Skip to main content
Log in

Materials Knowledge Systems in Python—a Data Science Framework for Accelerated Development of Hierarchical Materials

  • Research
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data-driven process-structure-property (PSP) linkages provide a systemic, modular, and hierarchical framework for community-driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open-source materials data science framework that can be used to create high-value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning, and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sawhney M, Verona G, Prandelli E (2005) Collaborating to create: the internet as a platform for customer engagement in product innovation. J Interact Mark 19(4):4–17

    Article  Google Scholar 

  2. Edwards AM, Bountra C, Kerr DJ, Willson TM (2009) Open access chemical and clinical probes to support drug discovery. Nat Chem Biol 5(7):436–440

    Article  CAS  Google Scholar 

  3. Bayne-Smith M, Mizrahi T, Garcia M (2008) Interdisciplinary community collaboration: perspectives of community practitioners on successful strategies. Journal of Community Practice 16(3):249–269

    Article  Google Scholar 

  4. Boudreau K (2010) Open platform strategies and innovation: granting access vs. devolving control. Manag Sci 56(10):1849–1872

    Article  Google Scholar 

  5. Aad G, Abajyan T, Abbott B, Abdallah J, Khalek SA, Abdelalim A, Abdinov O, Aben R, Abi B, Abolins M et al (2012) Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys Lett B 716(1):1–29

    Article  CAS  Google Scholar 

  6. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409 (6822):860–921

    Article  CAS  Google Scholar 

  7. Cranshaw J, Kittur A (2011) The polymath project: lessons from a successful online collaboration in mathematics. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, pp 1865–1874

  8. Dickinson JL, Zuckerberg B, Bonter DN (2010) Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst 41:149–72

    Article  Google Scholar 

  9. Hochachka WM, Fink D, Hutchinson RA, Sheldon D, Wong W-K, Kelling S (2012) Data-intensive science applied to broad-scale citizen science. Trends Ecol Evol 27(2):130–137

    Article  Google Scholar 

  10. Atkins D (2003) Revolutionizing science and engineering through cyberinfrastructure: report of the National Science Foundation Blue-Ribbon Advisory Panel on Cyberinfrastructure

  11. Anderson A (2011) Report to the president on ensuring American leadership in advanced manufacturing. Executive Office of the President. https://eric.ed.gov/?id=ED529992

  12. National Science and Technology Council Executive Office of the President: Materials Genome Initiative for Global Competitiveness. http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome/_initiative-final.pdf Accessed 2011-06-30

  13. Materials Genome Initiative National Science and Technology Council Committee on Technology Subcommittee on the Materials Genome Initiative: Materials Genome Initiative Strategic Plan. http://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf Accessed 2014-12-30

  14. McDowell DL, Kalidindi SR (2016) The materials innovation ecosystem: a key enabler for the materials genome initiative. MRS Bulletin 41(04):326–337

    Article  Google Scholar 

  15. Kalidindi SR (2015) Data science and cyberinfrastructure: critical enablers for accelerated development of hierarchical materials. Int Mater Rev 60(3):150–168

    Article  CAS  Google Scholar 

  16. Ward C (2012) Materials genome initiative for global competitiveness. In: 23rd Advanced Aerospace Materials and Processes (AeroMat) Conference and Exposition. ASM

  17. Allison J, Backman D, Christodoulou L (2006) Integrated computational materials engineering: a new paradigm for the global materials profession. JOM 58(11):25–27

    Article  Google Scholar 

  18. Allison J (2011) Integrated computational materials engineering: a perspective on progress and future steps. JOM 63(4):15– 18

    Article  Google Scholar 

  19. Olson GB (2000) Designing a new material world. Science 288(5468):993–998

    Article  CAS  Google Scholar 

  20. Allison J (2008) Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security. National Academies Press, New York, NY

    Google Scholar 

  21. Schmitz GJ, Prahl U (2012) Integrative computational materials engineering: concepts and applications of a modular simulation platform. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  22. Robinson L (2013) TMS study charts a course to successful ICME implementation. Springer

  23. Allison JE Integrated computational materials engineering (ICME): a transformational discipline for the global materials profession. Met Mater 223

  24. Integrated computational materials engineering (ICME): implementing ICME in the aerospace, automotive, and maritime industries. The Minerals, Metals and Materials, Society, PA. http://www.tms.org/icmestudy/

  25. CORE-Materials (2009) CORE-Materials—a resource repository contains a large number of open educational resources (OERs) in materials science and engineering. https://www.flickr.com/people/core-materials/. [Online; accessed 6-April-2016]

  26. Kalidindi SR (2015) Hierarchical materials informatics: novel analytics for materials data. Elsevier, New York, NY

    Google Scholar 

  27. Bhat TN, Bartolo LM, Kattner UR, Campbell CE, Elliott JT (2015) Strategy for extensible, evolving terminology for the materials genome initiative efforts. JOM 67(8):1866–1875

    Article  Google Scholar 

  28. of Standards, N.I., Technology: NIST Data Gateway. http://srdata.nist.gov/gateway/Accessed2016-04-01

  29. Laboratory, N.M.M.: NIST Repositories DSpace. https://materialsdata.nist.gov/dspace/xmlui/ Accessed 2016-04-01

  30. of Standards, N.I., Technology: NIST Data Curation System. https://mgi.nist.gov/materials-data-curation-system Accessed 2016-04-01

  31. Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C (2013) Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65(11):1501–1509

    Article  CAS  Google Scholar 

  32. MatWeb L MatWeb—materials property data. http://www.matweb.com/ Accessed 2016-04-01

  33. Curtarolo S, Setyawan W, Hart GL, Jahnatek M, Chepulskii RV, Taylor RH, Wang S, Xue J, Yang K, Levy O et al (2012) Aflow: an automatic framework for high-throughput materials discovery. Comput Mater Sci 58:218–226

    Article  CAS  Google Scholar 

  34. Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier VL, Persson KA, Ceder G (2013) Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput Mater Sci 68:314– 319

    Article  CAS  Google Scholar 

  35. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, et al. (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Materials 1(1):011002

    Article  CAS  Google Scholar 

  36. Project K OpenKIM - The Knowledgebase of Interatomic Models. https://openkim.org/ Accessed 2016-04-01

  37. Project P PRedictive Integrated Structural Materials Science (PRISMS). http://www.prisms-center.org/#/home Accessed 2016-04-01

  38. Selector CP (2013) Granta material intelligence, Cambridge, UK

  39. Hill J, Mulholland G, Persson K, Seshadri R, Wolverton C, Meredig B (2016) Materials science with large-scale data and informatics: unlocking new opportunities. MRS Bulletin 41(05):399–409

    Article  CAS  Google Scholar 

  40. Seshadri R, Sparks TD (2016) Perspective: interactive material property databases through aggregation of literature data. APL Materials 4(5):053206

    Article  CAS  Google Scholar 

  41. Michel K, Meredig B (2016) Beyond bulk single crystals: a data format for all materials structure-property-processing relationships. MRS Bulletin 41(8):617–623

    Article  Google Scholar 

  42. Plimpton S, Thompson A, Slepoy A (2012) SPPARKS kinetic Monte Carlo simulator

  43. Gaston D, Newman C, Hansen G, Lebrun-Grandie D (2009) Moose: a parallel computational framework for coupled systems of nonlinear equations. Nucl Eng Des 239(10):1768–1778

    Article  CAS  Google Scholar 

  44. Groeber MA, Jackson MA (2014) Dream. 3D: a digital representation environment for the analysis of microstructure in 3D. Integrating Materials and Manufacturing Innovation 3(1): 1–17

    Article  Google Scholar 

  45. Institute S (1985) SAS User’s guide: Statistics, vol 2. Sas Inst, California

  46. Seabold S, Perktold J (2010) Statsmodels: econometric and statistical modeling with Python. In: Proceedings of the 9th python in science conference, pp 57–61

  47. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in Python. The J Mach Learn Res 12:2825–2830

    Google Scholar 

  48. Albanese D, Visintainer R, Merler S, Riccadonna S, Jurman G, Furlanello C (2012) mlpy: Machine Learning Python. arXiv:1202.6548

  49. Goodfellow IJ, Warde-Farley D, Lamblin P, Dumoulin V, Mirza M, Pascanu R, Bergstra J, Bastien F, Bengio Y (2013) Pylearn2: a machine learning research library. arXiv:1308.4214

  50. McKinney W (2012) Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O’Reilly Media, Inc., California

    Google Scholar 

  51. Müller AC, Behnke S (2014) Pystruct: learning structured prediction in Python. The J Mach Learn Res 15(1):2055–2060

    Google Scholar 

  52. Demšar J, Zupan B, Leban G, Curk T (2004) Orange: from experimental machine learning to interactive data mining. Springer, Berlin Heidelberg

    Google Scholar 

  53. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M et al (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467

  54. Van Der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T (2014) scikit-image: image processing in Python. PeerJ 2:453

  55. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11 (5):357–372

    Article  Google Scholar 

  56. Hashin Z (1983) Analysis of composite materials—a survey. J Appl Mech 50(3):481–505

    Article  Google Scholar 

  57. Brown WF Jr (1955) Solid mixture permittivities. The J Chem Phys 23(8):1514–1517

    Article  CAS  Google Scholar 

  58. Kröner E (1986) Statistical modelling. In: Modelling small deformations of polycrystals. Springer, Netherlands, pp 229–291

    Chapter  Google Scholar 

  59. Kröner E (1977) Bounds for effective elastic moduli of disordered materials. J Mech Phys Solids 25(2):137–155

    Article  Google Scholar 

  60. Kröner E (1972) Statistical continuum mechanics. Springer, Vienna

    Google Scholar 

  61. Etingof P, Adams BL (1993) Representations of polycrystalline microstructure by n-point correlation tensors. Texture, Stress, and Microstructure 21(1):17–37

    Article  Google Scholar 

  62. Adams BL, Olson T (1998) The mesostructure-properties linkage in polycrystals. Prog Mater Sci 43 (1):1–87

    Article  CAS  Google Scholar 

  63. Fullwood DT, Adams BL, Kalidindi SR (2008) A strong contrast homogenization formulation for multi-phase anisotropic materials. J Mech Phys Solids 56(6):2287–2297

    Article  CAS  Google Scholar 

  64. Torquato S (2013) Random heterogeneous materials: microstructure and macroscopic properties, vol 16. Springer, New York

  65. Li D, Saheli G, Khaleel M, Garmestani H (2006) Quantitative prediction of effective conductivity in anisotropic heterogeneous media using two-point correlation functions. Comput Mater Sci 38(1):45–50

    Article  CAS  Google Scholar 

  66. Milhans J, Li D, Khaleel M, Sun X, Garmestani H (2011) Prediction of the effective coefficient of thermal expansion of heterogeneous media using two-point correlation functions. J Power Sources 196(8):3846–3850

    Article  CAS  Google Scholar 

  67. Adams BL, Kalidindi S, Fullwood DT (2013) Microstructure-sensitive design for performance optimization. Butterworth-Heinemann, United Kingdom

    Google Scholar 

  68. Garmestani H, Lin S, Adams B, Ahzi S (2001) Statistical continuum theory for large plastic deformation of polycrystalline materials. J Mech Phys Solids 49(3):589–607

    Article  Google Scholar 

  69. Adams BL, Gao XC, Kalidindi SR (2005) Finite approximations to the second-order properties closure in single phase polycrystals. Acta Mater 53(13):3563–3577

    Article  CAS  Google Scholar 

  70. Binci M, Fullwood D, Kalidindi SR (2008) A new spectral framework for establishing localization relationships for elastic behavior of composites and their calibration to finite-element models. Acta Mater 56 (10):2272–2282

    Article  CAS  Google Scholar 

  71. Landi G, Niezgoda SR, Kalidindi SR (2010) Multi-scale modeling of elastic response of three-dimensional voxel-based microstructure datasets using novel DFT-based knowledge systems. Acta Mater 58(7):2716–2725

    Article  CAS  Google Scholar 

  72. Kalidindi SR, Niezgoda SR, Landi G, Vachhani S, Fast T (2010) A novel framework for building materials knowledge systems. Computers, Materials, and Continua 17(2):103–125

    Google Scholar 

  73. Yabansu YC, Patel DK, Kalidindi SR (2014) Calibrated localization relationships for elastic response of polycrystalline aggregates. Acta Mater 81:151–160

    Article  CAS  Google Scholar 

  74. Al-Harbi HF, Landi G, Kalidindi S (2012) Multi-scale modeling of the elastic response of a structural component made from a composite material using the materials knowledge system. Modell Simul Mater Sci Eng 20(5):055001

    Article  Google Scholar 

  75. Kalidindi SR, Niezgoda SR, Salem AA (2011) Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM 63(4):34–41

    Article  CAS  Google Scholar 

  76. Gupta A, Cecen A, Goyal S, Singh AK, Kalidindi SR (2015) Structure-property linkages using a data science approach: application to a non-metallic inclusion/steel composite system. Acta Mater 91:239–254

    Article  CAS  Google Scholar 

  77. Çeçen A, Fast T, Kumbur E, Kalidindi S (2014) A data-driven approach to establishing microstructure-property relationships in porous transport layers of polymer electrolyte fuel cells. J Power Sources 245:144–153

    Article  CAS  Google Scholar 

  78. Niezgoda SR, Kanjarla AK, Kalidindi SR (2013) Novel microstructure quantification framework for databasing, visualization, and analysis of microstructure data. Integrating Materials and Manufacturing Innovation 2(1):1–27

    Article  Google Scholar 

  79. Niezgoda SR, Yabansu YC, Kalidindi SR (2011) Understanding and visualizing microstructure and microstructure variance as a stochastic process. Acta Mater 59(16):6387–6400

    Article  CAS  Google Scholar 

  80. Qidwai SM, Turner DM, Niezgoda SR, Lewis AC, Geltmacher AB, Rowenhorst DJ, Kalidindi SR (2012) Estimating the response of polycrystalline materials using sets of weighted statistical volume elements. Acta Mater 60(13):5284– 5299

    Article  CAS  Google Scholar 

  81. Niezgoda SR, Turner DM, Fullwood DT, Kalidindi SR (2010) Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics. Acta Mater 58(13):4432–4445

    Article  CAS  Google Scholar 

  82. Yabansu YC, Kalidindi SR (2015) Representation and calibration of elastic localization kernels for a broad class of cubic polycrystals. Acta Mater 94:26–35

    Article  CAS  Google Scholar 

  83. Brough DB, Wheeler D, Warren JA, Kalidindi SR (2016) Microstructure-based knowledge systems for capturing process-structure evolution linkages. Curr Opin Solid State Mater Sci

  84. Cecen A, Fast T, Kalidindi SR (2016) Versatile algorithms for the computation of 2-point spatial correlations in quantifying material structure. Integrating Materials and Manufacturing Innovation 5(1):1–15

    Article  Google Scholar 

  85. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(6):417

    Article  Google Scholar 

  86. Pérez F, Granger BE, Hunter JD (2011) Python: an ecosystem for scientific computing. Comput Sci Eng 13(2):13–21. doi:10.1109/MCSE.2010.119

    Article  Google Scholar 

  87. The MIT License (MIT). https://opensource.org/licenses/mit-license.php. Accessed: 2016-05-18

  88. Kalidindi SR, Duvvuru HK, Knezevic M (2006) Spectral calibration of crystal plasticity models. Acta Mater 54(7):1795– 1804

    Article  CAS  Google Scholar 

  89. Shaffer JB, Knezevic M, Kalidindi SR (2010) Building texture evolution networks for deformation processing of polycrystalline fcc metals using spectral approaches: applications to process design for targeted performance. Int J Plast 26(8):1183– 1194

    Article  CAS  Google Scholar 

  90. Knezevic M, Levinson A, Harris R, Mishra RK, Doherty RD, Kalidindi SR (2010) Deformation twinning in AZ31: influence on strain hardening and texture evolution. Acta Mater 58(19):6230–6242

    Article  CAS  Google Scholar 

  91. Al-Harbi HF, Knezevic M, Kalidindi SR (2010) Spectral approaches for the fast computation of yield surfaces and first-order plastic property closures for polycrystalline materials with cubic-triclinic textures. Computers, Materials, and Continua 15(2):153–172

    Google Scholar 

  92. Duvvuru HK, Knezevic M, Mishra RK, Kalidindi S (2007) Application of microstructure sensitive design to FCC polycrystals. In: Materials Science Forum, vol 546. Trans Tech Publ, pp 675–680

  93. Li D, Garmestani H, Schoenfeld S (2003) Evolution of crystal orientation distribution coefficients during plastic deformation. Scr Mater 49(9):867–872

    Article  CAS  Google Scholar 

  94. Li D, Garmestani H, Adams B (2005) A texture evolution model in cubic-orthotropic polycrystalline system. Int J Plast 21(8):1591–1617

    Article  Google Scholar 

  95. Li D, Garmestani H, Ahzi S (2007) Processing path optimization to achieve desired texture in polycrystalline materials. Acta Mater 55(2):647–654

    Article  CAS  Google Scholar 

  96. Li DS, Bouhattate J, Garmestani H (2005) Processing path model to describe texture evolution during mechanical processing. In: Materials Science Forum, vol 495. Trans Tech Publ, pp 977–982

  97. Creuziger A, Hu L, Gnäupel-herold T, Rollett AD (2014) Crystallographic texture evolution in 1008 steel sheet during multi-axial tensile strain paths. Integrating Materials and Manufacturing Innovation 3(1):1

    Article  Google Scholar 

  98. Sundararaghavan V, Zabaras N (2008) A multi-length scale sensitivity analysis for the control of texture-dependent properties in deformation processing. Int J Plast 24(9):1581–1605

    Article  CAS  Google Scholar 

  99. Sundararaghavan V, Zabaras N (2007) Linear analysis of texture-property relationships using process-based representations of rodrigues space. Acta Mater 55(5):1573–1587

    Article  CAS  Google Scholar 

  100. Van Der Walt S, Colbert SC, Varoquaux G (2011) The numpy array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22–30

  101. Jones E, Oliphant T, Peterson P (2014) Scipy: open source scientific tools for Python

  102. Pytest (2016) http://pytest.org

  103. Cimrman R (2014) SfePy—write your own FE application. arXiv:1404.6391

  104. Frigo M, Johnson SG (1998) FFTW: an adaptive software architecture for the FFT. In: Proceedings of the 1998 IEEE International Conference On Acoustics, Speech and Signal Processing, 1998, vol 3. IEEE, pp 1381–1384

  105. Hunter JD et al (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95

    Article  Google Scholar 

Download references

Acknowledgments

DBB and SRK acknowledge support from NSF-IGERT Award 1258425 and NIST 70NANB14H191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya R. Kalidindi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brough, D.B., Wheeler, D. & Kalidindi, S.R. Materials Knowledge Systems in Python—a Data Science Framework for Accelerated Development of Hierarchical Materials. Integr Mater Manuf Innov 6, 36–53 (2017). https://doi.org/10.1007/s40192-017-0089-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-017-0089-0

Keywords

Navigation