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Abstract: The rheological behavior of aqueous Al2O3/SiC suspensions at different pH values was 
investigated by rheological measurement. Experimental results showed that at pH = 3–6, Al2O3 and 
SiC particles have opposite surface charges, and the binary suspensions have lower viscosity than the 
unary suspensions at shear rates of 0–300 s1. Furthermore, at pH = 3–12, the stability of the Al2O3 
component seemed to dominate the overall rheological behavior of the Al2O3/SiC binary suspensions. 
The tendency mentioned above showed little variations in various ionic strengths, particle diameters 
and component fractions. 
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1  Introduction 

The dispersion and stability of a colloidal system are 
the main issues in colloidal processing. These 
properties influence not only the green compacts and 
sintering performance, but also the quality of the final 
products. Understanding and predicting the stability of 
a ceramic colloidal suspension is of particular interest 
[1–5]. Numerous related studies have been reported in 
the literature [6–10]. Unary suspension, which is 
composed of one kind of particles, has been extensively 
studied, but the behavior of multiple suspension (i.e., 
suspension with several types of particles) is much less 
understood although dispersion of such system is 
commonly found in nature and in various applications 
[11–14]. One of the major reasons is the complexity of 
the phenomena involved. The stability of multiple 
system depends not only on many basic parameters, 
such as nature of solvent and particles, ionic strength, 
and size and charge of particles, but also on the 

interactions among the particles, including electrostatic 
force and van der Waals force. For a two-component 
system containing different particles A and B, the 
forces of A–A, B–B and A–B are involved. The two 
kinds of particles differ in various factors, such as 
Hamaker constant and surface charge. The factors such 
as volume fraction and number ratio affect the total 
energy of a colloidal system simultaneously. Internal 
structures are difficult to observe experimentally at a 
microscopic level [15–19]. Probing the experimental 
system in such detail is not an easy task, specifically 
the system with more components and dispersants. 

Some interesting experimental results on 
multicomponent system have been found in previous 
studies. Wang et al. [20,21] revealed that the addition 
of salt improves the colloidal stability in systems that 
contain different particles in a certain pH range 
between the isoelectric points (IEPs) of the two types 
of particles. Uricanu et al. [22] studied the stability in 
colloidal mixtures containing particles with a large 
disparity in size. The results supported that the 
composite heteroparticles behave in many ways like a 
silica sol, as the small silica particles are adsorbed onto 
the latex ones and the surface characteristics of latex 
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cores are modified simultaneously. In recent years, 
alumina matrix composite ceramic materials attracted 
widespread attention due to their excellent mechanical 
properties, especially alumina/silicon carbide ceramics 
[23]. The study of dispersion properties about 
Al2O3/SiC colloidal system is of great significance to 
the subsequent process. 

The present study aims to investigate the effects of 
pH, ionic strength, particle size and component 
fraction on the rheological behavior of aqueous 
Al2O3/SiC binary suspension, focusing on the 
comparison with the unary suspensions of Al2O3 and 
SiC and the surprising stability of initially oppositely 
charged particle mixtures. 

2  Experimental 

2. 1  Material 

All of the experiments were conducted with Al2O3 
(Zhengzhou Aluminum Co., Henan, China, purity >   
99% (in mass)) and SiC (Jiangsu Leyuan Factory, 
Jiangsu, China, purity > 99% (in mass)). The average 
particle sizes (D50) of the powders were 31.63 μm and 
0.92 μm, respectively, which were characterized by 
laser diffraction (NSKC-IA, Nanjing University of 
Technology, China). The Al2O3 powder was ground 
into different particle diameters (1.44 μm and 0.55 μm) 
for further use. Scanning electron microscopy (SEM) 
photographs of 1.44 μm Al2O3, 0.55 μm Al2O3 and 
0.92 μm SiC are shown in Fig. 1, observed with a 
scanning electron microscope (JSM-6360LV, JEOL 
Led., Tokyo, Japan). The IEP values of the powders 
were obtained from Zetasizer (3000HSA, Malvern 
Instruments Ltd., Malvern, UK). 

2. 2  Sample preparation 

The ceramic powders were dispersed in deionized 
water. The pH was then adjusted to the desired value 
using standardized analytical-grade HCl or NaOH 
solution. NaCl was used to adjust ionic strength. 
Finally, the mixture was ball-milled using an agate 
grinding ball as media at a specific rotational speed for 
about 24 h at room temperature to ensure equal 
interaction between the particle surfaces. The unary 
suspensions were prepared in volume fraction, as 
25 vol% for Al2O3 and 35 vol% for SiC. The binary 
suspensions were the mixture of unit ones according to 
powder mass ratio (1:1 in weight percentage). 

2. 3  Rheological measurement 

An R/S rheometer (Brookfield Engineering 
Laboratories Inc., Middleboro, MA, USA) was used to 
assess the rheological properties of the colloidal 
suspensions. The central part of the measuring 

 
(a) 

 
(b) 

 
(c) 

Fig. 1  SEM photographs of (a) 1.44 μm Al2O3,  
(b) 0.55 μm Al2O3 and (c) 0.92 μm SiC. 
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instrument was a concentric cylinder. By determining 
the shear stress and viscosity under various shear rates, 
the shear rate–shear stress and shear rate–viscosity 
curves were drawn to reflect the rheological properties 
of the suspensions. 

The test program was divided into the following 
phases: the fresh suspensions were sheared at an 
identical rate of 100 s1 for 2 min to homogenize; to 
avoid the undesirable effect of uneven slurry loading 
and different mechanical histories, the samples were 
left standing for an additional 2 min before the 
measurement; and with a linear increase of the shear 
rate ramps from 0 to 300 s1 in 200 s and a linear 
decrease from 300 s1 to 0 in 200 s, 50 data points 
were determined. 

In most cases, viscosity is assumed to rely on shear 
rate in reflecting the dispersion state, whereas yield 
stress is commonly used as an effective single 
indicator/descriptor of the stability of the system. 

3  Results and discussion 

The zeta potentials of Al2O3 and SiC particle 
suspensions in water are shown in Fig. 2 as a function 
of pH. The IEP of SiC aqueous suspensions is found to 
be at pH ≈ 3.0. The particles are negatively charged 
over a wide pH range. The zeta potential value of SiC 
increases marginally with the increase of pH. For the 
pure alumina particles, the IEP is at pH ≈ 8.5. The 
highest positive potential is 40 mV (pH = 3.0). The sign 
of zeta potential is reversed from positive to negative 
at IEP [24,25]. In the pH range of 3–6 where the 
experiments were done, alumina and silicon carbide 
particles are oppositely charged. 
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Fig. 2  Zeta potentials of Al2O3 and SiC as a 
function of pH. 
 

pH value is a major controlling factor in determining 
the stability of ceramic suspensions [26]. Figure 3 
shows the influence of pH on the rheological behavior 
of Al2O3, SiC and Al2O3/SiC suspensions. At pH = 3.0, 
Al2O3 particles have a zeta potential of about 40 mV, 
which leads to a well-dispersed suspension with weak 
or no inter-particle network [11]. Given that the pH is 
near the IEP of the SiC, the particles have low zeta 
potential value. SiC suspension is difficult to be 
dispersed by the weak electrostatic repulsion between 
particles eventually leading to the flocculation. The 
viscosity of SiC suspension is much larger than that of 
Al2O3. At the same component mass ratio, the binary 
suspension has lower viscosity than the unary 
suspensions, and the linear behavior points to its near 
Newtonian behavior (Fig. 3(a)). Analogous result can 
be clearly seen at pH = 4.0 (Fig. 3(b)). 

As pH is increased to 5.0, the zeta potential of Al2O3 
particle is slightly reduced. The suspension shows 
shear thinning behavior because of the existence of 
inter-particle network. However, the binary suspension 
still exhibits lower viscosity than the Al2O3 and SiC 
systems (Fig. 3(c)). 

When pH is shifted to 6.0, the Al2O3 particles 
become strongly flocculated. The stability of the Al2O3 
suspension is further reduced, whereas the stability of 
the SiC suspension is increased with the increase in the 
absolute value of the zeta potential. At this point, the 
binary suspension becomes slightly flocculated, but still 
completely follows the trend of decrease in viscosity 
by mixing unit suspensions together (Fig. 3(d)). 

To gain further insight into the above observation, 
Fig. 4 is constructed. The viscosity values are derived 
from the flow curves of the suspensions at a fixed 
shear rate of 50 s1 (vertical axis) and pH (lateral axis). 
As zeta potential of Al2O3 is higher than 30 mV for pH 
below 5.0, the three Al2O3 unary suspensions get 
optimal dispersion based on strong electrostatic 
stabilization. As can be seen from the figure, the 
viscosity values for Al2O3 suspensions at pH = 3.0–5.0 
have little change. At pH = 3–6, the binary suspensions 
have lower viscosity than the unary suspensions. At 
shear rate of 0–300 s1, the situation is the same as that 
in the viscosity values at 50 s1. By comparing the zeta 
potential curves of Al2O3 and SiC suspensions (Fig. 2), 
the Al2O3 and SiC particles have opposite charges at 
this pH range (pH = 3.0–6.0). The Al2O3/SiC binary 
suspensions are expected to be strongly flocculated at 
the strong electrostatic forces. The reason behind this 
phenomenon is not yet known clearly. This observation  
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may be partly related to the change in Hamaker 
constant (A) between different particles, i.e., AAl2O3–SiC 
may be significantly lower than AAl2O3–Al2O3 or ASiC–SiC, 
resulting in a reduction of van der Waals force in 
system. No relevant data on this phenomenon is 
available. However, in some special cases, the 
Hamaker constant can be negative when the dielectric 
properties of the intervening medium are intermediate 
between those of the two interacting media, thereby 
resulting in a repulsive van der Waals force. Hence, the 
Hamaker constant may not necessarily cause the 
flocculation in systems and sometimes be able to offset 
the effect of electrostatic attraction [1]. 

Electrostatic heterocoagulation phenomenon is also 
found in multiple systems where the small particles are 
adsorbed onto large ones by the efficient driving force 
of electrostatic interaction [27–30]. However, this may 
be not true for the present situation. In the case of 
electrostatic heterocoagulation, the large disparity in 
particle size is extremely important. Due to the very 
limited difference in size of unlike particles, the state 
that one kind of particles is surrounded with the other 
cannot be reached in our experiment. 

As pH increases to 7.0, the viscosity of Al2O3 
suspension increases rapidly due to approaching to the 
IEP of Al2O3 particles (pH = 8.5). The rheology 
behavior of SiC almost has no change. Figure 4 shows 
that Al2O3/SiC binary suspension has an intermediate 
viscosity value between the unary ones. As pH is 
higher than 8.5, the absolute zeta potential of Al2O3 
increases and the viscosity decreases accordingly. The 
similar result that the stability of binary suspension is 
at a midway between unary ones is obtained. It should 
be noted that the particles are both negatively charged 
at pH range of 10–12, which is a different situation 
from that at pH = 3–6. 
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Fig. 3  Flow curves of 25 vol% Al2O3 suspension, 
35 vol% SiC suspension and the binary suspension at 
pH equal to (a) 3.0, (b) 4.0, (c) 5.0 and (d) 6.0. 
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Fig. 4  Viscosity of the suspensions as a function  
of pH. 
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Figure 4 shows that in the observed range of pH = 
3–12, the curve for Al2O3/SiC binary suspension is 
similar to that of the unary Al2O3 suspension. In other 
words, the stability of the Al2O3 component dominates 
the overall rheological behavior of the Al2O3/SiC 
binary suspension. The mechanism behind this result   
is still not clear. However, for binary or other 
multicomponent systems, a component whose stability 
dominates the system should be considered. 

Figure 5 shows the effect of ionic strength on the 
rheological behavior of unary and binary suspensions 
at pH = 3.0. High ionic strengths are often observed in 
aqueous ceramic suspensions due to ion dissolution of 
materials. In the presence of electrolyte, the increase in 
concentration of the counter ions results in the 
compression of the diffuse electric double layer and   
the attenuation of the electrostatic interaction. An 
electrostatically stabilized system may become 
unstable at high ionic strengths [12]. In the present 
study, it is seen that the presence of electrolyte in 
Al2O3 and Al2O3/SiC suspensions results in a 
consistent increase in the apparent viscosity 
respectively, indicating the strengthening of 
inter-particle network. However, the stability of binary 
system still precedes that of the unary ones. It can be 
well corresponded to the results above. 

Figure 6 illustrates the viscosity curves of the Al2O3 
particles with different sizes (0.55 μm and 1.44 μm) 
with and without SiC at pH = 3.0. For the unary system, 
a dramatic decrease in viscosity from 0.55 μm Al2O3 to 
1.44 μm Al2O3 is observed. This result is directly 
determined by particle size. Although the net solid 
content of the slurries is the same, the smaller powder 
needs more water to be wet and it holds more space 
than the coarser powder. The smaller powder has 
higher viscosity in a certain size range [31]. Similarly, 
the curves of the Al2O3/SiC suspensions are lower than 
the corresponding Al2O3 suspensions. The distinction 
in particle size does not affect the trend. 

In order to confirm whether the trend mentioned 
above is retained in systems with smaller Al2O3 
particles and extra electrolyte, measurements are 
carried out. Extra electrolyte (0.05 M NaCl) is added to 
the suspensions containing 0.55 μm Al2O3 particles. A 
similar trend is observed in Fig. 7. 

The solid loading of suspensions significantly 
affects the rheological behavior. In Fig. 8, the solid 
loading of the two unary suspensions is adjusted to an 
equivalent level (30 vol%) and the ratio of components 
is 1:1 in volume percentage in the binary suspension. 

In this case, the flow curves for the Al2O3 and SiC 
suspensions intersect each other at a shear rate of 
~120 s1 because of their different rheological 
properties [32]. The apparent shear viscosity of the 
Al2O3/SiC system is still the lowest. The binary 
suspension maintains its stability. Hence, the change in 
solid loading and ratio of powder has no influence on 
the experimental result. 
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Fig. 5  Flow curves of the Al2O3 and Al2O3/SiC 
suspensions as a function of ionic strength. 
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Fig. 6  Flow curves of the Al2O3 and Al2O3/SiC 
suspensions with different particle diameters. 
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30 vol% SiC suspension, and the 1:1 (in volume 
percentage) binary suspension at pH = 3.0. 

4  Conclusions 

Based on this study, the following conclusions are 
drawn. For aqueous Al2O3/SiC binary suspensions at 
pH = 3–6, Al2O3 and SiC particles have opposite 
charges, and the binary suspensions are more stable 
than the unary suspensions. Furthermore, at pH = 3–12, 
the stability of the Al2O3 component dominates the 
overall rheological behavior of the Al2O3/SiC binary 
suspensions. Additionally, the stability of binary 
suspension is not always the least among the systems 
at every pH value. The tendency shown above has little 
variations in various ionic strengths, particle diameters 
and component fractions. 
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