

|ξ − ξ ′|d+2mα
dξ dξ ′

]

≤ (2π)dC̃m(λ) + Cm(λ)

∫

D

∫

D

∣∣ξ − ξ ′∣∣ εm
4 −d−2mα

dξ dξ ′

=: C̃m(λ) + Cm(λ) · Cm,α,ε,d

and Cm,α,ε,d < ∞ if εm
4 − d − 2mα > −d , namely α < ε

8 . Choose α = ε
10 in the

sequel. We have W
ε

10 ,2m(D) ⊂ C(D) for 2m ε
10 > d , namely for m > 5d

ε
. Choose for

the sequel m equal to the smallest integer such that m > 5d
ε

, m ≥ 2 ∨ k0 with k0 = 4.
Then

E
[∥∥Zλ

t

∥∥2m

L∞(D)

] ≤ C′
m

(
C̃m(λ) + Cm(λ) · Cm,α,ε,d

)
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for some constant C′
m > 0. This implies assumption (2.5). Finally, assumption (2.6)

follows from limλ→∞ C1(λ) = 0, limλ→∞ C̃1(λ) = 0 and Chebyshev inequality. �

Remark 16 We think that in this case (2.6) also follows from Remark 1. But we could
not find a suitable reference for the condition on etA, t ≥ 0, in Remark 1. Therefore,
we have given a direct proof of (2.6) above.
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