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Abstract In sequential experiments the sample size is not planned in advance. Data are
progressively collected and a stopping rule based on the observed results is defined in order
to terminate the study. In a Bayesian framework, it is straightforward to monitor an ongoing
experiment looking at the posterior probability that a parameter of interest θ , belongs to
a given set. Specifically, in this paper we focus on the context of phase II clinical trials,
where θ represents treatment efficacy. The Bayesian stopping rule we adopt involves the
posterior probability that θ exceeds a clinically relevant threshold. Moreover, we introduce a
robust version of this criterion by replacing the single prior distribution with a class of prior
distributions. A simulation study is performed to compare the average sample sizes of the
robust sequential approach both with the sample sizes of the non robust approach and of the
non sequential approach. An interesting result is that, when the class of prior distributions is
sufficiently narrow, the average sample sizes of the robust sequential approach can be smaller
than the non sequential sample sizes.

Keywords Clinical trials · ε-contamination priors · Robustness ·
Sample size · Sequential analysis

1 Introduction

In many experimental contexts data are collected steadily over a period of time, but it is com-
mon practice that the analysis is performed at the end of the experiment, once the preplanned
sample size is reached. However, from a practical point of view, it is quite natural to monitor
results during the data accumulation process and, consequently, to take into consideration the
possibility of early stopping or modifying the ongoing study design, due to ethical, adminis-
trative and economic reasons. Relevant examples of application can be found in almost any
area in which an experiment or a survey is carried out over a period of time and intermediate
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analyses are planned. In the medical field this includes clinical trials, together with ani-
mal experiments and epidemiological studies; in industrial applications there are established
sequential methods for acceptance sampling for quality control and for life testing in reliabil-
ity. A comprehensive review of statistical methods for group sequential trials is provided by
Jennison and Turnbull [18], which constitutes a milestone mainly in the frequentist literature,
together with the previous works by Armitage [1], Pocock [21], Whitehead [28] and O’Brien
and Fleming [19]. As pointed out in Whitehead [28], sequential methods are not as popular
as standard fixed-sample techniques. This is due to some technical complications that basi-
cally concern the adjustment for multiplicity when (one or more) interim looks at the data are
scheduled, yielding potential bias in statistical procedures, especially related to the control of
type I error (see for instance Geller and Pocock [16] and the references therein). However, as
discussed in Berry [6], a possibility to avoid multiplicity issues is that of adopting a Bayesian
perspective as, for instance, in Freedman and Spiegelhalter [15] and Spiegelhalter et al. [23].
In Berry’s words [7], indeed, there is “no price to pay for looking at the data” without waiting
for the end of recruitment, since the techniques for inference both at the interim analyses and
upon termination are much more straightforward, provided that the sequential design does not
affect the Bayesian inference. A complete review on Bayesian adaptive methods can be found
in the recent book by Berry et al. [8] with specific reference to the context of clinical trials.

In this work we consider Bayesian methods for the monitoring of sequential trials. Specifi-
cally we deal with the case of continuous endpoints. Typical examples of normally distributed
data (possibly after a suitable transformation) are, for instance, tumour shrinkage (see the
application in Sect. 3), blood pressure, lung function or concentration of some chemical in
the blood. In particular, in phase II trials, when there is no control group, the parameter of
interest is the mean response to a medical intervention to be compared with a clinically rele-
vant value. However, if the goal of the trial is to compare pair-matched patients in terms of a
given measurement or two measurements on the same patients (as for instance in crossover
studies), we essentially retrieve the one-sample problem. Conversely, in placebo-controlled
trials, the parameter of interest is a measure of comparison between treatment effects under
the two arms, such as the difference in the mean responses or, in case of binary or survival
data, the log odds ratio and the log hazard ratio respectively (using normal approximations,
as explained in Spiegelhalter et al. [23]). For the sake of simplicity, in the following we
will treat the one-sample problem, although the proposed methodology could be extended
to the case of controlled trials, that also involves the issue of patients allocation. Here, we
are only interested in evaluating the total study dimension and we assume that the goal of
a phase II single-arm trial is to prove efficacy of a new experimental treatment. In practice,
data are collected gradually, starting from the inclusion date, during a follow-up period that
can last several months or years and the number of observations progressively increases until
the requirement of a predefined stopping rule is fulfilled. As in Spiegelhalter et al. [23], we
consider a Bayesian stopping rule based on the posterior probability that a treatment effect
exceeds a minimum relevant clinical threshold. Our first goal is to illustrate the main advan-
tage of sequential procedures, i.e. the fact that the average number of patients required in the
study is smaller than for non sequential criteria. Therefore, we compare the expected sample
sizes of sequential methods with the optimal sample sizes of non sequential methods in a
simulation study. Moreover, we consider the issue of sensitivity to the prior choice that was
addressed in Brutti and De Santis [9], Brutti et al. [10] and De Santis [13] by replacing a
single prior distribution with a class of priors. The goal is to assess the impact of prior infor-
mation on pre-posterior analysis and, consequently, on the choice of the optimal number of
observations. Here we extend the robust non sequential sample size determination criterion
in a sequential direction. The performance of the proposed sequential robust criterion is
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evaluated in terms of expected number of observations, that is compared via simulation to
the optimal sample sizes of (sequential and non sequential) non robust methods.

The outline of this paper is as follows. In Sect. 2.1 we describe the general set up and we
introduce notation. After pointing out the differences between the conditional approach and
the predictive approach, in Sect. 2.2 we provide details of the Bayesian stopping rule that
constitutes the starting point for the derivation of its robust version (Sect. 2.3). Comparisons
between the sample sizes obtained using sequential and non sequential, robust and non robust
criteria discussed in Sect. 2.4, are further illustrated by a simulation study (Sect. 3.3), based
on a real application set up regarding a phase II trial in which the continuous endpoint is
tumour shrinkage. Finally, Sect. 4 contains some concluding remarks.

2 Bayesian stopping rules for sequential trials

2.1 Preliminaries

Let us consider a phase II trial with the objective of evaluating the efficacy of a new exper-
imental treatment. Let us assume that the parameter of interest θ represents a real-valued
measure of efficacy, large values of θ denoting benefit of the new treatment. We assume that
groups of patients are sequentially accrued and evaluated for response. In order to terminate
the trial, a stopping rule is defined according to the study objective. Hence, instead of pre-
fixing an optimal sample size n∗ based on a specified criterion, we assume to observe k j

individuals at each step of the sequential trial. We denote by n j = k1 + · · · + k j the total
number of observations up to step j . For practical reasons, we fix a maximum total sample
size nmax . Without loss of generality in the following we take k j = 1, for all j = 1, . . . , J ,
i.e. we consider each patient sequentially. Let us denote by Yn j a continuous measure of
treatment response, based on the first n j patients. Furthermore, let yn j and f (yn j ; θ) be the
observed data and the corresponding likelihood function respectively, j = 1, . . . , J .

In a Bayesian perspective, we can formalize pre-experimental knowledge on the phenom-
enon of interest by considering a prior distribution on θ, πA(θ). Hence, from Bayes theorem,
the posterior distribution of θ given the jth observed response is

πA(θ |yn j ) ∝ πA(θ) · f (yn j ; θ). (1)

Using iteratively (1), we update the information on θ as each value yn j is observed, for
j = 1, . . . , J , and we use the posterior distribution to define a stopping rule as described in
the next section.

2.2 Sequential criterion

Let us first recall the sequential criterion illustrated in Spiegelhalter et al. [23]. Given the
observed data yn j , let PπA,n j (θ > δ|yn j ) be the posterior probability that θ exceeds a mini-
mally relevant clinical value δ. The treatment is declared successful if the experiment shows
sufficiently strong evidence that θ > δ, i.e. if the probability of interest is larger than a given
threshold γ ∈ (0, 1). In summary, we proceed according to the following stopping rule: if
the observed value yn j is such that

PπA,n j (θ > δ|yn j ) > γ (2)

the trial stops with success, otherwise the ( j + 1)th patient is enrolled. It may happen that
condition (2) is not fulfilled before the maximum preplanned number of patients nmax is
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reached; in this case, the trial is terminated without success. More formally, let us introduce
the random set

SπA (δ, γ ) = {
n j ∈ N : PπA,n j (θ > δ|Yn j ) > γ, j = 1, . . . , J

}
.

For a given analysis prior, it contains all the integer numbers such that the random posterior
probability of the event (θ > δ) exceeds γ . Now the random number of observations N is
defined as

N =
{

min SπA (δ, γ ) if SπA (δ, γ ) �= ∅
nmax otherwise

.

Since it is not possible to derive the distribution of N analytically, we resort to simulation
to provide numerical examples in Sect. 3.3. In particular, we are interested in comparing the
expected value of N with the optimal sample size n∗ that is obtained by the corresponding
non-sequential criterion introduced in Brutti et al. [10], i.e.

n∗ = min
{
n ∈ N : E

(
PπA (θ > δ|Yn)

)
> γ

}
, (3)

where E(·) is the expected value computed with respect to the distribution of Yn (see Sect. 2.2.1
for details on the distribution of the data). According to Spiegelhalter et al. [23], we expect that
the sequential procedure allows one to save observations with respect to the corresponding
non sequential criterion, that is E(N ) ≤ n∗ (see Sect. 2.4 for discussion).

2.2.1 Conditional approach or predictive approach?

Before introducing a robust version of the sequential criterion of Sect. 2.2, we discuss the
data drawing mechanism for simulating the distribution of N . Two alternative approaches
are briefly described below.

• Conditional approach. Data can be drawn sequentially from the sampling distribution
f (·; θD), where θD is a design target value for treatment effect. For instance, in superiority
trials, θD is chosen among those values of the parameter denoting an effective treatment
(i.e.values larger than δ).

• Predictive approach. Data can be drawn sequentially from the marginal distribution, i.e.

m D(yn) =
∫

�

f (yn; θ)πD(θ)dθ,

where the prior distribution πD on θ (design prior) accounts for additional uncertainty
involved in the choice of the design value θD . Notice that πD must be a proper distribution
in order to have m D well defined. Moreover, in the special case in which πD is a point-
mass distribution centred on θD , we retrieve the sampling distribution f (·; θD) and we
actually go back to the conditional approach.

We refer to De Santis [13], O’Hagan and Stevens [20], Wang and Gelfand [25] for more
detailed discussion on these approaches. Before ending this section we stress the importance
of the distinction between the analysis prior πA and the design prior πD . Although most of
Bayesian sample size determination methods make use of one prior distribution for computing
both the posterior distribution and the marginal distribution, in general πD and πA can be
differently specified, as argued by several authors (see for instance, De Santis [13], Etzioni
and Kadane [14], O’Hagan and Stevens [20], Tsutakawa [24], Wang and Gelfand [25]). Here,
we just recall the main difference between the two distributions, justified by their different
role in pre-posterior analysis. For further discussion we refer to Brutti et al. [10] and De
Santis [13] and the references therein.
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• The analysis prior (πA) models pre-experimental information on θ that one wants to
account for in determining the posterior distribution. One of the most common choices is
to base prior elicitation on previous studies results, but it is also possible to use the analy-
sis prior to formalize the subjective opinion of experts on the phenomenon of interest.
However, incorporation of “external” evidence on final inference has been often criti-
cized. The most straightforward solution is that of using noninformative analysis priors
(see, for instance Wang and Gelfand [25]). Alternatively, De Santis [13] suggests to resort
to a robust approach. Specifically, in next section we consider classes of priors instead
of single prior distributions for θ .

• The design prior distribution (πD) models uncertainty on the design value for θ and is
used to obtain the marginal predictive distribution for pre-posterior computations. Since
πD represents the design scenario we assume when planning the trial, it is convenient to
specify a prior that it is well concentrated on the values of θ representing the goal of the
trial, as suggested in Wang and Gelfand [25]. Consequently, in our setting, the design
prior should assign large probability to values of θ larger than δ.

In the present paper, we consider the predictive approach, based on two distinct prior
distributions.

2.3 Robust sequential criterion

The use of a robust Bayesian approach is motivated by one of the most criticized features of
Bayesian methods: the necessity of eliciting a specific prior distribution for posterior analysis.
In order to assess the impact of the choice of the prior distribution we proceed as follows: (i)
we replace the single prior by a class of distributions that gives a more flexible and realistic
representation of pre-experimental knowledge, (ii) we study changes in posterior inference
as the prior varies over the class. General principles of the robust Bayesian approach are
discussed in Berger [2,3], Berger et al. [5], Wasserman [27]. Applications to clinical trials
are in Carlin and Perez [11], Carlin and Sargent [12], Greenhouse and Wassernan [17], while
Brutti and De Santis [9], Brutti et al. [10], De Santis [13] are specifically centred on robust
sample size determination. The general idea is that if the range of variations of posterior
quantities of interest is small (as the prior varies in the class), then one can use the single
prior, relying on the robustness of the final conclusions. Conversely, if differences between the
various priors in the class are relevant, one should be aware of the sensitivity of the posterior
results to the prior choice and consequently refine prior knowledge. In our problem, we are
mainly concerned with robustness with respect to the analysis prior, πA. Therefore, in order
to take into account the uncertainty involved in its specification, we consider a class of prior
distributions �A instead of a single prior πA. In this way, we can derive a robust version of
the sequential criterion of Sect. 2.2 by extending the stopping rule based on condition (2) as
follows: we stop the trial at step j if the observed yn j is such that

inf
πA∈�A

PπA,n j (θ > δ|yn j ) > γ, j = 1, . . . , J, (4)

otherwise the recruitment proceeds to the ( j + 1)th patient and so on. The idea is that we
stop the trial at step j only if, as πA varies in �A, the minimal evidence in favor of the new
treatment (measured by infπA∈�A PπA,n j (θ > δ|yn j )) is sufficiently large. If criterion (4) is
never fulfilled the trial stopsafter nmax observations and the treatment is declared ineffective.
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Denote by S�A (δ, γ ) = {
n j ∈ N : infπA∈�A PπA,n j (θ > δ|Yn j ) > γ, j = 1, . . . , J

}
. Then

the random number of patients N� associated to the robust stopping rule is defined as

N� =
{

min S�A (δ, γ ) if S�A (δ, γ ) �= ∅
nmax otherwise

This robust sequential criterion yields sample sizes that, on average, are larger than those
determined with the non robust sequential procedure. Finally, let us recall that the robust
version of the non sequential criterion (3) is given by

n∗
� = min

{
n ∈ N : E

(
inf

πA∈�A
PπA (θ > δ|Yn)

)
> γ

}
, (5)

A specific choice for �A is the class of ε -contamination prior distributions, widely studied in
the literature on Bayesian robustness (see among others Berger and Berliner [4], Sivaganesan
and Berger [22]). It is defined as

�ε = {π : π(θ) = (1 − ε)πA + εq; q ∈ Q}
where πA is a base prior distribution, ε ∈ [0, 1] is the level of contamination and Q is a
conveniently chosen class of distributions. In the most general case, Q is the class of all dis-
tributions and can be regarded as a worst case, although other choices could be reasonable.
However, as discussed in Brutti et al. [10] in the specific context of sample size determination,
small differences with respect to the non robust case have been encountered when considering
other contaminant classes, such as unimodal distributions or unimodal symmetric distribu-
tions. In our specific set up this would make the comparison with the fixed prior approach
less interesting. From a technical point of view, in order to calculate the inferior bound of the
posterior probability involved in criterion (4), the results of Sivaganesan and Berger [22] can
be exploited, as discussed in details in Brutti et al. [10] with reference to the normal case.

2.4 Comparisons

In this section we compare the sample sizes obtained using sequential and non sequential,
robust and non robust criteria. The main relationships are summarized in Fig. 1. First of all,
let us focus on the vertical direction. As anticipated in Sect. 2.2, if we adopt a sequential
procedure the study dimension is on average smaller than the optimal non sequential sample
size, i.e.E(N ) ≤ n∗. A similar relationship holds for robust criteria, that is E(N�) ≤ n∗

� . Let
us look now at the rows of the table: the robust approach yields larger values of the sample
size, regardless of the criterion being sequential or not. Indeed, as discussed in Brutti et al.
[10], when planning a non sequential trial, using a robust approach we actually account for

Fig. 1 The chart summarizes the
relationships between sequential
and non sequential, robust and
non robust sample sizes
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additional uncertainty in the analysis prior specification and this implies an increase in the
number of required observations, that is n∗ ≤ n∗

� . Moreover, as the “amplitude” of the class
of priors increases, the optimal robust sample sizes n∗

� become larger and larger. As we will
show by simulation in Sect. 3 analogous considerations also apply to the sequential case, i.e.
E(N ) ≤ E(N�).

The previous remarks do not describe exhaustively all the possible comparisons displayed
in Fig. 1. It is interesting to investigate, in fact, the relationship between the non sequential non
robust sample size, n∗, and the expected number of observations required by the sequential
robust criterion, E(N�). Depending on the choice of the class of prior distributions, the latter
can even entail an advantage with respect to the former, in terms of observations saving. This
will be illustrated by the example of Sect. 3.3. In particular, working with ε-contamination
classes offers an interesting key to analyse this comparison: we can assess the maximal
amount of contamination ε so that E(N�) ≤ n∗, i.e. the maximal level of contamination
that makes the sequential robust approach convenient with respect to the non sequential non
robust approach. More formally, we define

K (ε) = n∗

E(N�)

and study its behaviour as a function of ε. Since, as argued before, E(N�) is larger for wider
classes of prior distributions �ε , K (ε) decreases for increasing levels of contamination ε (see
for instance Fig. 6 in Sect. 3.3). In particular, we are interested in determining the critical
level ε̃, such that K (ε̃) = 1 or, equivalently, E(N�) = n∗, i.e. the level of contamination that
makes the two criteria equivalent in terms of required number of patients. In summary, if
ε < ε̃, then K (ε) > 1 and we conclude that using a sequential procedure allows us to keep
the average required number of observations smaller than n∗, even if we are introducing in
the analysis prior specification a certain amount of uncertainty, quantified by ε.

3 The case of normal endpoints

3.1 Results for normal endpoints

In this section we explicit the results of Sect. 2.1 referring to the case of normal likelihoods.
We suppose that the measure of treatment efficacy Yn j , based on the first n j patients, is
normally distributed with mean θ and known variance σ 2/n j . Moreover, for computational
convenience, the most natural choice for the analysis prior πA is a conjugate prior distribution
with respect to the normal model. Hence, we assume for θ a normal density of mean θA and
known variance σ 2/n A. Following the notation of Spiegelhalter et al. [23], we refer to n A as
to the prior sample size , i.e. the weight of prior information. Then the posterior distribution
of Eq. (1) is

πA(θ |yn j ) = N
(
θ

∣
∣En j , Vn j

)
, (6)

where N (·|a, b) denotes a normal density of mean a and variance b and

En j = n AθA + n j yn j

n A + n j
and Vn j = σ 2

n A + n j
,

are the posterior expectation and the posterior variance of θ . Consequently, the probability
involved in condition (2) is simply given by
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PπA,n j (θ > δ|yn j ) = 1 − 


(
δ − En j√

Vn j

)

(7)

where 
(·) denotes the cumulative distribution function (c.d.f.) of the standard Normal
random variable.

Finally, as discussed in Sect. 2.2.1, we need to specify a design prior to model uncertainty
on the design value for θ . For the sake of simplicity, we adopt a normal design prior of mean
θD and prior sample size nD . From standard results on conjugate analysis, this yields as a
marginal distribution of the data m D(·) = N (·|θD, σ 2(n−1 + n−1

D )).

3.2 Example: monitoring of a phase II cancer trial

In this section, we consider an example based on Wason et al. [26], where the primary con-
tinuous endpoint of a two-stage phase II cancer trial is the measurement of tumour shrinkage.
Our purpose is to illustrate the methodology described in Sect. 3, using the set up of Wason
et al. [26] as a basis to fix sensible values for the design parameters and for the required
prior assumptions. The primary endpoint is the percentage decrease in the sum of lesion
diameters, that is assumed to be normally distributed with mean θ and known variance σ 2.
A positive value of the endpoint represents shrinkage in tumour size: the larger the percentage
reduction, the more effective the treatment. The minimally clinical relevant reduction δ is set
equal to 10 (based on the alternative hypothesis of the original example).

We start considering a fictitious dataset of observed responses for 200 patients and we
assume the data to be collected sequentially. In practice, the dataset was actually simulated
under a relatively enthusiastic scenario, by setting θD = 12, σ 2 = 20, nD = 10. Note that
this is the same scenario used in the simulation study of the next section. Moreover, we
elicit a normal prior distribution centered on θA = 3, corresponding to an almost negligible
shrinkage. In order to have a quite flat prior density, we assume a prior sample size as small
as n A = 1. This analysis prior expresses scepticism about treatment benefit: specifically
it assigns 25 % chance to negative values of the reduction, i.e. increase in tumour mass, as
represented by the black area in Fig. 2. On the other hand, a priori the probability that θ

exceeds δ, highlighted in grey in Fig. 2, is pretty small and equal to 0.06. Finally, the required
threshold on the posterior probability scale is equal to γ = 0.8.
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Fig. 2 Analysis (continuous curve) and design (dashed curve) prior distributions
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Fig. 3 Posterior probability PπA,n j (θ > δ|yn j ) (circles) and inferior bound of the posterior probability
infπA∈�A PπA,n j (θ > δ|yn j ) (squares) w.r.t. the sequentially increasing number of patients (up to the first
50 patients of the dataset) for a ε = 0.1, b ε = 0.3, c ε = 0.5

Now we can proceed as described in Sect. 2.2: the trial stops as soon as we have evidence
of efficacy, otherwise we continue up to the maximum number of patients, in this case the
total size of our fictitious dataset, nmax = 200. Results are presented in Fig. 3: the posterior
probability that θ > δ (black circles) is sequentially updated until it exceeds the threshold
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Fig. 4 Predictive expected posterior probability as a function of the sample size using both the non robust
criterion (circles) and the robust criterion (squares) respectively, with �ε , for a ε = 0.1, b ε = 0.3, c ε = 0.5
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γ , that is after the 4th patient is examined. Since condition (2) is fulfilled, the trial reaches
success and is terminated. Adopting the robust version (4) of the sequential criterion, using
a class �ε with ε = (0.1, 0.3, 0.5), the required number of patients to satisfy the stopping
rule increases to (9, 10, 13) respectively, as shown in the three panels of Fig. 3 from top to
bottom.

In Fig. 4 we display the predictive expectation of the posterior probability involved in the
non sequential criterion defined by (3) as a function of n. Given a threshold γ = 0.8, we
obtain n∗ = 22. Therefore, in this case the sequentially selected sample size (3) is smaller
than n∗. Moreover, as expected, with the robust approach the required number of observa-
tions increases: in this example n∗

� = (109, 197) for ε = (0.1, 0.3) and the optimal robust
sample size even exceeds 200 units for ε = 0.5. In the next section we show by simula-
tion that these relationships hold in general, regardless of the criterion being sequential or
not.

3.3 Simulation study

In this section we compare the sample sizes obtained using sequential and non sequential,
robust and non robust criteria. We consider a simulation study under the setting described
in Sect. 3.2. As pointed out in Sect. 2.2, we adopt a predictive approach and the data are
drawn from the marginal distribution m D . First of all we need to specify a design prior:
for illustrative purposes we consider a normal density with θD = 12, σ 2 = 20, nD = 10,
displayed in Fig. 2 together with the analysis prior. Hence, we simulate a large number of
datasets, say M = 10000, and for each given dataset we apply the previously described
sequential procedure. This yields M simulated values of N and N� depending on the stop-
ping rule (2) and on its robust version (4) respectively. The simulated distributions of the
random variables N (light grey) and N� (dark grey) are represented in Fig. 5, for dif-
ferent choices of the level of contamination. As expected, we have E(N ) < E(N�): for
instance, when ε = 0.1 the expected value is E(N ) = 7 for the non robust criterion
and E(N�) = 28 for the robust criterion. Moreover, we notice that, by increasing the
level of contamination ε, the histogram of N� is shifted towards larger values, and we
consequently obtain larger and larger values of E(N�), as reported in Table 1. We also
notice that, as ε increases, the variability of the distribution is inflated. Hence the wider
�ε (namely the larger its contamination level ε), the larger the value of E(N�) is. As
discussed in Sect. 2.4, this behaviour is consistent with the result highlighted in Brutti et
al. [10] for non sequential criteria. Table 1 also compares the values of E(N�) with the
corresponding optimal non sequential sample sizes n∗

� . Notice that, to be fair, we have con-
sidered the same maximum number of observations, in this case nmax = 200, for both
criteria.

So far we have retrieved the main four relationships summarized in Fig. 1. The last but the
most interesting comparison is the one between the non sequential non robust sample size,
n∗, and the sequential robust sample size, E(N�). Figure 6 shows the behaviour of K (ε) as
a function of ε: for those values of ε such that K (ε) > 1, the robust sequential sample size
is smaller than n∗, whereas for increasingly wide classes �ε , K (ε) decreases up to values
smaller than 1. Now, we are interested in determining the critical level of contamination ε̃,
that is the amount of contamination such that E(N�) and n∗ coincide. Here we have ε̃ = 0.06:
this value determines the largest class of ε-contaminated prior distributions yielding a robust
(average) sequential sample size as small as the non robust non sequential one. In practice,
this means that, for levels of contamination smaller than ε̃, working sequentially we can afford
a robust procedure, that is to say we pay the same price in terms of required observations.
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Fig. 5 The simulated distribution of N (light grey) is compared with the simulated distribution of N� (dark
grey), with � = �ε for several choices of ε

Table 1 Optimal sample sizes for increasing levels of contamination using sequential and non sequential
robust criteria, with θD = 4, nD = 8, σ 2 = 4, θA = 2.5, n A = 10, γ = 0.8

ε 0 0.1 0.3 0.5 0.7 0.9
E(N�) 7 28 42 52 60 74
n∗
� 22 109 197 >200 >200 >200

In other words, with the sequential approach the additional uncertainty introduced in the
prior, until the level ε̃, that does not imply a larger number of observations with respect to
the non sequential single-prior approach. This provides an example of the idea anticipated
in Sect. 2.4: when the class of priors �ε is sufficiently small, the robust sequential criterion
allows one to save observations (on average) with respect to the non robust and non sequential
optimal sample size.
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Fig. 6 K (ε) is plotted with respect to ε. The critical level of contamination is ε̃ = 0.06

4 Conclusions

One of the major advantages of Bayesian methods with respect to standard frequentist meth-
ods is its flexibility. As discussed in Berry et al. [8], “Bayesian inferences are flexible in that
they can be updated continually as data accumulate. For example, the reason for stopping
a trial affects frequentist measures but not Bayesian inferences”. This technical feature of
the Bayesian approach, a consequence of its respect of the likelihood principle, has a strong
impact on the practical application to the actual way of conducting a trial. The Authors asser-
tion sounds quite definitive: “In a Bayesian approach, a sample size need not be chosen in
advance; before a trial, the only decision required is whether or not to start it.” But they also
warn that flexibility does not imply a total lack of constraints. Some kinds of deviations from
the original plan are possible: the sample size can be adjusted, the drugs or devices involved
can be modified, the definition of the patient population can change, etc. Such modifications
can result in weaker conclusions, unless they are prespecified, as the Authors recommend,
but “Bayesian analyses may still be possible in situations where frequentist analyses are
not”.

In this paper we have focused on the specific aspect of sample size, showing how a sequen-
tial procedure allows early termination only when there is evidence of treatment efficacy and
how it enables the experimenter to reach an earlier conclusion than in a typical study with
fixed sample size. This is very natural in a Bayesian context, since updating information on
the parameter of interest as patients are enrolled, treated and evaluated for response, just
translates in a sequential application of Bayes theorem and in a straightforward condition on
a quantity of interest to be checked. An interesting extension of the proposed methodology
could be a slight complication of the stopping rule, to include the possibility of early stop-
ping for futility. This would allow to anticipate trial termination in case the ongoing results
indicate a negative course that cannot be reverted even with extremely positive outcomes (see
Spiegelhalter et al. [23] for details).

The main focus of our work is the introduction of a sequential procedure adopting a
robust approach, in order to control the impact of the prior specification on the conclusions
in terms of the required number of observations. However, the preplanned optimal sample
size turns out to be inflated with respect to the non robust one and it sometimes becomes
huge and therefore unreasonable (see Brutti et al. [10] for discussion). Here it comes the
advantage of using a sequential procedure that, at the same time, allows one to deal with the
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issue of robustness, keeping the required number of observations feasible, indeed sparing
experimental units with respect to the non sequential non robust method.

In future research, we plan to address the unknown variance case for normal endpoints.
Moreover, it would be interesting, and particularly relevant for real applications, to extend
this methodology to binary endpoints that typically characterize phase II clinical trials.
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