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Abstract Summary The intervened Poisson distribution (IPD) of Shanmugam (Biometrics
41:1025–1029, 1985) has been found suitable for some rare event situations where some
intervention arises. The main drawback of IPD is that it is under-dispersed and appropriate
for single intervention situation. Through this paper, we introduce a general class of distri-
butions, which includes IPD as its special case, suitable for situations of under-dispersed,
over-dispersed and multiple intervention cases. Several properties of this new class of inter-
vened distribution are investigated and illustrated its usefulness with the help of real life data
sets.

Keywords Factorial moments · Intervened Poisson distribution · Intervened generalized
Poisson distribution · Maximum likelihood estimation · Probability generating function

1 Introduction

Shanmugam [19] considered a new class of discrete distributions, namely intervened Poisson
distribution (IPD) as a replacement for the zero-truncated Poisson distribution (ZTPD) and
an independent Poisson random variable. The IPD is the distribution of the sum of a zero-
truncated Poisson random variable and an independent Poisson random variable. Shanmugam
[19] defined the IPD as follows:

A positive integer valued random variable X is said to follow IPD if its probability mass
function (pmf) has the following form, for x = 1, 2, ....

f (x) = C[(1 + ρ)x − ρx ]λ
x

x ! , (1.1)

C. S. Kumar (B) · D. S. Shibu
Department of Statistics, University of Kerala, Trivandrum 695 581, India
e-mail: drcsatheeshkumar@gmail.com

D. S. Shibu
e-mail: dsshibu70@ymail.com

123



10 C. S. Kumar, D. S. Shibu

in which C = qe−λ(1+ρ), with q = eλ(eλ − 1)−1, λ > 0 and ρ ≥ 0. An advantage of
the IPD is that it provides information on how effective various preventive actions taken
by health service agents, where ZTPD fails. The IPD is applicable in several areas such
as reliability analysis, queuing problems, epidemiological studies, etc. For example, see
Shanmugam [19,20], Huang and Fung [7]. The mean and variance of IPD with pmf (1.1) are

E(X) = λ[ρ + q] = μ, (1.2)

and

V ar(X) = μ − λ2q(q − 1). (1.3)

From (1.2) and (1.3), it can be observed that the IPD (λ, ρ) is under-dispersed (that is, its
variance is less than its mean), for all values of the parameters. The IPD has been further
studied by several authors such as Shanmugam [20], Scollnik [16–18], Dhanavananthan
[3,4], Patel and Gajjar [13], Kumar and Shibu [11,12].

Consul [1] defined generalized Poisson distribution (GPD) in the following way. A random
variable Y is said to follow the GPD with parameters αand β [written as G P D(α, β)], if its
pmf is given by

g(y) = β(β + yα)y−1e−(β+yα)

y! , (1.4)

for y = 0, 1, ... with 0 ≤ α < 1 and β ≥ 0, and zero elsewhere. A truncated version of the
GPD has been studied by Consul and Famoye [2].

Scollnik [18] obtained the intervened generalized Poisson distribution (IGPD) as in the
following. For0 ≤ α < 1, β ≥ 0 and λ > 0, let Z1 and Z2 be independent random variables
such that Z1 follows zero-truncated G P D(α, β) and Z2 follows the G P D(α, βλ). Then
Z = Z1 + Z2 follows IGPD with parameters α, β and λif its pmf given by

g2(z) = λ
[
(1 + β)

{
(1 + β)λ + zα}v−1 − β

{
βλ + zα }z−1 ]

eβλ+zα(eλ − 1)z! , (1.5)

for z = 1, 2, .... The mean and variance of the IGPD with pmf (1.5) are the following, in

which q = eλ

eλ−1

E(Z) = (1 − α)−1 [β + q] = υ, (1.6)

V ar(Z) = (1 − α)−2 [
υ − λ2q(q − 1)

]
. (1.7)

From the expressions (1.6) and (1.7), it is seen that IGPD may have variance less than or
greater than mean depending on the values of α, β and λ.

Gupta and Jain [6] introduced the generalized Hermite distribution through the following
probability generating function (pgf), in which μ1 > 0, μ2 ≥ 0 and m is an integer greater
than one.

G(s) = eμ1(s−1)+μ2(sm−1). (1.8)

When m = 2, (1.8) reduces to the pgf of the well- known Hermite distribution of [8]. Also,
when m = 1, (1.8) reduces to the pgf of Poisson distribution with parameter μ1 + μ2.The
Hermite distribution has found extensive applications in several areas of research such as
biological sciences, physical sciences and operations research. Both Hermite and generalized
Hermite distribution belongs to Kumar [10] family of distributions. The generalized Hermite
distribution with pgf (1.8) hereafter we will denote as Hm(μ1, μ2).
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But in practice, there are situations where more than one intervention arises. The ZTPD, the
IPD and the IGPD are all found to be suitable for dealing situations of only one intervention.
For tackling such situations of more than one intervention, through this paper, we introduce
a wide class of intervened type distributions, namely intervened generalized Hermite distri-
bution (IGHD), as a generalization of IPD and discuss some of its important properties. The
paper is organized as follows. In Sect. 2, we present the definition of IGHD and shown that
the ZTPD, the IPD and positive Hermite distribution and the intervened Hermite distribution
are special cases of IGHD. Some important properties of IGHD such as its pgf, pmf, mean,
variance and recurrence relation for its probabilities and factorial moments are also derived in
this section. In Sect. 3, we discuss the estimation of parameters of IGHD by method of max-
imum likelihood. Further, two real life data sets are considered for illustrating the suitability
of IGHD compared to the existing models such as the ZTPD, the IPD and the IGPD.

2 The intervened generalized Hermite distribution

In this section we present the definition of the intervened generalized Hermite distribution
and derive some of its important properties

Definition 2.1 For any fixed positive integer m, let U1 be a non-negative integer valued
random variable having zero-truncated generalized Hermite distribution with pgf

B(s) = (eμ1+μ2 − 1)−1(eμ1s+μ2sm − 1)−1 (2.1)

in which μ1 > 0 and μ2 ≥ 0. Let U2 be a discrete random variable following generalized
Hermite distribution Hm(ρ1μ1, ρ2μ2)with ρ1 > 0, ρ2 ≥ 0. Assume that U2 is independent
of U1. Then the distribution of the random variable U = U1 + U2 is called the inter-
vened generalized Hermite distribution with parameters μ1, μ2, ρ1, ρ2 and m or in short
I G H Dm(μ1, μ2, ρ1, ρ2).

The I G H Dm(μ1, μ2, ρ1, ρ2) has the following special cases:

(1) When μ2 = 0, the I G H Dm(μ1, μ2, ρ1, ρ2) reduces to I P D(μ1, ρ1).

(2) When ρ2 = 0, the I G H Dm(μ1, μ2, ρ1, ρ2)reduces to an extended form of the IPD with
pgf

Q1(s) = c1(e
μ1s+μ2sm − 1)eμ1ρ1s,

in which c1 = [eμ1(1+ρ1)+μ2 − eμ1ρ1 ]−1.
(3) When ρ1 = 0 and μ2 = 0, the I G H Dm(μ1, μ2, ρ1, ρ2) reduces toZ T P D.
(4) When ρ1 = 0 and ρ2 = 0, the I G H Dm(μ1, μ2, ρ1, ρ2)reduces to zero truncated

Hermite distribution.

Note that, since U2 follows Hm(ρ1μ1, ρ2μ2), U2 can be written as U2 = X1 + m X2,
where X1 and X2 are independent Poisson variates with means ρ1μ1 and ρ2μ2 respectively.
Now the I G H Dm(μ1, μ2, ρ1, ρ2) variate U has the following form.

U = U1 + X1 + m X2

= V1 + m X2,

where V1 follows a modified form ofI P D, since when μ2 = 0, U1 reduces to Z T P D.
Thus V1 is enough for tackling single intervention situations and consequently, the
I G H Dm(μ1, μ2, ρ1, ρ2) is suitable for situations where more than one intervention arises.
We obtain the pgf of I G H Dm(μ1, μ2, ρ1, ρ2)through the following result.
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Result 2.1 Let X follows I G H Dm(μ1, μ2, ρ1, ρ2). Then the pgf of X is the following.

Q(s) = c(eμ1s+μ2sm − 1)eμ1ρ1s+μ2ρ2sm
(2.2)

where

c = (eμ1+μ2 − 1)−1e−(μ1ρ1+μ2ρ2) (2.3)

Proof follows from the fact that the pgf of sum of independent random variables is the product
of their pgfs.

Now to obtain expressions for pmf and factorial moments of the I G H Dm(μ1, μ2, ρ1, ρ2),
we need the following lemma.

Lemma 2.1 For any a, b, v ∈ R and for any positive integer m greater than one,

eav+bvm =
∞∑

x=0

[ x
m

]
∑

j=0

ax−mj b j

(x − mj)! j !v
x (2.4)

and

eav+b(1+v)m =
∞∑

r=0

∞∑

j=0

r∑

i=0

ar−i b j

(r − i)! j ! (
mj
i

)vr . (2.5)

Proof of (2.4) and (2.5) follow by expanding the exponential and binomial term in the light
of the following series representation ([15], pp.134).

∞∑

x=0

∞∑

j=0

B( j, x) =
∞∑

x=0

[ x
m

]
∑

j=0

B( j, x − mj).

Result 2.2 The probability mass function qx = P(X = x) of I G H Dm(μ1, μ2, ρ1, ρ2) is
the following for x = 1, 2, 3, ...in which μ1 > 0, μ2 ≥ 0, ρ1 ≥ 0, ρ2 ≥ 0 and [k] denotes
the integer part of k.

qx = c

[ x
m

]
∑

r=0

�x−mr, r (ρ1, ρ2)
μx−mr

1 μr
2

(x − mr)!r ! (2.6)

where for any non- negative integers i and j ,

�i, j (ρ1, ρ2) = [(1 + ρ1)
i (1 + ρ2)

j − ρi
1ρ

j
2 ] (2.7)

and c is as given in (2.3).

Proof From (2.1), we have the following.

Q(s) =
∞∑

x=1

sx qx

= c(eμ1s+μ2sm − 1)eμ1ρ1s+μ2ρ2sm
(2.8)

Q(s) = c
∞∑

x=0

[ x
m

]
∑

r=0

�x−mr, r (ρ1, ρ2)μ
x−mr
1 μr

2sx

(x − mr)!r ! , (2.9)
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since by Lemma 2.1. Now on equating coefficient ofsx , on right side expressions of (2.8)
and (2.9), we get (2.6).

Result 2.3 The mean and variance of the I G H Dm(μ1, μ2, ρ1, ρ2)are the following, in
which η = eμ1+μ2(eμ1+μ2 − 1)−1.

E(X) = η(μ1 + mμ2) + μ1ρ1 + mμ2ρ2 (2.10)

and

V ar(X) = μ1ρ1 + m2μ2ρ2 + η(1 − η)(μ1 + mμ2)
2 + η(μ1 + m2μ2) (2.11)

Proof is simple and hence omitted. Based on the Result 2.3, we have the following practical
remark.

Remark 2.1 In general I G H Dm(μ1, μ2, ρ1, ρ2) is over-dispersed. A necessary condition for
I G H Dm(μ1, μ2, ρ1, ρ2) to be under-dispersed is Max{μ1, ρ1, ρ2} < 1 and μ2 sufficiently
small.

Result 2.4 The r-th factorial moment μ[r ] of I G H Dm(μ1, μ2, ρ1, ρ2) with pgf (2.1) is the
following, for r ≥ 1.

μ[r ] = ceμ1ρ1r !
∞∑

j=0

r∑

i=0

μr−i
1 μ

j
2

(r − i)! j ! (
mj
i

)[eμ1γ r−i
1 γ

j
2 − ρr−i

1 ρ
j
2 ], (2.12)

in which γi = 1 + ρi for i = 1, 2 and c is as defined in (2.3).

Proof The factorial moment generating function (fmgf) F(t) of I G H Dm(μ1, μ2, ρ1, ρ2)

with pgf (2.1) is

F(t) =
∞∑

r=0

tr

r !μ[r ]

= Q(1 + t) (2.13)

F(t) = c(eμ1(1+t)+μ2(1+t)m − 1)eμ1ρ1(1+t)+μ2(1+t)m
(2.14)

By applying the Lemma 2.1 in (2.14), we get

F(t) = ceμ1ρ1r !
∞∑

j=0

r∑

i=0

μr−i
1 μ

j
2

(r − i)! j ! (
mj
i

)
[
eμ1γ r−i

1 γ
j

2 − ρr−i
1 ρ

j
2

] tr

r ! (2.15)

where γi = 1 + ρi for i = 1, 2. Equating coefficient of (r !)−1tr , we obtain (2.12).

Remark 2.2 If we put μ2 = 0 in (2.12), we get

μ[r ] = μr
1

(eμ1 − 1)

[
eμ1(1 + ρ1)

r − ρr
1

]
,

which is the r -th factorial moment ofI P D(μ1, ρ1).

Result 2.5 For x ≥ m − 1, a recurrence relation for the probabilities of I G H Dm(μ1, μ2,

ρ1, ρ2) is the following, in which γi = 1 + ρi , for i = 1, 2.

(x + 1)qx+1 = μ1γ1 + mμ2γ2qx−m+1 + c[μ1ξx + mμ2ξx−m+1] (2.16)
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where

ξr =
[ r

m

]
∑

j=0

(μ1ρ1)
r−mj (μ2ρ2)

j

(r − mj)! j ! , (2.17)

for any r ≥ 1, integer.

Proof From (2.2), we have the following.

Q(s) =
∞∑

x=1

qx sx

= c(eμ1s+μ2sm − 1)eμ1ρ1s+μ2ρ2sm
(2.18)

= c[eμ1γ1s+μ2γ2sm − eμ1ρ1s+μ2ρ2sm ] (2.19)

On differentiating right hand side expressions of (2.18) and (2.19) with respect to s, we obtain
the following in the light of Lemma 2.1.

∞∑

x=1

xqx sx−1 = (μ1γ1 + mμ2sm−1)Q(s) + c(μ1 + mμ2sm−1)eμ1ρ1s+μ2ρ2sm
(2.20)

Equating coefficient of sx on both sides of (2.20), we get (2.16).

3 Estimation

In this section we discuss the maximum likelihood estimation of the parameters μ1, μ2, ρ1

and ρ2 of theI G H Dm(μ1, μ2, ρ1, ρ2). The log likelihood of the sample is

ln L =
z∑

x=1

nx ln qx , (3.1)

where nx is the observed frequency of x events and z is the highest value of x observed.
On differentiating (3.1) with respect to μ1, μ2, ρ1and ρ2 and equating to zero, we obtain
the following likelihood equations, in which

∑

I
denotes the 2-tuple sum over the set I =

{
(x, r) : x = 1, 2, ..., z; r = 1, 2, ...

[ x
m

]}
and �i j = �i j (ρ1, ρ2) is as defined in (2.5).

∂ ln L

∂μ1
= 0

implies

∑

I

nx�x−mr,r μr
2μx−mr

1

qx (x − mr − 1)!r ! = (η + ρ1)
∑

I

nx�x−mr,r μr
2μx−mr

1

qx (x − mr)!r ! (3.2)

∂ ln L

∂μ2
= 0
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implies

∑

I

nx�x−mr,r μr−1
2 μx−mr−1

1

qx (x − mr)!(r − 1)! = (η + ρ2)
∑

I

nx�x−mr,r μr
2μx−mr

1

qx (x − mr)!r !
∂ ln L

∂ρ1
= 0

(3.3)

implies

∑

I

nx�x−mr,r μr
2μx−mr

1

qx (x − mr − 1)!r ! =
∑

I

nx�x−mr,r μr
2μx−mr

1

qx (x − mr)!r ! (3.4)

and

∂ ln L

∂ρ2
= 0

implies

∑

I

nx�x−mr−1,r μr
2μx−mr

1

qx (x − mr)!(r − 1)! =
∑

I

nx�x−mr,r μr
2μx−mr

1

qx (x − mr)!r ! (3.5)

These likelihood equations do not always have a solution because the I G H Dm(μ1, μ2,

ρ1, ρ2) is not a regular model. Therefore, when likelihood equations do not have a solution
the maximum of the likelihood function is attained at the border of the domain of parameters. It
also happens for the generalized Hermite distribution and necessary and sufficient conditions
to ensure that the maximum likelihood estimator is the solution of likelihood equations
are given in [14]. As such, we obtained the second order partial derivatives of ln qx with
respect to parameters μ1, μ2, ρ1and ρ2 as given in Appendix –A. Now, by using MATHCAD
software one can observe that these equations are negative for all μi ∈ [0, 1] and ρi ∈ [0, 1],
for i = 1, 2. Thus the I G H Dm(μ1, μ2, ρ1, ρ2) is log concave and hence the maximum
likelihood estimators (MLE) of the parameters μ1, μ2, ρ1and ρ2 are unique under these
parametric restrictions (cf. [14]). Now the MLE of the parameters μ1, μ2, ρ1and ρ2 can
be obtained by solving the system of likelihood equations (3.2–3.5) with the help of some
mathematical softwares such as MATHCAD, MATHEMATICA, R etc.

We have fitted the ZTPD, the IPD, the IGPD and the I G H Dm(μ1, μ2, ρ1, ρ2) to the
following two data sets by the method of maximum likelihood with the help of MATHCAD
software and presented in Tables 1 and 2.

The first data set, given in Table 1 indicates the distribution of number of articles on
theoretical Statistics and Probability for years 1940–1949 and initial letter N-R of the author’s
name. For details, see Kendall [9]. The second data set given in Table 2 represents the
distribution of 1,534 biologists according to the number of research papers to their credit in
the review of applied entomology, volume 24, 1936. I G H Dm(μ1, μ2, ρ1, ρ2). For details
see Williams [21]. We have computed the value of estimators and their standard errors
(SE) and included in respective tables. For the second dataset, we have pooled the classes
corresponding to the observed values 6, 7, 8, 9, 10 and 10+ together so as to satisfy the
requirement of Pearson Goodness of fit (See Greenwood [5]) and consequently degrees of
freedom of Chi-square statistic becomes k − p − 1, where k is the number of categories and
p is the number of estimated parameters. Based on Chi-square values and P values given in
the tables, it can be observed that I G H D3(μ1, μ2, ρ1, ρ2) gives a better fit to the first data
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set whereas I G H D2(μ1, μ2, ρ1, ρ2) gives a better fit to the second data set compared to the
existing models such as ZTPD, IPD and IGPD.

Further, we have verified that mean values of the I G H Dm(μ1, μ2, ρ1, ρ2) for each value
of m agrees with the corresponding sample mean which shows the consistency of estimators
of parameters obtained through maximum likelihood estimation discussed in this section.
Thus, it can be seen that I G H Dm(μ1, μ2, ρ1, ρ2) model gives better fit to both datasets
compared to the classical models for particular value of m. This may be due to the fact
that I G H Dm(μ1, μ2, ρ1, ρ2)considers the effect of further interventions such as academic
promotion criteria, research incentives etc. Also, it can be observed from tables that the
number of articles published in different categories of datasets are not very small for higher
observed x values, which indicates some interventions such as measures taken for academic
promotion criteria, research incentives etc. that favours the number of publications in each
case.
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Appendix

The second order partial derivatives of ln qx with respect to μ1, μ2, ρ1and ρ2 are obtained as
given below:
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∂2

∂ρ2
1

ln qx =
[ x

m

]
∑

r=0

[
x−2
m

]

∑

r=0

�x−mr,r �x−mr−2, r

(x−mr)!(x−mr −2)!(r !)2 (μx−mr
1 μr

2)

⎛

⎝

[ x
m

]
∑

r=0

�x−mr,rμ
x−mr
1 μr

2

(x − mr)!r !

⎞

⎠

−2

−

⎡

⎢
⎢
⎣

[
x−1
m

]

∑

r=0

�x−mr−1, r μx−mr
1 μr

2

(x−mr −1)!r !

⎤

⎥
⎥
⎦

⎛

⎝

[ x
m

]
∑

r=0

�x−mr,rμ
x−mr
1 μr

2

(x−mr)!r !

⎞

⎠

−2

(4.3)

∂2

∂ρ2
2

ln qx =
[ x

m

]
∑

r=0

[ x
m

]
∑

r=0

�x−mr,r �x−mr, r−2

((x − mr)!)2r !(r − 2)! (μ
x−mr
1 μr−1

2 )2

⎛

⎝

[ x
m

]
∑

r=0

�x−mr,rμ
x−mr
1 μr

2

(x − mr)!r !

⎞

⎠

−2

−
⎡

⎣

[ x
m

]
∑

r=1

�x−mr, r−1 μx−mr
1 μr

2

(x − mr)!(r − 1)!

⎤

⎦

⎛

⎝

[ x
m

]
∑

r=0

�x−mr,rμ
x−mr
1 μr

2

(x − mr)!r !

⎞

⎠

−2

(4.4)

References

1. Consul, P.C.: Generalized Poisson distribution. In: Properties and Applications. Marcel Dekker,
New York (1989)

2. Consul, P.C., Famoye, F.: The truncated generalized Poisson distribution and its estimation. Commun.
Stat. Theory Methods 18, 3635–3648 (1989)

3. Dhanavananthan, P.: Compound intervened Poisson distribution. Biometr. J. 40, 641–646 (1998)
4. Dhanavananthan, P.: Estimation of the parameters of compound intervened Poisson distribution. Biometr.

J. 40, 315–320 (2000)
5. Greenwood, P.E., Nikulin, M.S.: A Guide to Chi-Squared Testing. Wiley, New York (1996)
6. Gupta, R.P., Jain, G.C.: A generalized Hermite distribution and its properties. Siam J. Appl. Math. 27,

359–363 (1974)
7. Huang, M., Fung, K.Y.: Intervened truncated Poisson distribution. Sankhya Ser. B 51, 302–310 (1989)
8. Kemp, A.W., Kemp, C.D.: Some properties of the Hermite distribution. Biometrika 52, 381–394 (1965)
9. Kendall, M.G.: Natural law in science. J. R. Stat. Soc. Ser. A 124, 1–18 (1961)

10. Kumar, C.S.: Extended generalized hyper geometric probability distributions. Stat. Probab. Lett. 59, 1–7
(2002)

11. Kumar, C.S., Shibu, D.S.: Modified intervened Poisson distribution. Statistica 71, 489–499 (2011)
12. Kumar, C.S., Shibu, D.S.: An alternative to truncated intervened Poisson distribution. J. Stat. Appl. 5,

131–141 (2012)
13. Patel, M.N., Gajjar. A.V.: Estimation from power series distribution. Metron LVIII, 171–184 (2000)
14. Puig, P.: Characterizing additively closed discrete models by a property of their MLEs, with an application

to generalized Hermite distributions. J. Am. Stat. Assoc. 98, 687–692 (2003)
15. Saksena, K.M., Kazim, M.A., Pathan, M.A.: Elements of Special Functions. P.C. Dwadash Shreni & Co.

(Pvt.) Ltd., Aligarh (1972)
16. Scollnik, D.P.M.: Bayesian analysis of an intervened Poisson distribution. Commun. Stat. Theory Methods

24, 735–754 (1995)
17. Scollnik, D.P.M.: On the analysis of the truncated generalized Poisson distribution using a Bayesian

method. Aust. Bull. 28, 135–152 (1998)
18. Scollnik, D.P.M.: On the intervened generalized Poisson distribution. Commun. Stat. Theory Methods

35, 953–963 (2006)
19. Shanmugam, R.: An intervened Poisson distribution and its medical application. Biometrics 41,

1025–1029 (1985)
20. Shanmugam, R.: An inferential procedure for the Poisson intervention parameter. Biometrics 48, 559–565

(1992)
21. Williams, C.B.: Number of publications written by biologists. Ann. Eugenics 12, 143–146 (1944)

123


	On some aspects of intervened generalized Hermite distribution
	Abstract
	1 Introduction
	2 The intervened generalized Hermite distribution
	3 Estimation
	Acknowledgements
	Appendix
	References


