Skip to main content

Advertisement

Log in

Electric Solar Wind Sail Kinetic Energy Impactor for Asteroid Deflection Missions

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

An electric solar wind sail uses the natural solar wind stream to produce low but continuous thrust by interacting with a number of long thin charged tethers. It allows a spacecraft to generate a thrust without consuming any reaction mass. The aim of this paper is to investigate the use of a spacecraft with such a propulsion system to deflect an asteroid with a high relative velocity away from an Earth collision trajectory. To this end, we formulate a simulation model for the electric solar wind sail. By summing thrust vectors exerted on each tether, a dynamic model which gives the relation between the thrust and sail attitude is proposed. Orbital maneuvering by fixing the sail’s attitude and changing tether voltage is considered. A detailed study of the deflection of fictional asteroids, which are assumed to be identified 15 years before Earth impact, is also presented. Assuming a spacecraft characteristic acceleration of 0.5 mm/s 2, and a projectile mass of 1,000 kg, we show that the trajectory of asteroids with one million tons can be changed enough to avoid a collision with the Earth. Finally, the effectiveness of using this method of propulsion in an asteroid deflection mission is evaluated in comparison with using flat photonic solar sails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. http://www.nasa.gov/content/heliopause-electrostatic-rapid-transit-system-herts/#.VTsZdpOo1c4

References

  1. Alvarez, L. W., Alvarez, W., Asaro, F., Michael, H. V.: Extra-terrestrial cause for the cretaceous-tertiary extinction. Science 208(4448), 1095–1108 (1980). doi:10.2307/1683699

    Article  Google Scholar 

  2. Binzel, R.P.: The torino impact hazard scale. Planetary and Space Science 48, 297–303 (2000). doi:10.1016/S0032-0633(00)00006-4

    Article  Google Scholar 

  3. Carry, B.: Density of asteroids. Planetary and Space Science 73(1), 98–118 (2012). doi:10.1016/j.pss.2012.03.009

    Article  Google Scholar 

  4. Chapman, C. R., Morrison, D.: Impact on the Earth by asteroids and comets: Assessing the hazard. Nature 367(6458), 33–39 (1994). doi:10.1038/367033a0

    Article  Google Scholar 

  5. Chyba, C. F., Thomas, P. J., Zahnle, K. J.: The 1908 Tunguska explosion: Atmospheric disruption of a stony asteroid. Nature 361, 40–44 (1993). doi:10.1038/361040a0

    Article  Google Scholar 

  6. Dachwald, B., Wie, B.: Solar sail kinetic energy impactor trajectory optimization for an asteroid-deflection mission. J. Spacecr. Rocket. 44(4), 755–764 (2007). doi:10.2514/1.22586

    Article  Google Scholar 

  7. Envall, J., Janhunen, P., Toivanen, P., Pajusalu, M., Ilbis, E., Kalde, J., Averin, M., Kuuste, H., Laizans, K., Allik, V., Rauhala, T., Seppänen, H., Kiprich, S., Ukkonen, J., Haeggstrom, E., Kalvas, T., Tarvainen, O., Kauppinen, J., Nuottajärvi, A., Koivisto, H.: E-sail test payload of the ESTCube-1 nanosatellite. In: Proceedings of the Estonian Academy of Sciences (2014)

  8. Ivashkin, V., Smirnov, V.: An analysis of some methods of asteroid hazard mitigation for the earth. Planetary and Space Science 43(6), 821–825 (1995). doi:10.1016/0032-0633(94)00225-G

    Article  Google Scholar 

  9. Izzo, D.: Optimization of interplanetary trjectories for impulsive and continuous asteroid deflection. J. Guid. Control. Dyn. 30(2), 401–408 (2007). doi:10.2514/1.21685

    Article  MathSciNet  Google Scholar 

  10. Izzo, D., de Negueruela, C., Ongaro, F., Walker, R.: Strategies for near earth object impact hazard mitigation. In: Proceedings of the Space Flight Mechanics Conference, AAS, Copper Mountain, Colorado (2005)

  11. Janhunen, P.: Electric sail for spacecraft propulsion. J. Propuls. Power 20(4), 763–764 (2004). doi:10.2514/1.8580

    Article  Google Scholar 

  12. Janhunen, P.: The electric sail - a new propulsion method which may enable fast missions to the outer solar system. J. Br. Interplanet. Soc. 61, 322–325 (2008)

    Google Scholar 

  13. Janhunen, P.: Increased electric sail thrust through removal of trapped shielding electrons by orbit chaotisation due to spacecraft body. Ann. Geophys. 27(8), 3089–3100 (2009). doi:10.5194/angeo-27-3089-2009

    Article  Google Scholar 

  14. Janhunen, P., Sandroos, A.: Simulation study of solar wind push on a charged wire: Basis of solar wind electric sail propulsion. Ann. Geophys. 25(3), 755–767 (2007). doi:10.5194/angeo-25-755-2007

    Article  Google Scholar 

  15. Janhunen, P., Toivanen, P. K.: Electric sailing under observed solar wind conditions. Astronautics and Space Sciences 5, 61–69 (2019)

    Google Scholar 

  16. Janhunen, P., Quarta, A. A., Mengali, G.: Electric solar wind sail mass budget model. Geocentric Instrumentation Methods and Data Systems 2, 85–95 (2013). doi:10.5194/gi-2-85-2013

    Article  Google Scholar 

  17. Khurshid, O., Tikka, T., Praks, J., Hallikainen, M.: Accomodating the plasma brake experimant on-board the aalto-1 satellite. In: Proceedings of the Estonian Academy of Sciences (2014)

  18. Lu, E. T., Love, S.: Gravitational tractor for towing asteroids. Nature 438, 177 (2005). doi:10.1038/438177a

    Article  Google Scholar 

  19. McInnes, C. R.: Solar sailing; technology, dynamics and mission applications 2, 32–55 (1999)

  20. Mengali, G., Quarta, A. A.: Optimal nodal flyby with near-Earth asteroids using electric sail. Acta Astronautica 104, 450–457 (2014). doi:10.1016/j.actaastro.2014.02.012

    Article  Google Scholar 

  21. Mengali, G., Quarta, A. A., Janhunen, P.: Electric sail performance analysis. J. Spacecr. Rocket. 45(1), 122–129 (2007). doi:10.2514/1.31769

    Article  Google Scholar 

  22. Quarta, A. A., Mengali, G.: Electric sail mission analysis for outer solar exploration. J. Spacecr. Rocket. 33(3), 740–755 (2008). doi:10.2514/1.47006

    Google Scholar 

  23. Quarta, A.A., Mengali, G.: Electric sail missions to potentially hazardous asteroids. Acta Astronautica 66, 1506–1519 (2013). doi:10.1016/j.actaastro.2009.11.021

    Article  Google Scholar 

  24. Quarta, A. A., Mengali, G., Janhunen, P.: Electric sail for a near-earth asteroid sample return mission: Case 1998 ky26. J. Aerosp. Eng. 27(6) (2014). doi:10.1061/(ASCE)AS.1943-5525.0000285

  25. Rabinowitz, D., Helin, E., Lawrence, K., Pravdo, S.: A reduced estimate of the number of kilometre-sized near-earth asteroids. Nature 403(6766), 165–166 (2000). doi:10.1038/35003128

    Article  Google Scholar 

  26. Sittler, E. C., Scudder, J. D.: An empirical polytrope law for solar wind thermal electrons between 0.45 and 4.76 au: Voyager and mariner 10. J. Geophys. Res. 85, 5131–5137 (1980). doi:10.1029/JA085iA10p05131

    Article  Google Scholar 

  27. Slavin, J. A., Holzer, R. E.: Solar wind flow about the terrestrial planets, 1. modeling bow shock position and shape. J. Geophys. Res 418(11), 11, 401–11 (1981). doi:10.1029/JA086iA13p11401

    Article  Google Scholar 

  28. Slavinskis, A. M.P., Kuuste, H., Ilbis, E., Eenmäe, T., Sünter, I., ans, K. L., Ehrpais, H., Liias, P., Kulu, E., Viru, J., Kalde, J., Kvell, U., Kütt, J., Zälite, K., Kahn, K., Lätt, S., Envall, J., Toivanen, P., Polkko, J., Janhunen, P., Rosta, R., Kalvas, T., Vendt, R., Allik, V., Noorma, M.: ESTCube-1 in-orbit experience and lessons learned. IEEE Aerospace and Electronics Systems Magazine 30(8), 13–22 (2015). doi:10.1109/MAES.2015.150034

    Article  Google Scholar 

  29. Toivanen, P. K., Janhunen, P.: Spin plane control and thrust vectoring of electric solar wind sail. J. Propuls. Power 29(1), 178–185 (2013). doi:10.2514/1.B34330

    Article  Google Scholar 

  30. Vasile, M., Colombo, C.: Optimal impact strategies for asteroid deflection. J. Guid. Control. Dyn. 31(4), 858–872 (2008). doi:10.2514/1.33432

    Article  Google Scholar 

  31. Vasilyev, N.V.: The Tunguska meteorite problem today. Planet Space Science 46(2/3), 129–150 (1998). doi:10.1016/S0032-0633(97)00145-1

    Article  Google Scholar 

  32. Wie, B.: Solar sail kinetic energy impactor (KEI) mission for impacting/deflecting near-earth asteroids. In: 41st AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit, AIAA, Tucson, AZ (2005)

  33. Wright, J.: Space Sailing, pp 227–233. Gordon and Breach Science Publisher (1992)

  34. Yamaguchi, K., Yamakawa, H.: Orbital maneuver of electric sail using on/off thrust control. Koku-Uchu-Gijyutsu(Aerospace Technology Japan, the Japan Society for Aeronautical and Space Sciences) 12:79–88 (2013)

Download references

Acknowledgements

The present study was supported by JSPS KAKENHI Grant Number 15J08268.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouhei Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, K., Yamakawa, H. Electric Solar Wind Sail Kinetic Energy Impactor for Asteroid Deflection Missions. J of Astronaut Sci 63, 1–22 (2016). https://doi.org/10.1007/s40295-015-0081-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-015-0081-x

Keywords

Navigation