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Abstract In this study, silk fibroin was extracted from

cocoons of silkworms and fabricated into nonwoven mats by

electrospinning method. A new model based on the group

method of data handling (GMDH) and artificial neural net-

work (ANN) was developed for estimation of the average

diameter of electrospun silk fibroin nanofibers. In this

regard, concentration, flow rate, voltage, distance, and speed

of collector were used as input parameters and average

diameter of the fibers was considered as output parameter.

Two models were capable to estimate average diameter of

fibers with good accuracy. The average absolute relative

deviation for GMDH and ANN models was equal to 3.56

and 2.28 %, respectively. Furthermore, due to importance of

oxygen delivery to site of injury to promote wound healing,

continuity equation for mass transport was employed for

prediction of oxygen profile in the system containing wound

dressing and skin. The result showed that our prepared

wound dressing is capable to pass the oxygen completely to

the skin layer and is not acting as a barrier for oxygen

delivery to wound site. Since average nanofibers diameter

can influence the mat physical, mechanical and biological

properties then this model may serve as a useful guide to

obtain tailor made and uniform silk nanofibers at various

combinations of process variables.

Keywords Wound dressing � Silk fibroin �
Electrospinning � GMDH � ANN � Oxygen profile

Introduction

Nanotechnology is a growing field of manufactured mate-

rials with sizes less than 1 lm, and it is particularly useful

in the field of biology because these applications replicate

components of a cell’s in vivo environment. Nanofibers,

which mimic collagen fibrils in the extracellular matrix

(ECM), can be prepared from a host of natural and syn-

thetic biomaterials and have multiple properties that may

be beneficial to field of materials for medical applications.

These properties include a large surface-area-to-volume

ratio, high porosity, improved cell adherence, proliferation

and migration, and controlled in vivo degradation rates.

The large surface area of nanofiber mats allows for

increased interaction with compounds and provides a

mechanism for sustained release of antibiotics, analgesics,

or growth factors into injured tissue; high porosity allows

diffusion of nutrients and waste. Improved cell function on

these scaffolds will promote healing. Controlled degrada-

tion rates of these scaffolds will promote scaffold absorp-

tion after its function is no longer required (Hromadka

et al. 2008). All the mentioned properties can be influenced

by fiber morphology and diameter (Min et al. 2004; Kim

et al. 2003). It is mentioned in the literature that, those fiber

morphology and diameter are depend on many parameters

which can be divided into four main categories: polymer

properties (molecular weight and solubility), polymer

solution parameters (polymer concentration, solution vis-

cosity, conductivity, surface tension, and etc.), processing

conditions (applied voltage, nozzle-collector distance, feed

rate, and needle diameter), and ambient parameters
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(temperature, atmosphere pressure, and relative humidity)

(Nasouri et al. 2012).

Silk fibroin, derived from silkworm cocoons, has attracted

the scientific community due to its good biocompatibility

along with suitable mechanical property. Fibroin protein is

the major constituent 75 % of the cocoon and the remaining

25 % is sericin protein (Kim et al. 2005; Chirila et al. 2013).

The molecular orientation makes this protein form a semi-

crystalline structure which contains two phases: highly

crystalline antiparallel b-sheet structure and non-crystalline
part (Wang et al. 2004). The crystalline part lead to increase

the strength and toughness and the non-crystalline part

contributes the flexibility and elasticity to the fiber (Jin et al.

2005). Over the past years, many studies have explored silk

fibroin in various forms from its regenerated solution,

including porous scaffolds, films and electrospun fibers

(Wharram et al. 2010). The electrospun silk fibers with

uniform micro or nano scale fibers have found utility in

producing different biomaterials like wound dressing or

scaffolds for a variety of biological applications such as

bone, nerve and skin tissue (Valenzuela et al. 2012).

The lack of comprehensive and predictive models is

sensing in the field of electrospinning. For instance, it can

be characterized that when one of the parameters of elec-

trospinning process is changed what will happen for

diameter of nanofibers. The experimental observations

show an increase or decrease in fiber diameter. But, it is not

possible to predict the diameter magnitude without con-

ducting experimental procedure. Consequently when a

special diameter of fibers is required, it is necessary to

change various parameters. However, experimental inves-

tigations are time consuming and almost expensive. In

these situations, existence of predictive models will be so

beneficial. Recently, studies have been carried out to

determine the feasibility and to optimize the diameter of

electrospun nanofibers with different type of mathematical

relationships or models such as design of experiments or

artificial neural network (Malallah and Nashawi 2005).

Artificial neural networks (ANN) are flexible modeling

method which shown excellent performance for modeling

different problems. Generally, ANNs are empirical mathe-

matical tools which can model various data sets even in the

cases that complex relation is existed between input and

output parameters. This method provides flexible non-linear

mathematical functionmapping of a set of input variables into

the output of network. Although ANNs are accurate systems

formodeling different problems, but they have a disadvantage

about their mathematical structure (Atashrouz et al. 2014a, b).

Obtained mathematical structures for an ANN model are

complicated and practical application of this type ofmodels is

not easy. To address this issue, groupmethod of data handling

type neural networks (GMDH-NN) was proposed. GMDH-

type neural networks also known as polynomial neural

networks has both accuracy in modeling and simplicity in

mathematical structure (Atashrouz et al. 2014a, b; Dodangeh

et al. 2014).

In this work, GMDH and ANN models are used for

prediction of fiber diameter and also comparison of their

performance as two different types of neural networks to

prepare electrospun nanofibers from silk fibroin. In this

regard, concentration, flow rate, voltage, distance, and

speed of collector were used as input parameter and

diameter of fibers was considered as output parameter. In

addition, due to importance of oxygen delivery to site of

injury and to promote wound healing process, it will be

interesting to predict the oxygen profile within the elec-

trospun mat and also the skin layer as an example. In this

regard, a mathematical relationship based on a finite dif-

ference method was applied for predicting profile of oxy-

gen in system containing electrospun mat and skin.

Materials and methods

Preparation of silk fibroin

Silkworm cocoons were obtained from Gilan University

(Rasht, Iran). First, cocoons of Bombyx mori were boiled

for 45 min in an aqueous solution of 0.02 M sodium car-

bonate, and then rinsed with distilled water to completely

remove sericin. After drying, the degummed silk fibers

were dissolved in 9.3 M LiBr at 60 �C for 4 h and then

were dialyzed in a dialysis bag (12,000 MWCO, Sigma,

USA) against distilled water for 3 days with changing

water several times for the removal of the salt. Finally, the

film of silk fibroin solution was prepared (Mirahmadi et al.

2013; Uttayarat et al. 2012).

Electrospinning

Silk-based electrospun scaffolds were fabricated as fol-

lows: 10 and 12 % (w/v) solution of silk fibroin in formic

acid (98–100 %, Merck) were prepared and stirred at room

temperature for 1 h to obtain complete dissolution. The

solutions were filled into a 2.5 mL plastic syringe (18–G).

Flow rate, distance, speed of collector and spinning voltage

were selected in the range of 0.1–0.6 (cc/h), 8–12 (cm),

200–2500 (rpm) and 12–30 (kV), respectively.

Characterization of the prepared electrospun mat

Morphological observation by scanning electron

microscopy (SEM)

The morphological investigation of the electrospun nano-

fibers was performed with scanning electron microscope
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(AIS2100, South Korea). The intact samples coated with

gold for SEM witnessing. In the SEM photos, the fiber

diameters were determined by means of Image J software

and the results were given as the average diameter ±

standard deviation.

FT-IR spectroscopy

FT-IR spectroscopy (Tensor 27, Brucker Optics, Germany)

was used to determine the protein conformation in elec-

trospun nanofibers of silk fibroin. The scan was collected

under absorbance mode from 4000 to 400 cm-1 at 4 cm-1

scan resolution.

Group method of data handling (GMDH)

In the GMDH type neural network algorithm, by combi-

nation of more than two variables at a time a polynomial

expression can be obtained for studied problem. The

algorithm is tried to find most appropriate configuration of

polynomials which best accuracy. The following series is

the form of grand correlation multinomial in GMDH sys-

tems (Atashrouz et al. 2015a, b):

y0 ¼ a0 þ
XM

i¼1

Xm

j¼1

. . .
XM

k¼1

aij...kx
n
i x

n
j ; . . .; x

n
k n ¼ 0; 1; . . .; 2l

ð1Þ

where y0 is the output, xi, xj, and xk are input parameters

and l is the number of layers. In addition, a0, aijk are

coefficients of grand correlation multinomial which should

be adjusted based on the algorithm.

Now for an input vector of x = (x1, x2,…, xn) the output

of the multinomial is fiðx1; x2; . . .; xnÞ. The parameters of

Eq. 1 should be adjusted based on the real data. It is sup-

posed that real data are show with ri. So, to optimize the

grand correlation multinomial, square of difference

between real data and calculated data of multinomial

expression should be close together:

XM

i¼1

½fiðx1; x2; . . .; xnÞ � ri�2 ! min ð2Þ

where M is corresponds to the number of observations.

Figure 1 shows a schematic of proposed GMDH model.

For more detailed information about the group method of

data handling, the reader is referred to the literatures

(Atashrouz et al. 2015a, b).

Artificial numeral network (ANN)

Neural networks consist of arrays of simple active units

linked by weighted connections. ANN consists of multiple

layers of neurons arranged in such a way that each neuron in

one layer is connectedwith each neuron in the next layer. The

network used in this study is amultilayer feed forward neural

network with a learning scheme of the back-propagation

(BP) of errors and the Levenberg–Marquardt algorithm for

the adjustment of the connecting weights. Neurons are the

fundamental processing element of an ANN, which are

arranged in layers that make up the global architecture. The

ANN input is the first layer in the network through which the

information is supplied. The number of neurons in the input

layer depends on the network input parameters. Hidden

layers connect the input and output layers. Hidden layers

enrich the network for learning the relation between input

and output data. In theory, ANN with only one hidden layer

and enough neurons in the hidden layer, has the ability to

learn any relation between the input and output data (Zhang

et al. 1998). Transfer function is themathematic function that

determines the relation between neuron output and the net-

work. The sigmoid transfer function is as follow:

OPjðnetÞ ¼
1

1þ e�net
ð3� aÞ

net ¼
Xn�1

i¼0

wixi ð3� bÞ

which ‘‘n’’ in Eq. (3) is the number of inputs to the neuron.

‘‘wi’’ is the weight coefficient corresponding to the input

‘‘xi’’ and ‘‘Opj’’ is the output corresponding to the ‘‘j’’

neuron. For completion of this section, we illustrate the

learning BP algorithm (Atashrouz et al. 2013).

ANN training algorithm

The Back-Propagation Algorithm is one of Least Mean

Square methods, which is normally used in engineering. In a

Fig. 1 Schematic of proposed GMDH model

Prog Biomater (2016) 5:71–80 73

123



multilayer perceptron, each neuron of a layer is linked to all

neurons of the previous layer. Figure 2 shows a perceptron

with a hidden layer. Each layer output acts as the input to the

next neurons. To train Multilayer Feed Forward Neural Net-

work, Back-Propagation Law is used. In the first stage, all

weights and biases are selected according to small random

numbers. In the second stage, input vector Xp = x0, x1, …,

xn-1 and the target exit Tp = t0, t1, …, tm-1 are given to the

network, where the subscripts n and m are the numbers of

input and output vector, respectively. In the third stage, the

following quantitative values are calculated and transferred to

the subsequent layer until it eventually reaches the exit layer.

OPj ¼ f
Xn�1

i¼0

wixi

" #
ð4Þ

The fourth stage begins from the exit layer, during

which the weight coefficients are corrected.

wijðt þ 1Þ ¼ wijðtÞ þ gdPjOPj ð5Þ

where ‘‘Wij(t)’’ stands for the weight coefficients from node

‘‘i’’ to node ‘‘j’’ in time ‘‘t’’, ‘‘g’’ is the rate coefficient,

‘‘dPj’’ refers to the corresponding error of input pattern ‘‘P’’

to the node ‘‘j’’ and ‘‘OPj’’ is the output corresponding to

the j neuron. ‘‘dPj’’ is calculated by the following equations

for exit layer and hidden layer, respectively (Browne

1997):

dPj ¼ OPjð1� OPjÞðtPj � OPjÞ ð6Þ

dPj ¼ OPjð1� OPjÞ
X

k

dPkwjk ð7Þ

Here, the R acts for k nodes on the subsequent layer after

the node ‘‘j’’. In the learning process, there are several

parameters that have influence on the ANN training. These

parameters are the number of iterations, number of hidden

layers and the number of hidden neurons. To find the best

architecture of the model, best set of the aforementioned

parameters based on minimizing the network output error

should be chosen (Atashrouz et al. 2013, 2014a, b).

Prediction of oxygen profile in a system containing

wound dressing and skin

Figure 3 shows a schematic of considered problem for

prediction of oxygen concentration. As can be observed,

the system is consisted of two regions of wound dressing

and skin. In the wound dressing region, oxygen is only

diffused and equation of continuity takes following form:

oc

ot
¼ ðrDw�drcÞ ð8Þ

However, since in the skin layer due to existence of

oxygen consumption by cells a reaction term should be

added to equation:

oc

ot
¼ ðrDskinrcÞ � R ð9Þ

Input Layer 

Hidden Layer 

Output Layer 

Fig. 2 Perceptron structure with a hidden layer

Fig. 3 Schematic of wound

dressing and skin with boundary

conditions of system
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The reaction rate kinetic function describing the overall

oxygen consumption for metabolic is assumed to has the

Michaelis–Menten kinetics. In this regard equation takes

following form:

oc

ot
¼ ðrDskinrcÞ � vmc

km þ c
ð10Þ

where vm and km are Michaelis–Menten parameters which

vm is the maximum rate of oxygen consumption and km is

the concentration of oxygen when the rate of reaction is

equal to 1=2vm. The value of diffusion coefficient, specific

oxygen consumption rate is equal to 2.54 9 10-5 cm2 s-1

and 3.33 9 10-5 s-1 respectively (Lee et al. 2013; von

Heimburg et al. 2005).

The oxygen concentration at the upper boundary of the

wound dressing is equal to atmospheric oxygen concen-

tration (Catm) which has the following relation:

C ¼ Catm; X ¼ 0 ð11Þ

The equal flux condition exists at the interface of the

wound dressing and skin which is as below:

�Dw�drc w�dj ¼ �Dskinrc skinj ; X ¼ L1 ð12Þ

where L1 is the thickness of wound dressing.

In addition, diffusion of oxygen to the right and left side

of boundaries is equal to zero (rC ¼ 0).

Results and discussion

Modeling of the fiber diameter

To develop of GMDH and ANN models, concentration,

flow rate, voltage, distance, and speed of collector were

used as input parameter and diameter of fibers was con-

sidered as output parameter. Variable parameters of elec-

trospinning are tabulated in Table 1. Optimized GMDH

Table 1 Characteristic of different samples

Number of sample Concentration (%) Flow rate (cc/h) Voltage (KV) Distance (cm) Speed of collector (rpm) Diameter (nm)

1 10 0.1 20 12 200 134.19

2 10 0.3 20 12 200 168.49

3 10 0.4 20 12 200 185.35

4 10 0.6 20 12 200 226.74

5 10 0.4 20 12 800 167.71

6 10 0.4 20 12 1500 159.96

7 10 0.4 20 12 2500 159.09

8 10 0.3 22 12 800 188.46

9 10 0.3 20 12 1500 158.09

10 10 0.3 20 12 2500 156.35

11 10 0.4 15 10 200 158.62

12 10 0.4 17.5 10 200 175.19

13 10 0.4 20 10 200 182.91

14 10 0.4 22.5 10 200 203.69

15 10 0.4 20 8 200 183.65

16 10 0.4 22 8 200 192.79

17 10 0.4 24 8 200 215.31

18 10 0.4 26 8 200 216.76

19 12 0.3 19 12 600 217.42

20 12 0.4 22 12 600 250.26

21 12 0.5 22 12 600 259.33

22 12 0.6 22 12 600 260.93

23 12 0.5 23 12 600 259.90

24 12 0.5 25 12 600 268.60

25 12 0.6 25 12 600 277.80

26 12 0.2 12 12 400 197.91

27 12 0.2 16 12 400 203.50

28 12 0.2 26 12 400 219.75

29 12 0.2 30 12 400 263.26
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model was obtained based on the experimental data and

tabulated in Table 2. In addition, it should be noted that

experimental data were divided into two sections: ran-

domly, 70 % of experimental data were used for training

the model and the rest 30 % were considered for testing the

model. It should be emphasized that test data set is nec-

essary because in the proposed model, maybe performance

for estimation of train data would be satisfactory, but when

the model is applied for a new sample the result is not

accomplished with good accuracy.

Figures 4 and 5 shows estimated data by GMDH and

ANN models as experimental data. Both models indicate

good performance and experimental data are keep close to

diagonal line. The average absolute relative deviation for

GMDH and ANN models was equal to 3.56 and 2.28 %,

respectively. The average absolute relative deviation for

model is defined as follows:

MARD% ¼ 1

100

XN

i¼1

dexperimental � destimation

�� ��
dexperimental

ð13Þ

Comparing the MARD% of both models indicates that

ANN is more accurate than GMDH. In addition to the good

accuracy for both models, it will be interesting to check the

physical response of the models to different parameters. It

means, as explained in previous section when all input

parameters expect one of them are constant, the diameter of

fibers can increase or decrease with changing the

considered parameter. To check this possibility for GMDH

and ANN models, the effect of various parameters on

response of both models was considered. Figure 6 repre-

sents the effect of flow rate on the nanofiber diameter and

the predicted results by GMDH and ANN models. As

shown in this figure, both GMDH and ANN models have

well prediction about increased diameter and desired

behavior. However, the results of ANN model for higher

flow rate of 0.8 cc/h are different from GMDH model. It

should be noted that according to existing theories of

neural networks, this type of model cannot be extrapolated

and just used for the modeling and interpolation between

the experimental data. This means that it is better to use the

neural networks in the range of variables to reduce the

possibility of incorrect predictions.

Figure 7 shows variations of diameter as speed of col-

lector. As can be seen GMDH model was predicted a

descending trend with increasing the speed of collector,

nanofiber diameter decreased, but ANN model shows dif-

ferent slop trend. Thus, it can be concluded, ANN model

has a good ability to conformity on the experimental data,

but physically this model is not able to predict the trend of

decreasing the nanofiber diameter.

In addition Fig. 8 shows variations of diameter as col-

lector distance. According to this figure, ANN model

shows irrational prediction and with increasing distance,

nanofiber diameter first decrease and then increase, but

Table 2 Mathematical relation

for GMDH model
Layer 1

N1 ¼ 57:899� 0:978409X4 � 0:0118487X5 þ 502124X4
1 þ 144:964X2 þ 0:0842974X2

3

Output layer

d ¼ �84:2446þ 0:00342148X5 � 24:1294X2 þ 100:383X4
2 þ 1:65187N1 � 4:80264� 10�6N3

1

X1, concentration; X2, flow rate; X3, voltage; X4, distance; X5 speed of collector

Fig. 4 Comparison between estimated data by GMDH model and

experimental data Fig. 5 Comparison between estimated data by ANN model and

experimental data
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GMDH model as well predict the behavior of experimental

data, but have some deviations with them. This is due to the

type of functions is intended to develop the GMDH model.

In addition, another advantage of GMDH model in com-

parison to ANN model is its simple mathematical structure.

While, ANNs have complex mathematical form which

make their applicability difficult.

Experimental investigation of the electrospinning

parameters on fiber diameter

Figure 9 shows FTIR spectroscopy of regenerated silk

fibroin and as expected from previous works peaks in the

Amide I (1655 cm-1), Amide II (1538 cm-1) and Amide

III (1239 cm-1) related to random coil structure of it are

observed (Rousseau et al. 2004; Mirahmadi et al. 2013).

The SEM images of electrospun silk nanofibers under

different concentrations are given in Fig. 10. It is seen that

increasing in polymer concentration from 10 to 13 %

results in fiber diameter increase ranging from

135 ± 16 nm to about 300 ± 29 nm.

This can be explained by two reasons: first, increase in

the amount of polymer in electrospinning jet and second,

more interaction between polymer chains in solution which

later is lead to more resistance of solution against pulling

by electrical charges. This behavior is also observed in the

study of Sukigara et al. (2004).

Figure 11 shows SEM images of electrospun nanofibers

of silk fibroin under different spinning distances. If other

parameters were kept constant, increasing of spinning

distance is lead to more evaporation of solvent and

Fig. 6 The effect of flow rate variations on nanofiber diameter and

prediction of GMDH and ANN models (concentration 10 %, voltage

20 kV, collection distance 12 cm and collector speed 200 rpm)

Fig. 7 The effect of speed of collector variations on nanofiber

diameter and prediction of GMDH and ANN models (concentration

10 %, flow rate 0.4 cc/h, voltage 20 kV and collection distance

12 cm)

Fig. 8 The effect of distance variations on nanofiber diameter and

prediction of GMDH and ANN models (concentration 10 %, flow rate

0.4 cc/h, voltage 20 kV and collector speed 200 rpm)

Fig. 9 FTIR spectra of silk fibroin mats
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consequently decreases in diameter of fibers slightly. It

should be noted that the morphology of electrospun

nanofibers is not changed strongly. So spinning distance is

not considered very effective parameter in the morphology

of electrospun nanofibers (Sukigara et al. 2004; Zhou et al.

2009).

Figure 12 shows the effect of increase in flow rate on

fiber diameter. Obviously with increase in the flow rate,

more volume of solution is exit from the needle.

Therefore, diameter of the fibers is increased. The flow

rate has great importance effect on the formation of

Taylor’s cone and with increase of flow rate is caused to

uniform morphology of silk fibroin nanofibers. Conse-

quently, flow rate is a key parameter for obtaining an

appropriate structure in electrospinning (Megelski et al.

2002).

Oxygen profile in wound dressing and skin

Available analytical methods are not capable to solve the

continuity equation when reaction rate of Michaelis–

Menten kinetic is presented. Consequently, to solve equa-

tions and boundary conditions we should use numerical

methods. In this regard, implicit finite difference method

was considered for solving the problem and programming

was conducted in MATLAB software. It should be noted

that parameter of Michaelis–Menten kinetic was used from

refs (Lee et al. 2013; von Heimburg et al. 2005).

The result of solving the equations is presented in Fig. 13.

The figure is shown the oxygen profile after 1 day thatwound

dress is attached to the skin. As can be seen, oxygen can be

suitably diffuse on the wound dress and reach to the skin

layer for consumption by cells. It should be noted that last

layer of skin is more sensitive to the oxygen because the

magnitude of oxygen has its lower value in this region. The

lower magnitude of oxygen in last layer of skin is logical

because the problem is diffusion control. It means the only

mechanism to transport oxygen is diffusion mass transfer

which should be contest with the oxygen consumption of

cells. However, the figure shows that diffusion of oxygen in

our proposed wound dress is appropriate for transporting of

oxygen to even the last layer of skin.

Conclusion

In the present study, electrospinning of silk fibroin-based

nanofibrous mat under different conditions was performed

and effect of various parameters on the diameter of nano-

fibers was investigated. For example, we observed that

increasing the solution concentration from 10 to 13 %

results in increasing fiber diameters from 135 ± 16 nm to

about 300 ± 29 nm. Oppositely, increasing distance from

8 cm to 12 cm results in fiber diameters decreasing from

180 ± 31 to 158 ± 23 nm. Furthermore, two mathemati-

cal models based on the GMDH and ANN were developed

Fig. 10 SEM images and diameter distributions of electrospun nanofibers of silk fibroin prepared from silk fibroin aqueous solution under

different concentrations: a 10 %, b 12 %, c 13 % (flow rate 0.3 cc/h, voltage 24 kV and collection distance 12 cm). Scale bars 5 lm
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for prediction of nanofibers diameter. Both models have

good accuracy (MARD% = 3.56 % for GMDH and

MARD% = 2.28 % for ANN model), ANN model has less

error than GMDH model, but it has not good ability to

predict the trend of increase and decrease of diameter with

variation of electrospinning parameters. So GMDH model

is more appropriate for modeling the similar research

study. In addition, a mathematical model was proposed for

prediction of oxygen profile in wound dressing which it can

be concluded that the problem is diffusion control. In

Fig. 11 SEM images and diameter distributions of electrospun nanofibers of silk fibroin under different collection distances: a 8 cm, b 10 cm,

c 12 cm (concentration 10 %, voltage 20 kV, and flow rate 0.4 cc/h). Scale bars 5 lm

Fig. 12 SEM images and diameter distributions of electrospun nanofibers of silk fibroin under different flow rates: a 0.3 cc/h, b 0.5 cc/h,

c 0.6 cc/h (concentration 12 %, voltage 22 kV and collection distance 12 cm). Scale bars 5 lm
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addition, the rate of oxygen consumption by cells is more

than transported equation with diffusion mechanism.
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