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Abstract This article proposes two new tests of symmetry based on the Gini mean difference.
The symmetry hypothesis of the disturbance in a linear regression model around zero was
analyzed using the proposed tests. A Monte Carlo simulation study shows that the tests have
good size and power properties for sample sizes as small as 30. The symmetry of the error
term in a cross county model of Gini index as a measure of income inequality and consumer
price inflation was studied by the proposed tests.
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1 Introduction

Consider the following linear regression model:

Y = Xβ + ε (1)

where X is (n × d) regressor matrix that has 1’s in the first column to represent the intercept,
β is (d ×1) regression coefficients vector, Y is (n×1) regress and vector and ε is (n×1) error
vector. Under the multiple linear regression assumptions, ε is assumed to be independently
distributed and follows a normal distribution with mean zero and constant variance σ 2. Based
on these assumptions (homoscedasticity, independent and normally distributed errors), the
ordinary least squares (OLS) estimators for the regression coefficients are the best linear
unbiased estimators (BLUE) for the regression parameters and they are identical to the
maximum likelihood estimators.

When the error distribution is non-normal, the efficiency of the OLS estimators deterio-
rates. One approach to deal with non-normal error distributions is the adaptive estimation.
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22 H. Auda

Bickel [2] has shown that the symmetry of the distribution of errors around zero is an important
assumption in constructing the adaptive estimators when the error distribution is unknown.
Newey [9] used a generalized method of moments approach for adaptive estimation based
on the symmetry assumption for the error term.

Fan and Gencay [4] proposed a non-parametric test of the symmetry hypothesis for the
error term in a linear regression model. Their test is based on the kernel estimation of the
density function of the errors. Ahmad and Li [1] proposed a new test for symmetry of
regression errors also based on kernel estimation. Although the latter tests are distribution
free consistent tests, their smoothing methods may affect the size and power in finite samples
[12]. The simulation in both studies showed that the tests have good properties for sample
sizes as small as 50.

This article proposes two new distribution free tests of symmetry in the linear regression
models. The new tests are based on the Gini mean differences and the properties of these
tests are compared with the one proposed by Fan and Gencay [4]. There are many other tests
of symmetry previously introduced in the literature. However, in each study, a comparison
of few selected competitors is provided. Another comprehensive simulation study on the 14
most popular tests of symmetry, in which two new proposed tests of symmetry based on Gini
mean difference are introduced, is in [13]. In this study, we compare type I error probabilities
and power for 17 null and alternative distributions. The proposed tests (in particular a rank
based test RS) compare favorably with several existing procedures in controlling the type
I error as well as in power. In [13], an important novelty figures 1–3 in pages 10–12 show
the comparison results of type I error probabilities and power of the 16 tests for 17 null and
alternative distributions.

Gini [6] proposed the mean difference (GMD) as a measure of variability and Gini [7]
introduced the Gini index (GI), as a measure of income inequality. The Gini mean difference
is defined as

G M D =
∑n

i< j |xi − x j |
n(n − 1)/2

(2)

In Sect. 2, the proposed tests and their statistical inferences are defined. The Monte Carlo
simulation study that was conducted to examine the performance of the proposed tests with
an empirical example is given in Sect. 3.

2 The proposed tests of symmetry

The proposed tests of symmetry for the regression error term are based on a comparison of
variability in the data below and above zero measured by the GMD (2). One of the proposed
tests is applicable to the original data, and the other has its rank-based counterpart.
As mentioned above, we are interested in testing the symmetry of the regression error term
around zero, such that H0 : f (e |x ) = f (−e |x ) against the alternative H1 : f (e|x) �=
f (−e|x).
For simplicity, we will assume that the regressors are fixed, and construct a test for
H0 : f (e) = f (−e)against the alternative H1 : f (e) �= f (−e).
Let e1,…, en be a standardized random sample from unknown continuous distribution. Parti-
tion the data into two subsets: subset1 (ei > 0) and subset2 (ei < 0), and since the population
distribution is continuous, P(ei = 0) = 0 and such values should occur very rarely in the
data set. If they happen to appear, they can be excluded from the analysis, and the sample
size would be reduced accordingly.
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Novel symmetry tests in regression 23

As a test statistic, we take

S = G M D+
G M D−

(3)

where G M D+ and G M D− are the Gini mean difference statistics given by formula (2)
applied to subset 1 and 2, respectively.

A similar approach can be used for the ranks instead of the actual data values. Thus, we
obtain

RG M D+ = 2
∑n1

k=1 k R1(k) − (n1 + 1)
∑n1

k=1 R1(k)

n1(n1 − 1)/2
(4)

where n1 is the sample size for subset 1 and R1(k) is the rank of the k-th in magnitude value
in subset 1 when all e1, e2, . . ., en are ranked jointly. Similarly

RG M D− = 2
∑n2

j=1 j R2( j) − (n2 + 1)
∑n2

j=1 R2( j)

n2(n2 − 1)/2
(5)

where n2 is the sample size for subset 2 and similarly R2( j) is the rank of the k-th in
magnitude value in subset 2 when all e1, e2, . . . , en are ranked jointly. As a test statistic we
take

RS = RG M D+
RG M D−

(6)

2.1 Test based on the original data S

The null distribution of the test statistic that we propose for the original data depends on the
type of the population distribution. For a large sample, the asymptotic distribution of the S
statistic in (4) is normal but the parameters depend on the underling population distribution
(see [11]). To show that, lets derive the parameters of the asymptotic distribution of the GMD
in the following cases:

1. Derivation of parameters of the asymptotic distribution of the GMD in the case
of the U[0,

√
12] and EXP(1) distributions

GMD could be expressed as L-estimate in the form:

Tn =
n∑

i=1

c∗
ni xi :n, (7)

where c∗
ni = 2(2i−n−1)

n(n−1)
.

Chernoff et al. [3] obtained the limiting distribution for the L-estimate in the general form:

Tn = 1

n

n∑

i=1

cni h (xi :n) , (8)

where h is some measurable function and cni = 2(2i−n−1)
(n−1)

They showed that the asymptotic
distribution for Tn is normal with mean μn in the form:

μn = 1

n

n∑

i=1

cni H̃ (ṽni ) , (9)
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where F is the cdf of the distribution of xi , i = 1, . . . , n and H̃ (ṽni ) = F−1 (G (ṽni )),

ṽni = ∑i
j=1

(
1

n− j+1

)
and G(x) = 1 − e−x , and variance σ 2

n in the form:

σ 2
n = 1

n

n∑

i=1

α2
ni , (10)

where αni = 1
n−i+1

∑n
j=i cnj H̃ ′

(ṽnj ) and H̃ ′ is the derivative of the function H̃ .

For h(x) = x and cni = 2(2i−n−1)
(n−1)

we could derive the asymptotic distribution for the
GMD as a special case of L-estimates. We obtain means and variances of the GMD in the
case of two different distributions : U[0,

√
12] and EXP(1).

A. X1, X2, . . . Xn ∼ U [0,
√

12].
The asymptotic mean of the GMD:

F(x) = x√
12

and F−1(x) = √
12x . Using (3.10) and (3.11),

H̃(vnj ) = F−1 (G (ṽni )) = F−1
(

1 − e−ṽnj
)

= √
12

(
1 − e−ṽnj

)
(11)

Therefore, the asymptotic mean (3.10) can be derived as:

μn = 2
√

12

n(n − 1)

n∑

j=1

(2 j − n − 1)
[
1 − e−ṽnj

]
(12)

μn = 2
√

12

n(n − 1)

⎡

⎣2
n∑

j=1

j − n2 − n

⎤

⎦ − 2
√

12

n(n − 1)

n∑

j=1

(2 j − n − 1)e−ṽnj (13)

Since
∑n

j=1 j = n(n+1)
2 , we obtain

μn = − 2
√

12

n(n − 1)

n∑

j=1

(2 j − n − 1)e−ṽnj . (14)

The asymptotic variance of the GMD:

In the general case:

σ 2
n = 1

n

n∑

i=1

α2
ni , (15)

where

αni = 1

n − i + 1

n∑

j=i

cnj H̃ ′
(ṽnj ). (16)

Since

H̃(ṽnj ) = √
12

(
1 − e−ṽnj

)

we have

H̃ ′
(ṽnj ) = √

12e−ṽnj (17)
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Novel symmetry tests in regression 25

and finally

αni = 2
√

12

n − i + 1

n∑

j=i

(2 j − n − 1)

(n − 1)
e−ṽnj (18)

B. X1, X2, . . . , Xn ∼ EXP(1).

The asymptotic mean of the GMD:

The cdf F(x) = 1 − e−x , F−1(x) = − log(1 − x). The asymptotic distribution of GMD
is normal. In the exponential case, F−1(x) = − log(1 − x) so that

H̃(vni ) = F−1 (G (ṽni )) = − log(1 − 1 + e−ṽni ) = ṽni

i∑

j=1

1

n − j + 1
, (19)

and the asymptotic mean is derived as:

μn = 2

n(n − 1)

n∑

i=1

(2i − n − 1) ˜vni . (20)

The asymptotic variance of the GMD: The asymptotic variance is derived:

αni = 1

n − i + 1

n∑

j=i

cnj H̃ ′
(ṽnj ) (21)

We have

H̃(ṽnj ) = ṽnj , (22)

therefore

H̃ ′
(ṽnj ) = 1 (23)

and finally

αni = 1

n − i + 1

n∑

j=i

2(2 j − n − 1)

(n − 1)
. (24)

Since
n∑

j=i

(2 j − n − 1) = 2
n∑

j=i

j − (n + 1)(n − i + 1) = (i + n)(n − i + 1)

(n − i + 1)(i + n − n − 1) = (i − 1)(n − i + 1),

we have

αni = 2(n − i + 1)(i − 1)

(n − 1)(n − i + 1)
= 2(i − 1)

n − 1
. (25)

and

σ 2
n = 1

n

n∑

i=1

(
2(i − 1)

n − 1

)2

. (26)
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Fig. 1 The convergence of the distributions of GMD, Log S and S statistics to normality

When we compare the asymptotic mean and variance for the GMD in the uniform and
exponential cases, we can see that the formulas are different which means that the parameters
μn and σ 2

n do depend on the underling distribution, similarly S and log(S) also do.
Beside depending on the underline distribution, convergences to normality for GMD and

for the proposed statistic are slow (see Fig. 1).

Asymptotic normality of GMD, log(S) and S statistics

The rate of convergence of GMD depends on the underling distribution but in general it
is rather slow. To study the convergence of the distributions of GMD, Log S and S statistics
to normality, data from U[0,1] and Beta(2,2) were generated with different sample sizes, the
proportion of cases when the normality assumption is rejected for the statistics based on 60
repetitions were obtained and graphically presented in Fig. 1.

For n ≤ 50 the normality assumption is rejected. The normality can be assumed for
n ≥ 50 but it also depends on the distribution type (it is faster for uniform distribution, see
Fig. 1). Thus, using asymptotic normality should not be recommended for n < 50 even if the
parameters μn and σn are easy to obtain. Therefore, to test the symmetry based on original
data we recommend using a permutation test or possibly a bootstrap test.

The test statistic that we propose for the original data will be permutation tests applied
to (4). The permutation tests were first introduced as a non-parametric alternative to the
two-sample t-test. Pitman estimator was based on the permutation test for the two-sample
problem, block design and simple linear regression. Legendre and Anderson [8] showed that
some permutation tests have equal or even more power than their parametric counterpart.

Permutation tests find a p-value the proportion of values of a test statistic at least as extreme
as its original value (among values obtained by all possible partitions of the data with the
same sample sizes n1 and n2). If the sample size n is too large, and instead of considering
all possible permutations to estimate a p-value, permutations are randomly generated. Under
the null hypothesis of symmetry distribution of S and 1/S are the same (if n1 = n2) or very
close and one can estimate the p-value for the S statistic as:

P̂(S ≥ s) + P̂(S ≤ 1/s),
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Novel symmetry tests in regression 27

Table 1 RS statistic for all
combinations for n = 5

n1 n2 Ranks in subset1 Ranks in subset2 rs

2 3 1, 2 3, 4, 5 0.750

1, 3 2, 4, 5 1.000

1, 4 2, 3, 5 1.500

1, 5 2, 3, 4 3.000

2, 3 1, 4, 5 0.375

2, 4 1, 3, 5 0.750

2, 5 1, 3, 4 1.500

3, 4 1, 2, 5 0.375

3, 5 1, 2, 4 1.000

4, 5 1, 2, 3 0.750

2 2 1, 2 4, 5 1.000

1, 4 2, 5 1.000

1, 5 2, 4 2.000

2, 4 1, 5 0.500

2, 5 1, 4 1.000

4, 5 1, 2 1.000

or as

2(min( p̂(S ≥ s), p̂(S ≤ 1/s)))

where P̂ are relative frequencies from the randomly generated permutations.

2.2 Inference for rank-based statistic RS

Inference for the test based on ranks may be based on the exact distribution. First, GMD is
undefined if all the data are below or above the symmetry point and this is most likely when
n is small. In addition, since one needs at least two observations in order to obtain the GMD,
we considered n = 5 as the smallest sample size. Sample size n = 5 will be used as an
illustrative example for interpreting how the exact distribution was obtained.

We obtain the exact distribution for the rank-based statistic in a way similar to the following
example: we first list all possible combinations (n1, n2) for the sample sizes of subsets 1 and
2. In the case of n = 5, we have two cases: either n1 = 2, n2 = 3 or n1 = 3, n2 = 2. We
then compute the statistic RS as given in Eq. (2). All possible combinations for n = 5 are
provided in Table 1 with the corresponding values for the RS statistic.

The exact distribution for the statistic when n = 5 is given in Table 2:
For testing symmetry, we use a two sided test as we are testing whether the distribution

is symmetric against the general alternative. To compute the p-value according to the above
table, we have

P-value = P(RS ≥ rs) + P(RS ≤ 1/rs)

As for P(RS ≤ 1/rs), we can compute it directly from the table. However, for P(RS ≥
rs), we can compute it as 1 − P(RS < rs). For P(RS < rs), we can use the closest value
for the statistic that is less than rs. The R-code used to generate the critical values is provided
in the Appendix.
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Table 2 Cdf for the null
distribution of the RS statistic

n1 n2 rs P(RS = rs) P0(RS ≤ rs)

2 3 0.375 0.2 0.2

0.75 0.3 0.5

1 0.2 0.7

1.5 0.2 0.9

3 0.1 1

2 2 0.5 0.167 0.167

1 0.667 0.833

2 0.167 1

3 Simulation study and empirical example

In this section, the size and power of the proposed tests of symmetry are investigated. Simula-
tion is conducted in a way similar to [4], in order to compare the results of the proposed tests
with theirs. The proposed tests are also used to test the symmetry of the error term in a model
with cross-country data on inflation and income inequality measured by the Gini index.

3.1 Simulation study

In the simulation study, 1000 replications were used for each sample size and error distribu-
tion. Calculation of the proposed test of symmetry based on the original data S (as mentioned
in Sect. 2) is done using the permutation technique. As for the other proposed test of symmetry
based on ranks RS, the critical values were computed for each sample size.

Table 3 presents the simulation results with two regressors (including an intercept
term).The tests S and RS have the desired empirical size for α = 0.05 and for α = 0.1,

Table 3 Size and power of the tests; (S) and (RS) with two regressors

n 20 30 50 100

α 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1

S

t5 0.067 0.133 0.068 0.106 0.058 0.109 0.068 0.11

N (0, 1) 0.055 0.093 0.049 0.094 0.053 0.110 0.048 0.109

Laplace 0.048 0.094 0.057 0.118 0.060 0.102 0.065 0.120

χ2
2 0.498 0.647 0.873 0.933 0.991 0.997 1 1

Lognormal 0.617 0.729 0.950 0.982 1 1 0.999 1

Exponential 0.560 0.738 0.880 0.934 0.988 0.994 1 1

RS

t5 0.066 0.133 0.053 0.104 0.053 0.108 0.060 0.106

N (0, 1) 0.042 0.087 0.059 0.108 0.057 0.107 0.059 0.101

Laplace 0.048 0.121 0.061 0.102 0.060 0.120 0.061 0.103

χ2
2 0.195 0.302 0.466 0.595 0.7867 0.831 0.974 0.981

Lognormal 0.240 0.417 0.545 0.651 0.824 0.867 0.981 0.988

Exponential 0.280 0.422 0.495 0.621 0.762 0.835 0.973 0.980
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Table 4 Size and power of the tests (S) and (RS) with four regressors

n 20 30 50 100

α 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1

S

t5 0.059 0.104 0.064 0.102 0.067 0.121 0.061 0.132

N (0, 1) 0.055 0.105 0.038 0.088 0.045 0.094 0.045 0.095

Laplace 0.043 0.102 0.062 0.114 0.061 0.121 0.064 0.128

χ2
2 0.341 0.581 0.688 0.806 0.974 0.989 1 1

Lognormal 0.430 0.603 0.809 0.893 0.988 0.993 1 1

Exponential 0.312 0.561 0.700 0.811 0.972 0.985 1 1

RS

t5 0.050 0.094 0.055 0.110 0.046 0.090 0.051 0.100

N (0, 1) 0.047 0.097 0.046 0.102 0.043 0.112 0.040 0.091

Laplace 0.046 0.119 0.058 0.124 0.052 0.114 0.055 0.101

χ2
2 0.154 0.274 0.285 0.409 0.306 0.473 0.950 0.973

Lognormal 0.199 0.331 0.311 0.436 0.663 0.801 0.963 0.980

Exponential 0.178 0.299 0.297 0.404 0.580 0.728 0.946 0.970

Table 5 Size and power of the tests (S) and (RS) with six regressors

n 20 30 50 100

α 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1

S

t5 0.055 0.116 0.063 0.114 0.061 0.129 0.059 0.1030

N (0, 1) 0.054 0.107 0.051 0.104 0.041 0.095 0.047 0.097

Laplace 0.053 0.100 0.058 0.118 0.064 0.123 0.051 0.101

χ2
2 0.175 0.324 0.540 0.698 0.928 0.972 1 1

Lognormal 0.177 0.307 0.625 0.760 0.965 0.988 1 1

Exponential 0.166 0.302 0.578 0.732 0.940 0.972 1 1

RS

t5 0.061 0.131 0.049 0.086 0.056 0.103 0.049 0.110

N (0, 1) 0.044 0.101 0.064 0.092 0.060 0.113 0.051 0.099

Laplace 0.043 0.096 0.051 0.094 0.062 0.121 0.050 0.112

χ2
2 0.137 0.199 0.268 0.352 0.559 0.680 0.941 0.967

Lognormal 0.144 0.207 0.301 0.369 0.590 0.728 0.952 0.974

Exponential 0.132 0.212 0.256 0.338 0.534 0.672 0.933 0.962

respectively. As for sample sizes n = 50 and 100, the tests have good power for all asym-
metric alternatives considered in the simulation. In case of a small sample size (n = 30), the
S test has good power and its power is higher than the RS test.

Tables 4 and 5 extend the size and power calculations of the tests with the number of
regressors d = 4 and d = 6. The number of regressors is increased to study its effect on the
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Table 6 The OLS estimates of the regression model

Variable Coefficient Standard error t-ratio P-value

Constant 43.95 1.778 24.717 <2e − 16

�cpi −0.0899 0.033 −2.724 0.009

�cpi2 0.0002 6.126e−05 2.887 0.006

power of the proposed tests. For sample size 100, the increase in the number of regressors
does not alter the power of the S test. For sample sizes 50, 30 and 20, the largest reduction in
power of the S test is 6, 20 and 47 %, respecitively. The S test is rather stable to an increase
in the number of regressors for sample size 30 and above. For RS test with sample sizes 100
and 50, the largest reduction in power of the RS test is 23 %. For sample sizes 30 and 20, the
largest reduction in power of the RS test is 25 %. The RS test although it has less power than
S test for small sizes (20 and 30); it is stable to an increase in the number of regressors for
sample size 20 and above. The percentage of overrejection or underrejection of the empirical
size is within 2 % of its nominal size at both 5 and 10 % levels.

For sample sizes 100 and 50, the proposed tests of symmetry have similar high power as
the test proposed by Fan and Gencay (1995). The special property for the S statistic is that it
has good power for size less than 50 (n = 30), while Fan and Gencay test cannot be applied
for sizes less than 50.

3.2 An empirical example

The hypothesized existence of a non-monotonic relationship between inequality and inflation
[5] is examined by estimating a quadratic model of the form:

�G I = α + β1�cpi + β2�cpi2 + ε (27)

where � GI is the annual average of Gini index, � cpi is the average annual of consumer
price inflation across 47 developing countries, gathered from World Development Indica-
tors (2008), CD-ROM, World Bank, Washington D.C. during the period 1984–2005. All
observations are annual averages for the sample period.

In Table 6 the regression estimates are statistically significant. The F-statistic which is
equal to 4.229 with p-value = 0.0209 means that the overall estimated equation is significant
at 5 % level of significance.

To test the normality of the residuals, the Shapiro normality [10] test is equal to 0.9492
with p-value = 0.04, which means that the normality assumption is rejected at 5 % level
of significance. The S test is equal to 1.219 with p-value = 0.178, which means that the
symmetry assumption is retained at 5 % level of significance. The RS test is equal to 0.834
and the null hypothesis of symmetry is retained at 10 % level of significance. As the sym-
metry assumption for the errors is not rejected, the regression coefficients can be estimated
adaptively by the generalized method of moments as that of Newey [9] to get maximum
efficient estimators for the model.

4 Conclusion

Two new tests of symmetry based on the Gini mean difference were used to identify the
symmetry of the residual of the linear regression model. The proposed test of symmetry S
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Novel symmetry tests in regression 31

converges slowly to the normal distribution with parameters depending on the underlying
population. The permutation tests based on statistic S were proposed, and proved good size
and power properties in sample sizes as small as 30 observations. The other proposed test,
RS, is the rank-based counterpart and its exact distribution was determined. The test has good
size and power properties in samples of size not less than 50 observations.

The relationship between the Gini index and the Consumer Price Inflation for cross county
data was investigated, and the symmetry of the errors was tested with the proposed tests.

Appendix

R-codes

Below are some codes that were used in simulations, the codes compute RS statistic and
its critical values.The follwoing are the main R-functions used in the code:

x–numeric vector of non-missing data points
median. – value of median (if known), the default is to estimate it with the sample median
abs(x)—absolute value of x
xpos—numeric vector of the positive values of x
xneg—numeric vector of th negative values of x
RGMD2—-Gini mean differences based on ranks
Returned value–RS statistic as ratio of GMD for positive and negative values
RScdf—–cummulative function for the RS statistic
RSpf—-probability function for the RS statistic

1. RS statistic:

‘RS‘ < − function(x, median.=median(x),equal=F,ties.method=“first”)
{RGMD2 < − function(y, n)
sum((2*(1:n)-n-1) * y) / n / (n-1)
x < − x - median.
rx < − rank(abs(x),ties.method=ties.method)
xpos < − if(equal) x>=0 else x>0; n1 < − sum(xpos)
xneg < − x<=0; n2 < − sum(xneg)
rpos < − sort(rx[xpos])
rneg < − sort(rx[xneg])
RGMD2(rneg, n2) / RGMD2(rpos, n1)}

2. RS cdf:

‘RScdf‘ < −
function(N, n=(N/2), remove.median=(N>(2*n)))
{rs < − RSpmf(N,n,remove.median)
x < − as.numeric(names(rs))
y < − c(0, cumsum(rs))
pars < − c(N=N, n1=n, n2=N-n-remove.median)
result < − list(parameters=pars, x=x, pmf=rs[],
fun=stepfun(x, y, right=FALSE))
class(result) < − “RS” result}
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3. RS pf:

‘RSpmf‘ < −
function(N, n=(N/2), remove.median=(N>(2*n)))
{ RGMD2 < − function(y, n, ind=2*(1:n))
sum((ind-n-1) * y) / n / (n-1)
r < − 1 : N
if (remove.median) {
r < − r[-(n+1)]
N < − N - 1}
n2 < − N - n
rs < − numeric( ncombs < − choose(N,n) )
s1 < − 2 ∗ (set1 < − 1:n); s2 < − 2*(1:n2)
for(i in 1:ncombs){
rs[i] < − RGMD2(r[set1], n, s1) / RGMD2(r[-set1], n2, s2)
set1 < − nextcombo(set1, N, n)x}
table(rs) / ncombs }
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