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Abstract In this paper, we have treated the problem of estimating some population central
moments under distribution-free setting. Uniformly minimum variance unbiased estimators
for some population central moments have been derived. Some examples of unbiased esti-
mators of central moments have been given under various sampling designs such as simple
random sampling with replacement (srsr) or without replacement (srs), probability propor-
tional to size with replacement (ppsr) and probability graduated variable proportional to size
without replacement (pgvps). An optimal unbiased estimator of the third population central
moment is proposed and extended to some real situations. Some optimal unbiased estimators
of the fourth population central moment are given. Several optimal unbiased estimators of the
variance of the “sample quasivariance estimator” are identified. Finally, computer programs
in R implementing all of the estimators are given.

Keywords Distribution free setting · Optimal unbiased estimators ·
Population central moments · R · Stratified sampling

1 Introduction

Suppose that we wish to study the distribution of a random variable. A good knowledge of the
distribution can be obtained by knowing its first two moments, i.e., the mean and variance.
If we have a random sample from the variable then the unbiased estimators for the mean and
variance are well known and can be found in most statistics text books.

However, there are many situations that require moments of higher orders and not just the
first two. For example, higher order moments are required in: signal classification [53], testing
homogeneity among clustered data [25], estimating equations with nuisance parameters [64],
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40 M. Ruiz Espejo et al.

generalized calibration approach for estimating variance [52], mismeasured regressor errors-
in-variables models [12], empirical analysis of earnings and employment risk [15], Monte
Carlo algorithms for semiparametric linear mixed models [24], modeling of the distribution of
raindrop diameters [6], tests of multinormality based on location vectors and scatter matrices
[27], non-data-aided signal to noise ratio estimation [30], structural equation modeling [48],
parameter estimation for INAR processes [50], portfolio selection [21], analysis of student
satisfaction towards university courses [35], linear panel data models with potential existence
of time effects [62], estimation for linear mixed models [63], and estimation in linear mixed
models for longitudinal data under linear restricted conditions [29].

However, there has not been much research to find unbiased estimators for moments or
central moments. The work that we are aware of are Dwyer [11], Halmos [18], de Lucia [8],
Gupta [16,17], Mikhail and Malik [34], Herzel [23], Heffernan [22], Rose and Smith [44],
Singh et al. [51] and Kadilar et al. [26]. Most of these papers are old. The recent ones either
do not provide unbiased estimators or are based on complicated concepts like h-statistics and
U -statistics, which can be computationally expensive.

For instance, Herzel [23] gives an unbiased estimator for a general symmetric function
under simple random sampling. Heffernan [22] gives a general estimator for the r th central
moment. In the words of Heffernan [22], the estimator involves a sum that “extends over all
n!/(n − r)! permutations (i1, . . . , ir ) of r distinct integers chosen from {1, . . . , n}”. This can
be computationally expensive if n is large.

In practice, general formulas are not very useful. Most practitioners may not have the
mathematical depth to understand or use the general estimators given by Herzel [23], Hef-
fernan [22] and others. We are not sure if general estimators can be implemented in some
software. In any case, Herzel [23] and Heffernan [22] do not appear to have implemented
their estimators in any software. Such implementations could have given their estimators
some practical appeal.

Most situations in practice only require estimators for the first four central moments. So, it
is much more useful to have explicit formulas for unbiased estimators for the first four central
moments. Unbiased estimators for the second central moment are given by Theorem 2.1. The
estimators given by this theorem apply for ppsr and pgvps designs incorporating stratification,
but the estimators can be extended easily for other designs too. Unbiased estimators for the
third central moment are given by Theorems 3.1 and 3.2. The estimators given by these
theorems apply for srsr designs incorporating stratification, but the estimators can be extended
easily for other designs too. Unbiased estimators for the fourth central moment are given by
Theorem 4.1. The estimators given by this theorem apply for srsr designs, but the estimators
can be extended easily for other designs too.

As seen later, apart from being more useful, the estimators given by Theorems 2.1, 3.1, 3.2
and 4.1 are much simpler than those given by Herzel [23] and Heffernan [22]. Hence, they can
be readily used by practitioners of sampling designs. To aid the practical use, we have given
simple functions in R [40] for computing the unbiased estimators given by Theorems 2.1,
3.1, 3.2 and 4.1, see Sect. 5. We have chosen R to write these functions because, unlike other
statistical software, it is freely downloadable from the Internet (http://www.r-project.org).
The functions could have wide applicability because they are simple and easy to implement
on any platform and full control is given to the user as far as accuracy and stability of the
results.

There are several contributed packages in R for sampling designs. The ones we are aware
of are: SamplingStrata [3]; spsurvey [28]; survey [31]; SunterSampling [2]; sampling-
VarEst [13]; SDaA [60]; lavaan.survey [37]; odprism [59]; osDesign [19]; stratification
[1]; StatMatch [10]; RDS [36]; endorse [49]; list [5]; SvyNom [14]; samplingbook [32];
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Optimal unbiased estimation 41

TeachingSampling [43]; sampling [57]; reweight [7]. None of these packages appear to
give functions for unbiased estimation of central moments. The functions given in Sect. 5
appear to be the first of their kind.

Another novelty of our work relates to the pgvps sampling design introduced by
Sánchezsps Crespo [47]. The properties of this sampling design have not been followed
up in the literature. Sánchezsps Crespo [47] illustrated importance of the pgvps sampling
design to areas such as “printing with or without discount in the ballot box”. We derive here
for the first time unbiased estimators of central moments under pgvps.

An estimator̂θ = ̂θ(x1, x2, . . . , xn) is unbiased for the population parameter θ if and only
if

EF
(

̂θ; θ
) = θ

for all distribution functions F for which the expectation, EF (̂θ; θ), exists. Moreover, the
unbiased estimator ̂θ = ̂θ(x1, x2, . . . , xn) for θ is of minimum variance uniformly if and
only if

VF
(

̂θ; θ
) ≤ VF (e; θ)

for all unbiased estimators e = e(x1, x2, . . . , xn) and for all distribution functions F for
which VF (e; θ), the variance of e for estimating θ , exists. The terms “for all distribu-
tion function F” refer to “distribution-free setting”, i.e., the sample (x1, x2, . . . , xn) is an
n-dimensional real valued vector from (X1, X2, . . . , Xn), an n-dimensional random variable,
with Xi and X j (for i �= j) independent and identically distributed random variables from a
common and unknown (distribution-free) function F .

In this paper, we provide a general method for unbiased estimation of population central
moments. The suggested method provides an unbiased and optimal estimator of the ‘popu-
lation variance’ (population central moment of order two) for a distribution-free setting.

For the third population central moment, there is an unbiased estimator whose variance
decreases asymptotically if the sample size increases to infinity (i.e., if n → ∞). This
estimator is also optimal under distribution-free unbiased setting (see Theorem 3.1). Opti-
mal unbiased estimators of the fourth population central moment are also obtained under
distribution-free setting (see Theorem 4.1).

Some results have been extended further to various sampling designs for finite populations.
When the complete sample is not yet available for obtaining ‘optimal unbiased estima-

tors of population central moments’ (OUEPCM), we can estimate them unbiasedly (see
Theorems 3.1 and 4.1) if we know the successive ‘optimal unbiased estimators of the popu-
lation noncentral moments’ (OUEPNCM). So, when the complete sample data are not yet at
hand, the population central moments describing dispersion, asymmetry and skewness can
be estimated from the available OUEPNCM. The origin of this research was the study of the
distribution of Spanish family incomes.

Bellhouse [4], Stafford and Bellhouse [54,55] and Rose and Smith [44] have developed
computer algebra systems to compute expected values under any unistage sampling and their
unbiased estimators. It is not clear whether their computer algebra systems can be used to
compute unbiased estimators for moments and central moments of any order. Furthermore,
their systems are implemented in Mathematica [61], a commercial package. Most practi-
tioners of sampling design may not have or may not be familiar with Mathematica. They
would prefer having an explicit mathematical formula that can be readily implemented in a
pocket calculator or a non-commercial package like R, see Sect. 5.
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2 Population variance

Let F be the distribution function of a random variable X . The population variance of X is
then defined by

σ 2 = μ2 =
∞
∫

−∞
(x − μ)2d F(x) (< ∞),

where

μ = α1 =
∞
∫

−∞
xd F(x)

is the population mean.
In general,

αk =
∞
∫

−∞
xkd F(x) and μk =

∞
∫

−∞
(x − μ)kd F(x),

where k being a positive integer. Here and throughout, the integration is with respect to an
underlying superpopulation model.

Lemma 2.1 If α̂k and ̂V (̂αk) are, respectively, unbiased estimators of αk and V (̂αk), an
unbiased estimator of the population variance μ2 is

μ̂2 = α̂2 − α̂2
1 + ̂V (̂α1) .

Proof As E (̂α2) = α2, E (̂α2
1) = α2

1 + V (̂α1) and E{̂V (̂α1)} = V (̂α1):

E (μ̂2) = α2 − {

α2
1 + V (̂α1)

} + V (̂α1) = α2 − α2
1 = μ2.

Hence, the proof. ��
Example 2.1 For a simple random sample of size n drawn with replacement (srsr), we
consider

α̂k = 1

n

n
∑

i=1

xk
i ,

and

μ̂2 = (

α̂2 − α̂2
1

) + ̂V (̂α1) = n − 1

n
s2 + μ̂2

n
,

where μ̂2 = s2 is the sample quasivariance. The estimator

s2 = 1

n − 1

n
∑

i=1

(xi − α̂1)
2

is also unbiased and optimal under a distribution-free setting, or it is an UMVU estimator of
σ 2 (see [65, page 150]). We now consider other sampling designs.
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Optimal unbiased estimation 43

Example 2.2 Under probability proportional to size with replacement (ppsr) design of a
finite population (see [20]), we deduce:

α̂k =
n

∑

i=1

xk
i

nN Pi
and ̂V (̂αk) = 1

n(n − 1)N 2

n
∑

i=1

(

xk
i

Pi
− N α̂k

)2

,

where
∑N

i=1 Pi = 1, and N (< ∞) is the finite population size.
The estimator of Lemma 2.1, μ̂2 = α̂2 − α̂2

1 + ̂V (̂α1), generalizes the srsr design for
Pi = 1/N (i = 1, 2, . . . , n); see Example 2.1.

Example 2.3 Under probability graduated variable proportional to size without replacement
(pgvps) design (see [47]) of a finite population, we deduce:

α̂k =
n

∑

i=1

xk
i

nN Pi
,

where Pi = Mi/M ; Mi and M are positive natural numbers such that

N
∑

i=1

Pi = 1.

The unbiased variance estimator of α̂k is given by

̂V (̂αk) = M − n

M

1

n(n − 1)N 2

n
∑

i=1

(

xk
i

Pi
− N α̂k

)2

.

So, from Lemma 2.1, the respective unbiased estimator μ̂2 can be obtained. This result reduces
to the case of simple random sampling without replacement (srs) design, for Pi = 1/N and
M = N .

Theorem 2.1 Under ppsr or pgvps designs of size nh independently in each stratum h, an
unbiased estimator of μ2 is:

μ̂2 =
L

∑

h=1

Wh α̂2h −
(

L
∑

h=1

Wh α̂1h

)2

+
L

∑

h=1

W 2
h
̂V (̂α1h) ,

where Wh = Nh/N is the relative size of stratum h (h = 1, 2, . . . , L), and α̂kh and ̂V (̂α1h) are
unbiased estimators of the noncentral moment of order k in the stratum h, and, respectively,
for the variance V (̂α1h), for a common sampling design in each stratum h.
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The proof is immediate from Lemma 2.1.

Remark 2.1 For srs design in each stratum it is obvious from Theorem 2.1 that

μ̂2 =
L

∑

h=1

Wh

nh

nh
∑

i=1

(xhi − α̂1)
2 + ̂V (̂α1)

=
L

∑

h=1

Wh

nh

nh
∑

i=1

x2
hi − α̂2

1 + ̂V (̂α1) .

This result is due to Rao [42]. We denote α̂1 = xst = ∑L
h=1 Wh α̂1h , α̂1h = xh being the

sample mean in the stratum h. The Rao’s estimator, μ̂2, is also unbiased for srsr or srs designs
in each stratum, where the selections are independent in different strata.

Remark 2.2 For a proportional allocation (nh = nWh, h = 1, 2, . . . , L) with srsr or srs
designs, we have the unbiased estimator

μ̂2 = σ 2
s + ̂V (xst ) ,

where

σ 2
s = 1

n

L
∑

h=1

nh
∑

i=1

(xhi − xst )
2 and xst = 1

n

L
∑

h=1

nh
∑

i=1

xhi

are, respectively, the sample variance and the sample mean.

Remark 2.3 In case of estimating a ‘population proportion’ P in stratified sampling, with an
srsr or srs design independently in each stratum, the random variable X takes only ‘zero’
or ‘one’. We deduce the unbiased estimator

μ̂2 = xst (1 − xst ) + ̂V (xst ) .

3 Population central moment of order three

In this section, we consider estimation of μ3.

Lemma 3.1 If ω̂ denotes an unbiased estimator of ω (see, for example, [45], an unbiased
estimator of μ3 is

μ̂3 = α̂3 − 3α̂2α̂1 + 3̂Cov (̂α2, α̂1) + 2α̂3
1

−2α̂1̂V (̂α1) − 2̂Cov
(

α̂2
1, α̂1

) + 2̂Cov
{

α̂1, ̂V (̂α1)
}

.

Proof We have

E (̂α3) = α3,

E (̂α2α̂1) = α2α1 + Cov (̂α2, α̂1) ,

E
(

α̂3
1

) = E
(

α̂2
1 α̂1

)

= E
(

α̂2
1

)

α1 + Cov
(

α̂2
1, α̂1

)

= {

α2
1 + V (̂α1)

}

α1 + Cov
(

α̂2
1, α̂1

)

= α3
1 + α1V (̂α1) + Cov

(

α̂2
1, α̂1

)

,
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and

E
{

α̂1̂V (̂α1)
} = α1V (̂α1) + Cov

{

α̂1, ̂V (̂α1)
}

.

So,

E (μ̂3) = α3 − 3α2α1 + 2α3
1 = μ3.

Hence, the proof. ��
Theorem 3.1 For srsr designs of size n, if

α̂k = 1

n

n
∑

i=1

xk
i (k = 1, 2, 3) and − ∞ < μ3 < ∞,

then, the optimal unbiased estimator of μ3 under distribution-free setting is

μ̂3 = n2

n2 − 3n + 2

(

α̂3 − 3α̂2α̂1 + 2α̂3
1

)

.

Proof We have:

̂Cov (̂α2, α̂1) =
̂(α3 − α2α1)

n
= α̂3

n
− α̂2α̂1 − ̂Cov (̂α2, α̂1)

n

which implies

̂Cov (̂α2, α̂1) = α̂3 − α̂2α̂1

n − 1
.

Further,

̂Cov
(

α̂2
1, α̂1

) = ̂Cov

(

α̂2 − n − 1

n
s2, α̂1

)

= ̂Cov (̂α2, α̂1) − n − 1

n
̂Cov

(

s2, α̂1
)

= α̂3 − α̂2α̂1

n − 1
− (n − 1) μ̂3

n2 ,

and

̂Cov
{

α̂1, ̂V (̂α1)
} = ̂Cov

(

α̂1,
s2

n

)

= μ̂3

n2 .

From Lemma 3.1:

μ̂3 = α̂3 − 3α̂2α̂1 + 3
α̂3 − α̂2α̂1

n − 1
+ 2α̂3

1

−2α̂1
α̂2 − α̂2

1

n − 1
− 2

{

α̂3 − α̂2α̂1

n − 1
− (n − 1)μ̂3

n2

}

+ 2
μ̂3

n2 ,

which implies

μ̂3 = n2

n2 − 3n + 2

(

α̂3 − 3α̂2α̂1 + 2α̂3
1

)

.

Moreover, this unbiased estimator, μ̂3, is invariant under permutations of the sample val-
ues (x1, x2, . . . , xn). So, μ̂3 is optimal (UMVU estimator) for the parameter μ3 under
distribution-free setting (see [65, page 150]). Hence, the proof. ��
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Remark 3.1 The estimator, μ̂3, is unbiased (as it has been stated in Theorem 3.1) and con-
sistent for μ3 as α̂k converges in probability to αk (k = 1, 2, 3). As n → ∞,

μ̂3 → α3 − 3α2α1 + 2α3
1 = μ3,

i.e., μ̂3 converges in probability to μ3. In Theorem 3.1, the estimator, μ̂3, has a variance
which converges to ‘zero’ as n → ∞. Following Olkin [38], another consistent estimator of
μ3 is:

m3 = α̂3 − 3α̂2α̂1 + 2α̂3
1.

Taking expectations, we obtain

E (m3;μ3) = μ3 + 2 − 3n

n2 μ3

which shows that m3 is biased. For estimating μ3, the bias of m3 is given by

B (m3;μ3) = E (m3;μ3) − μ3 = 2 − 3n

n2 μ3,

which converges to ‘zero’ as n → ∞. So, m3 is asymptotically unbiased for μ3.

Remark 3.2 According to Dodge and Rousson [9], another expression of an optimal unbiased
estimator (under distribution-free setting and for estimating μ3) is given by

M3 = n
∑n

i=1 (xi − α̂1)
3

(n − 1)(n − 2)
= n2m3

n2 − 3n + 2
,

which coincides with our estimator μ̂3 deduced in Theorem 3.1.

Theorem 3.2 The unbiased estimator μ̂3 (in Lemma 3.1) is also valid for stratified sampling
with independent srsr designs in each stratum, where:

α̂k =
L

∑

h=1

Wh α̂kh (k = 1, 2, 3) and α̂kh = 1

nh

nh
∑

i=1

xk
hi (h = 1, 2, . . . , L),

̂V (̂α1) =
L

∑

h=1

W 2
h

1

nh − 1

(

α̂2h − α̂2
1h

)

,

̂Cov (̂α2, α̂1) =
L

∑

h=1

W 2
h

1

nh − 1
(̂α3h − α̂2h α̂1h) ,

̂Cov
(

α̂2
1, α̂1

) =
L

∑

h=1

W 3
h

{

α̂3h − α̂2h α̂1h

nh − 1
− (nh − 1) μ̂3h

n2
h

}

+ 2
L−1
∑

h=1

L
∑

g>h

Wh Wg

{

Wh
1

nh − 1
α̂1g

(

α̂2h − α̂2
1h

)

+ Wg
1

ng − 1
α̂1h

(

α̂2g − α̂2
1g

)

}
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and

̂Cov
{

α̂1, ̂V (̂α1)
} =

L
∑

h=1

W 3
h

1

nh − 1

μ̂3h

nh
,

where

μ̂3h = n2
h

n2
h − 3nh + 2

(

α̂3h − 3α̂2h α̂1h + 2α̂3
1h

) = n2
hm3h

n2
h − 3nh + 2

=
nh

nh
∑

i=1
(xhi − α̂1h)3

(nh − 1)(nh − 2)
= M3h .

Proof The stochastic independence (of the realized sampling in two different strata) provides

̂V (̂α1) =
L

∑

h=1

W 2
h

s2
h

nh
=

L
∑

h=1

W 2
h

1

nh − 1

(

α̂2h − α̂2
1h

)

,

̂Cov (̂α2, α̂1) =
L

∑

h=1

W 2
h
̂Cov (̂α2h, α̂1h) =

L
∑

h=1

W 2
h

1

nh − 1
(̂α3h − α̂2h α̂1h) ,

and

̂Cov
(

α̂2
1, α̂1

) = ̂Cov

⎧

⎨

⎩

(

L
∑

h=1

Wh α̂1h

)2

,

L
∑

g=1

Wgα̂1g

⎫

⎬

⎭

= ̂Cov

⎛

⎝

L
∑

h=1

W 2
h α̂2

1h +
L

∑

h=1

L
∑

g �=h

Wh Wgα̂1h α̂1g,

L
∑

k=1

Wk α̂1k

⎞

⎠

= ̂Cov

(

L
∑

h=1

W 2
h α̂2

1h,

L
∑

k=1

Wk α̂1k

)

+̂Cov

⎛

⎝

L
∑

h=1

L
∑

g �=h

Wh Wgα̂1h α̂1g,

L
∑

k=1

Wk α̂1k

⎞

⎠ ,

where

̂Cov

(

L
∑

h=1

W 2
h α̂2

1h,

L
∑

k=1

Wk α̂1k

)

=
L

∑

h=1

W 3
h
̂Cov

(

α̂2
1h, α̂1h

)

=
L

∑

h=1

W 3
h

{

̂Cov (̂α2h, α̂1h) − ̂Cov

(

nh − 1

nh
s2

h , α̂1h

)}

=
L

∑

h=1

W 3
h

{

α̂3h − α̂2h α̂1h

nh − 1
− (nh − 1) μ̂3h

n2
h

}
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and

̂Cov

⎛

⎝

L
∑

h=1

L
∑

g �=h

Wh Wgα̂1h α̂1g,

L
∑

k=1

Wk α̂1k

⎞

⎠

= 2̂Cov

⎛

⎝

L−1
∑

h=1

L
∑

g>h

Wh Wgα̂1h α̂1g,

L
∑

k=1

Wk α̂1k

⎞

⎠

= 2
L−1
∑

h=1

L
∑

g>h

Wh Wg

{

WĥCov
(

α̂1h α̂1g, α̂1h
) + WĝCov

(

α̂1h α̂1g, α̂1g
)

}

.

We note from Raj [41, Theorem I.8] or alternatively Tucker [58] that

̂Cov
(

α̂1h α̂1g, α̂1h
) = ̂E

{

Cov
(

α̂1h α̂1g, α̂1h |̂α1g
)}

+̂Cov
{

E
(

α̂1h α̂1g |̂α1g
)

, E
(

α̂1h |̂α1g
)}

= ̂E
{

α̂1gV (̂α1h)
}

= ̂

{

α1gV (̂α1h)
} = α̂1g ̂V (̂α1h)

= α̂1g
1

nh − 1

(

α̂2h − α̂2
1h

)

and

̂Cov
(

α̂1h α̂1g, α̂1g
) = α̂1h

1

ng − 1

(

α̂2g − α̂2
1g

)

.

Then,

̂Cov
{

α̂1, ̂V (̂α1)
} = ̂Cov

⎛

⎝

L
∑

h=1

Wh α̂1h,

L
∑

g=1

W 2
g

s2
g

ng

⎞

⎠

= ̂Cov

⎧

⎨

⎩

L
∑

h=1

Wh α̂1h,

L
∑

g=1

W 2
g

1

ng − 1

(

α̂2g − α̂2
1g

)

⎫

⎬

⎭

=
L

∑

h=1

W 3
h

1

nh − 1

{

̂Cov (̂α1h, α̂2h) − ̂Cov
(

α̂1h, α̂2
1h

)

}

=
L

∑

h=1

W 3
h

μ̂3h

n2
h

,

where

̂Cov (̂α1h, α̂2h) = α̂3h − α̂2h α̂1h

nh − 1

and

̂Cov
(

α̂1h, α̂2
1h

) = α̂3h − α̂2h α̂1h

nh − 1
− (nh − 1) μ̂3h

n2
h

.
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So, from Theorem 3.1, we have

μ̂3h = n2
h

n2
h − 3nh + 2

(

α̂3h − 3α̂2h α̂1h + 2α̂3
1h

)

.

Hence, the proof. ��

4 Population central moment of order four

Our general method (for obtaining optimal unbiased estimators for the population variance,
σ 2, or for the population central moment of order three) is also useful in investigating UMVU
estimators for the fourth population central moment. Some relevant references in this context
are Polo [39], Ruiz Espejo and Ruiz Espejo [46] and Maritz [33].

The fourth population central moment is defined by

μ4 = α4 − 4α3α1 + 6α2α
2
1 − 3α4

1 =
∞
∫

−∞
(x − μ)4d F(x) (< ∞), (1)

where μ = α1 is the population mean, and F(x) is the distribution function of the random
variable X .

The key result of this section is the UMVU estimator of the parameter μ4 in (1) under
a distribution-free setting and a concrete sampling design. An application is provided for
variance estimation of the ‘sample quasivariance’ s2 defined by

s2 = n

n − 1

(

α̂2 − α̂2
1

)

.

Lemma 4.1 If ω̂ denotes an unbiased estimator of ω then an unbiased estimator ofμ4 (for
any sampling design) is

μ̂4 = α̂4 − 4α̂3α̂1 + 4̂Cov (̂α3, α̂1) + 6α̂2
̂α2

1 − 6̂V (̂α2)

+6̂Cov
(

α̂2, s2) − 3α̂4
1 + 3̂V

(

α̂2
1

) + 3 ̂

[{V (̂α1)}2] + 6 ̂

{

α2
1 V (̂α1)

}

.

Proof We have

E (̂α4) = α4 (2)

and

E (−4α̂3α̂1) = −4E (̂α3α̂1) = −4 {Cov (̂α3, α̂1) + α3α1}
which implies

̂(−4α3α1) = −4 ̂(α3α1) = −4
{

α̂3α̂1 − ̂Cov (̂α3, α̂1)
}

. (3)

Also,

E
(

α̂2
̂α2

1

)

= E
{

α̂2
(

α̂2 − s2)}

= E
(

α̂2
2 − α̂2s2) = E

(

α̂2
2

) − E
(

α̂2s2)

= {

V (̂α2) + α2
2

} − {

Cov
(

α̂2, s2) + α2σ
2}

= α2
(

α2 − σ 2) + V (̂α2) − Cov
(

α̂2, s2)

= α2α
2
1 + V (̂α2) − Cov

(

α̂2, s2) ,
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or

α2α
2
1 = E

(

α̂2
̂α2

1

)

− V (̂α2) + Cov
(

α̂2, s2)

gives

̂

(

6α2α
2
1

) = 6α̂2
̂α2

1 − 6̂V (̂α2) + 6̂Cov
(

α̂2, s2) . (4)

We have

E
(

α̂4
1

) = E
(

α̂2
1 α̂2

1

)

= V
(

α̂2
1

) + {

E
(

α̂2
1

)}2

= V
(

α̂2
1

) + {

V (̂α1) + α2
1

}2

= V
(

α̂2
1

) + {V (̂α1)}2 + α4
1 + 2α2

1 V (̂α1) ,

or

α4
1 = E

(

α̂4
1

) − V
(

α̂2
1

) − {V (̂α1)}2 − 2α2
1 V (̂α1) .

So,

̂

(−3α4
1

) = −3α̂4
1 + 3̂V

(

α̂2
1

) + 3 ̂

[{V (̂α1)}2] + 6 ̂

{

α2
1 V (̂α1)

}

. (5)

Hence, the unbiased estimator of μ4 is

μ̂4 = α̂4 + ̂(−4α3α1) + ̂

(

6α2α
2
1

) + ̂

(−3α4
1

)

,

where α̂4, ̂(−4α3α1),
̂(6α2α

2
1) and ̂(−3α4

1) are given by (2), (3), (4) and (5), respectively.
This proves Lemma 4.1. ��
Lemma 4.2 For simple random sampling designs with replacement of size n (srsr-n),

̂Cov (̂α3, α̂1) = α̂4 − α̂3α̂1

n − 1
.

Proof We have

Cov (̂α3, α̂1) = E (̂α3α̂1) − α3α1

= 1

n
{α4 + (n − 1)α3α1} − α3α1

= α4 − α3α1

n
.

So, an unbiased estimator of Cov(̂α3, α̂1) is

̂Cov (̂α3, α̂1) =
̂(α4 − α3α1)

n
= α̂4 − ̂(α3α1)

n

= α̂4

n
− α̂3α̂1 − ̂Cov (̂α3, α̂1)

n

= α̂4 − α̂3α̂1

n
+

̂Cov (̂α3, α̂1)

n
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or

̂Cov (̂α3, α̂1) = α̂4 − α̂3α̂1

n − 1
,

which proves Lemma 4.2. ��

Lemma 4.3 For srsr-n designs,

̂V (̂α2) = α̂4 − α̂2
2

n − 1
.

Proof We note that

V (̂α2) = E
(

α̂2
2

) − {E (̂α2)}2 = α4 − α2
2

n
.

So, an unbiased estimator of V (̂α2) is

̂V (̂α2) = α̂4 − ̂α2
2

n
= α̂4 − {

α̂2
2 − ̂V (̂α2)

}

n
= α̂4 − α̂2

2

n
+ ̂V (̂α2)

n

or

̂V (̂α2) = α̂4 − α̂2
2

n − 1
.

Hence, Lemma 4.3 is proved. ��

Lemma 4.4 For srsr-n designs,

̂Cov
(

α̂2, s2) = α̂4 − α̂2
2

n − 1
+ 2

n − 2
α̂2

(

α̂2 − s2) − 2 (nα̂3α̂1 − α̂4)

(n − 1)(n − 2)
.

Proof We have

Cov
(

α̂2, s2) = E
(

α̂2s2) − E (̂α2) E
(

s2) = 1

n

(

α4 − α2
2 − 2α1α3 + 2α2α

2
1

)

.

So, the unbiased estimator of Cov(̂α2, s2) is

̂Cov
(

α̂2, s2) = 1

n
̂

(

α4 − α2
2 − 2α1α3 + 2α2α

2
1

)

= 1

n
̂

(

α4 − α2
2

) + 2

n
̂

(

α2α
2
1 − α1α3

)

= α̂4 − α̂2
2

n − 1
+ 2

n

{

̂

(

α2α
2
1

) − ̂(α1α3)
}

= α̂4 − α̂2
2

n − 1
+ 2

n

[{

(

α̂2 − s2) α̂2 − α̂4 − α̂2
2

n − 1
+ ̂Cov

(

α̂2, s2)
}

− nα̂3α̂1 − α̂4

n − 1

]

(6)

123



52 M. Ruiz Espejo et al.

since

̂

(

α2α
2
1

) = α̂2
̂α2

1 − ̂Cov
(

α̂2,
̂α2

1

)

= α̂2
(

α̂2 − s2) −
{

̂V (̂α2) − ̂Cov
(

α̂2, s2)
}

= α̂2
(

α̂2 − s2) − α̂4 − α̂2
2

n − 1
+ ̂Cov

(

α̂2, s2) ,

and

̂(α1α3) = α̂1α̂3 − ̂Cov (̂α3, α̂1) = α̂3α̂1 − α̂4 − α̂3α̂1

n − 1
= nα̂3α̂1 − α̂4

n − 1
.

It follows from (6) that

̂Cov
(

α̂2, s2)
(

1 − 2

n

)

= α̂4 − α̂2
2

n − 1

(

1 − 2

n

)

+ 2

n
α̂2

(

α̂2 − s2) − 2 (nα̂3α̂1 − α̂4)

n(n − 1)
,

or

̂Cov
(

α̂2, s2) = α̂4 − α̂2
2

n − 1
+ 2

n − 2
α̂2

(

α̂2 − s2) − 2 (nα̂3α̂1 − α̂4)

(n − 1)(n − 2)
.

So, Lemma 4.4 is proved. ��

Lemma 4.5 For srsr-n designs,

̂V
(

α̂2
1

) = α̂4 − α̂2
2

n − 1
+

(

n − 1

n

)2
̂V

(

s2) − 2
n − 1

n
̂Cov

(

α̂2, s2) .

Proof We have

V
(

α̂2
1

) = V

(

α̂2 − n − 1

n
s2

)

= V (̂α2) +
(

n − 1

n

)2

V
(

s2) − 2
n − 1

n
Cov

(

α̂2, s2) .

It is well known that

V
(

s2) = μ4

n
− (n − 3)μ2

2

n(n − 1)
.

Then an unbiased estimator of V (̂α2
1) is

̂V
(

α̂2
1

) = ̂V

(

α̂2 − n − 1

n
s2

)

= ̂V (̂α2) +
(

n − 1

n

)2
̂V

(

s2) − 2
n − 1

n
̂Cov

(

α̂2, s2) ,

where

̂V (̂α2) = α̂4 − α̂2
2

n − 1
.
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An unbiased estimator of V (s2) is

̂V
(

s2) =
̂

{

μ4

n
− (n − 3) μ2

2

n(n − 1)

}

= μ̂4

n
− n − 3

n(n − 1)

̂μ2
2

= μ̂4

n
− n − 3

n(n − 1)

{

s4 − ̂V
(

s2)} ,

or

̂V
(

s2) = n − 1

n2 − 2n + 3
μ̂4 − n − 3

n2 − 2n + 3
s4, (7)

where μ̂4 is the unbiased estimator of μ4 given in Lemma 4.1. By Lemma 4.4, we have
̂Cov(̂α2, s2), and so we obtain the unbiased estimator of the variance of α̂2

1 . Hence, Lemma 4.5
is proved. ��
Lemma 4.6 For srsr-n designs,

̂

[{V (̂α1)}2] = n − 1

n(n2 − 2n + 3)
s4 − n − 1

n2(n2 − 2n + 3)
μ̂4.

Proof It is well known for srsr-n designs that

V (̂α1) = μ2

n
. (8)

Squaring both sides of (8), we obtain

{V (̂α1)}2 = μ2
2

n2 .

Its unbiased estimator is

̂

[{V (̂α1)}2] =
̂μ2

2

n2 = μ̂2
2 − ̂V (μ̂2)

n2 = s4 − ̂V
(

s2
)

n2 ,

where ̂V (s2) is given by (7). So, Lemma 4.6 is proved. ��
Lemma 4.7 For srsr-n designs,

̂

{

α2
1 V (̂α1)

} = (

α̂2 − s2) s2

n
− 1

n
̂Cov

(

α̂2, s2) + 1

n
̂V

(

s2) .

Proof We have

α2
1 V (̂α1) = α2

1
μ2

n
.

So, an unbiased estimator of α2
1 V (̂α1) is

̂

{

α2
1 V (̂α1)

} = ̂

(

α2
1
μ2

n

)

= ̂α2
1
μ̂2

n
− ̂Cov

(

̂α2
1,

μ̂2

n

)

= ̂(α2 − μ2)
μ̂2

n
− ̂Cov

{

̂(α2 − μ2),
μ̂2

n

}

= (

α̂2 − s2) s2

n
− 1

n
̂Cov

(

α̂2, s2) + 1

n
̂V

(

s2) ,
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wherêCov(̂α2, s2) is provided in Lemma 4.4, and ̂V (s2) is provided in (7). Hence, Lemma 4.7
is proved. ��
Theorem 4.1 For srsr designs of size n > 2, an optimal unbiased estimator of μ4 (under
distribution-free setting) is

μ̂4 = −3n4α̂4
1 + 6n4α̂2

1 α̂2 + (9 − 6n)n2α̂2
2 + (−12 + 8n − 4n2

)

n2α̂1α̂3

(−3 + n)(−2 + n)(−1 + n)n

+
(

3n − 2n2 + n3
)

nα̂4

(−3 + n)(−2 + n)(−1 + n)n
.

Proof Combining the results of Lemmas 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6, we obtain the
result of Theorem 4.1 after simplification. The unbiasedness of μ̂4 is obvious from
Lemma 4.1. The optimality follows from Zacks [65, page 150] because the estimator, μ̂4,
is invariant under permutations of (x1, x2, . . . , xn), a simple random sample drawn with
replacement. ��
Remark 4.1 An alternative optimal unbiased estimator of μ4 is given as follows. We have

(

xi − x j
)4 = x4

i − 4x3
i x j + 6x2

i x2
j − 4xi x3

j + x4
j i �= j. (9)

Taking expectations of both sides in (9), we obtain

E
{

(

xi − x j
)4

}

= α4 − 4α3α1 + 6α2
2 − 4α1α3 + α4

= 2α4 − 8α3α1 + 6α2
2 . (10)

It is also known that

σ 4 = α2
2 − 2α2α

2
1 + α4

1 . (11)

Using (1), (10) and (11), we obtain

E

{

1

2

(

xi − x j
)4

}

= α4 − 4α3α1 + 3α2
2

= μ4 + 3α2
2 − 6α2α

2
1 + 3α4

1 = μ4 + 3σ 4 (12)

for i �= j . Now, define

t = 1

2n(n − 1)

n
∑

i=1

n
∑

j=1

(

xi − x j
)4 = n

n − 1

{

m4 + 3

(

n − 1

n
s2

)2
}

, (13)

where

m4 = 1

n

n
∑

i=1

(xi − α̂1)
4 .

It follows from (12) and (13) that

E(t) = μ4 + 3σ 4. (14)

Further, from (10) and (13), we have

t = n

n − 1

(

α̂4 − 4α̂3α̂1 + 3α̂2
2

) = n

n − 1

{

m4 + 3

(

n − 1

n
s2

)2
}

. (15)
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Also,

E
(

s4) = V
(

s2) + {

E
(

s2)}2 = μ4

n
− n − 3

n(n − 1)
σ 4 + σ 4 = μ4

n
+ cσ 4

implies

σ 4 = 1

c

{

E
(

s4) − μ4

n

}

, (16)

where

c = n2 − 2n + 3

n(n − 1)
.

Moreover, we have from (14), (15) and (16) that

E

(

n

n − 1
m4 + 3

n − 1

n
s4

)

= E(t) = μ4 + 3σ 4 = μ4 + 3

c

{

E
(

s4) − μ4

n

}

,

or

E

(

n

n − 1
m4 + 3

n − 1

n
s4

)

= μ4

(

1 − 3

cn

)

+ 3

c
E

(

s4) . (17)

Hence, from (17), we obtain

μ̂4 =
(

1 − 3

cn

)−1 {

n

n − 1
m4 + 3

(

n − 1

n
− 1

c

)

s4
}

,

the required result.

Remark 4.2 Using Fisher’s k-statistic, it is possible to obtain another optimal unbiased esti-
mator of μ4. We have that

μ4 = κ4 + 3μ2
2,

where κ4 is the fourth cumulant. An unbiased estimator of κ4 is given by k4, the corresponding
k-statistic, and

E
(

k2
2

) = μ4

n
+ n2 − 2n + 3

n(n − 1)
μ2

2.

So,

μ̂4 = n2 − 2n + 3

n(n + 1)
k4 + 3(n − 1)

n + 1
k2

2 (18)

is an unbiased estimator of μ4. As the k-statistic can be expressed in terms of power sums
∑n

i=1 xr
i (see [56]), the estimator (18) is invariant under permutations of (x1, x2, . . . , xn)

and so an UMVU (optimal unbiased estimator) for μ4.

Remark 4.3 Using augmented symmetric functions to evaluate E (̂α4), E (̂α3α̂1), etc in

μ̂4 = c1α̂4 + c2α̂3α̂1 + c3α̂
2
2 + c4α̂2α̂

2
1 + c5α̂

4
1,

and collecting terms and using

μ4 = α4 − 4α3α1 + 6α2α
2
1 − 3α4

1
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to obtain the coefficients c1, c2, . . . , c5, another optimal unbiased estimator of μ4 can be
obtained as

μ̂4 = n
{

(n2 − 2n + 3)(̂α4 − 4α̂3α̂1) − 3(2n − 3)̂α2
2 + 3n2(2α̂2α̂

2
1 − α̂4

1)
}

(n − 1) (n − 2) (n − 3)
.

Remark 4.4 We have proved that the ‘sample quasivariance’ s2 is an optimal unbiased esti-
mator of the population variance σ 2 under distribution-free setting and srsr designs. Its
variance is

V
(

s2) = μ4

n
− (n − 3)σ 4

n(n − 1)
.

So, an optimal unbiased estimator of V (s2) is

̂V
(

s2) = n − 1

n2 − 2n + 3
μ̂4 − n − 3

n2 − 2n + 3
s4,

as in (7), where μ̂4 is given by Theorem 4.1, or Remarks 4.1, 4.2 and 4.3.

5 Computer programs

Here, we give simple functions in R for computing the unbiased estimators given by Theo-
rems 2.1, 3.1, 3.2 and 4.1. There are five functions in total. The electronic version of these
functions can be obtained by contacting the corresponding author.

The following function computes the unbiased estimator of the second central moment
given by Theorem 2.1 for pgvps designs. The input parameters needed are L , N , nh, h =
1, 2, . . . , L , Wh, h = 1, 2, . . . , L , xhi , h = 1, 2, . . . , L , i = 1, 2, . . . , nh and Mhi , h =
1, 2, . . . , L , i = 1, 2, . . . , nh .

th21=function (L,N,n,W,x,M)
{

MM=rep(0,L)
aa=matrix(0,2,L)
vv=aa
for (i in 1:L)
{

MM[i]=sum(M[i,])
}
for (k in 1:2) for (h in 1:L)
{

aa[k,h]=sum((x[h,])**k/(n*N*P[h,]))
}
for (k in 1:2) for (h in 1:L)
{

vv[k,h]=(MM[h]-n[h])*(sum((MM[h]*(x[h,])**k
/(M[h,])-N*aa[k,h])**2))
/(MM[h]*n[h]*(n[h]-1)*N*N)

}
t1=0
for (h in 1:L)
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{
t1=t1+W[h]*aa[2,h]

}
t2=0
for (h in 1:L)
{

t2=t2+W[h]*aa[1,h]
}
t1=0
for (h in 1:L)
{

t3=t3+W[h]*W[h]*vv[1,h]
}
tt=t1-t2*t2+t3
return(tt)

}

The following function computes the unbiased estimator of the second central moment
given by Theorem 2.1 for ppsr designs. The input parameters needed are L , N , nh, h =
1, 2, . . . , L , Wh, h = 1, 2, . . . , L , xhi , h = 1, 2, . . . , L , i = 1, 2, . . . , nh and Phi , h =
1, 2, . . . , L , i = 1, 2, . . . , nh .

th22=function (L,N,n,W,x,P)
{

aa=matrix(0,2,L)
vv=aa
for (k in 1:2) for (h in 1:L)
{

aa[k,h]=sum((x[h,])**k/(n*N*P[h,]))
}
for (k in 1:2) for (h in 1:L)
{

vv[k,h]=(sum(((x[h,])**k/(P[h,])-N*aa[k,h])**2))
/(n[h]*(n[h]-1)*N*N)

}
t1=0
for (h in 1:L)
{

t1=t1+W[h]*aa[2,h]
}
t2=0
for (h in 1:L)
{

t2=t2+W[h]*aa[1,h]
}
t1=0
for (h in 1:L)
{

t3=t3+W[h]*W[h]*vv[1,h]
}
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tt=t1-t2*t2+t3
return(tt)

}

The following function computes the unbiased estimator of the third central moment given
by Theorem 3.1. The input parameters needed are n and xi , i = 1, 2, . . . , n.

th3=function (n,x)
{

alpha=rep(0,3)
for (i in 1:3)
{

alpha[i]=mean(x**i)
}
tt=n**2*(alpha[3]-3*alpha[1]*alpha[2]+2*(alpha[1])**3)

/(n**2-3*n+2)
return(tt)

}

The following function computes the unbiased estimator of the third central moment
given by Theorem 3.2. The input parameters needed are L , nh, h = 1, 2, . . . , L , Wh, h =
1, 2, . . . , L and xhi , h = 1, 2, . . . , L , i = 1, 2, . . . , nh .

th32=function (L,n,W,x)
{

mu3=rep(0,L)
aa=matrix(0,3,L)
for (k in 1:3) for (h in 1:L)
{

aa[k,h]=mean((x[h,])**k)
}
alpha=rep(0,3)
for (k in 1:3) for (h in 1:L)
{

alpha[k]=alpha[k]+W[h]*aa[k,h]
}
V1=0
for (h in 1:L)
{

V1=V1+(W[h])**2*(aa[2,h]-aa[1,h]**2)/(n[h]-1)
}
mu3=n[h]*sum((x[h,]-aa[1,h])**3))/((n[h]-1)*(n[h]-2))
COV1=0
for (h in 1:L)
{

COV1=COV1+(W[h])**2*(aa[3,h]-aa[2,h]*aa[1,h])
/(n[h]-1)

}
COV2=0
for (h in 1:L)
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{
COV2=COV2+(W[h])**3*((aa[3,h]-aa[2,h]*aa[1,h])

/(n[h]-1)-(n[h]-1)*mu3[h]/(n[h]*n[h]))
}
for (h in 1:L) for (g in (h+1):L)
{

COV2=COV2+2*W[g]*W[h]*(W[h]*aa[1,g]
*(aa[2,h]-aa[1,h]**2)
/(n[h]-1)+W[g]*aa[1,h]
*(aa[2,g]-aa[1,g]**2)/(n[g]-1))

}
COV3=0
for (h in 1:L)
{

COV3=COV3+(W[h])**3*mu3[h]/(n[h]*(n[h]-1))
}
tt=alpha[3]-3*alpha[2]*alpha[1]+3*COV1+2*(alpha[1])**3

-2*alpha[1]*V1-2*COV2+2*COV3
return(tt)

}

The following function computes the unbiased estimator of the fourth central moment
given by Theorem 4.1. The input parameters needed are n and xi , i = 1, 2, . . . , n.

th4=function (n,x)
{

alpha=rep(0,4)
for (i in 1:4)
{

alpha[i]=mean(x**i)
}
tt=-3*n**4*(alpha[1])**4+6*n**4*(alpha[1])**2*alpha[2]
tt=tt+(9-6*n)*n**2*(alpha[2])**2
tt=tt+(-12+8*n-4*n*n)*n**2*alpha[1]*alpha[2]
tt=tt+(3*n-2*n*n+n**3)*n*alpha[4]
tt=tt/((n-3)*(n-2)*(n-1)*n)
return(tt)

}

6 Conclusions and future work

We have derived several general unbiased estimators for the population central moments of
orders two, three and four for all possible statistical populations. Some of these estimators
are also valid for other sampling designs broadly used in survey sampling and for sampling
theory for finite populations. Moreover, we have proved optimality of several of the derived
unbiased estimators under distribution-free setting and for simple random sampling with
replacement. Furthermore, we have given simple programs in R for computing all of the
derived unbiased estimators.
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The optimal estimators derived in this paper are based on variance. We have used variance
because it is the most popular measure for variation and accuracy. However, other measures
like skewness and kurtosis could also be used to derive optimal estimators. This is a possible
future work.

In this paper, we have considered estimators restricted by unbiasedness. Other restrictions
on the class of estimators that one could consider are: mean squared error consistency,
consistency based on mean deviations about the mean, consistency based on mean deviations
about the median, consistency based on entropy measures, consistency based on the Kullback-
Leibler divergence measure, and so on.

Results of the kind in Remark 4.4 might be of interest in characterization of the stability
of variance estimators under some complex sample designs, provided the specifics related to
those designs are explored in additional depth. This is another possible future work.

A final future work is to explore the small-sample/large-sample behavior of the derived
results in Sects. 2–4 and to link them with known distributional results.
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