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Abstract Even though the number of anti-cancer drugs

entering clinical trials and approved by the FDA has

increased in recent years, many cancer patients still expe-

rience poor survival outcome. The main explanation for

such a dismal prognosis is that current therapies might

leave behind a population of cancer cells with the capacity

for long-term self-renewal, so-called cancer stem cells

(CSCs), from which most tumors are believed to be derived

and fueled. The CSCs might favor local and distant

recurrence even many years after initial treatment, thus

representing a potential target for therapies aimed at

improving clinical outcome. In this review, we will address

the CSC hypothesis with a particular emphasis on its cur-

rent paradigms and debates, and discuss several mecha-

nisms of CSC resistance to conventional therapies.
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Introduction

The discovery of human cancer stem cells (CSCs) has

important diagnostic and prognostic implications, and holds

significant promise for the development of novel thera-

peutic strategies. Nevertheless, until recently, no drugs that

effectively target CSCs have been in clinical use. It remains

challenging to understand what makes a CSC different from

a normal stem cell (SC), and to target malignant cells while

sparing their normal counterparts. Normal SCs and CSCs

not only share pathways that regulate self-renewal and

multipotentiality [1], but also share other mechanisms

regulating response to environmental stress [2, 3], including

DNA repair machinery [4, 5•], as well as adenosine tri-

phosphate-binding cassette (ABC) transporters [6, 7]. These

mechanisms can afford protection to CSCs, shielding them

from the adverse effects of chemotherapeutic insult.

To explore the possibility of selectively targeting and

destroying CSCs as a successful approach for increasing

the survival of cancer patients, we conducted an extensive

review of published CSC papers. Here, we describe their

discovery and the mechanisms conferring their drug

resistance that should be considered for therapeutic proto-

col design and application.

The Cancer Stem Cell Hypothesis: History and Open

Questions

Cancer was suggested to derive from SCs more than

150 years ago. In the late 1800s, Cohnheim, a German

pathologist, introduced a theory that tumors may arise from

an ‘‘embryonal rest’’ that lies dormant until induced to

transform [8]. However, not until 1994 were CSCs actually

identified, thanks to the advent of flow cytometry. Dick and
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colleagues reported that human acute myeloid leukemia

(AML) is organized as a hierarchy that originates from a

primitive hematopoietic cell possessing a CD34?/CD38-

phenotype [9, 10]. Later, a hierarchical organization was

also reported in breast cancer [11]. Similar to leukemia,

only a minority of breast cancer cells identified with a

CD44?/CD24-/low phenotype were tumorigenic in xeno-

graft assays. Additional evidence for the existence of CSCs

rapidly followed these studies. The CSCs were identified in

brain and colon cancers [12–14], and since then in most

human cancers. However, despite the first wave of enthu-

siasm surrounding the CSC field, no consensus has

emerged about cell surface marker profiles that define

CSCs, hindering the development of effective SC-based

approaches to diagnose and treat cancer. Not only do CSC

marker phenotypes vary among different cancer types, but

they might also vary among patients with the same disease.

For example, although most AMLs follow the CSC model,

the leukemogenic activity is not restricted to the CD34?/

CD38- fraction in all patients [15]. Also, concerning solid

cancers, there have been huge controversies over the def-

inition of the cell surface signature that characterizes the

CSC fraction. Initially described as a unique marker for

immature cells in the lower part of the intestinal crypt [16],

CD133 was later found to be ubiquitously expressed on

differentiated colonic epithelium in both adult mice and

humans [17]. Surprisingly, both CD133? and CD133-

metastatic colon cancer cells initiated tumors, raising the

question of whether CD133 is a bona fide marker for colon

CSCs [17]. Additional investigations revealed that CD133

remains expressed on the membrane during differentiation,

but is not recognized by common antibodies due to a

reduced glycosylation that likely affects CD133 folding

[18]. Nevertheless, concerning this particular form of

cancer, a list of other markers was reported. In the study of

Dalerba et al. [19] expression of CD133 displayed a vari-

able pattern, with some tumors scoring as homogeneously

negative, some as predominantly positive, and others as a

mixture of positive and negative cells. Since not all tumors

expressed CD133, the combined expression of EpCAMhigh/

CD44?/CD166? was suggested as being more robust for

the isolation of colon CSCs [19]. In our study, putative

colon CSCs were analyzed for 24 different CD markers

[20]. Heterogeneous expression of CD26, CD44, CD227,

CD56, CD64 and CD133 was found. Of note, we described

an efficient long-term culture system for the expansion of

colon CSCs, based on a feeder layer derived from rat

mammary adenocarcinoma. The CSCs cultivated using this

system exhibited self-renewal and multipotentiality, as well

as tumor-initiating ability in vivo.

Amongst all the CSC markers proposed, the glycopro-

tein CD44 gained much interest due to the observation that

its variant CD44v6 promotes oncogenic signals required

for tumor cell invasion and migration [21]. Despite this,

contradictory opinions regarding the role of CD44 in

metastasis have also been reported [22–28]. Controversies

on CD44 function may depend on lack of distinction of its

isoforms, which might possess divergent functional activ-

ities. Indeed, the way CD44 radically modifies cell

behavior seems to be dependent on the unique pattern of

glycosylation, itself determined by alternative splicing

[29]. Nevertheless, two distinct papers have recently pro-

vided a way to target CD44 in CSCs from two different

tissues, but neither has focused its attention on a specific

CD44 variant. Cheng et al. [30] provided evidence that

decreasing CD44 levels by forcing the expression of

mature microRNA (miR)-199a may prevent growth, inva-

sion, migration and multidrug resistance of CD44?/

CD117? ovarian CSCs. Anti-CD44 antibody-mediated

liposomal nanoparticle delivery was then proposed to

selectively attack CSCs of hepatocellular carcinoma [31].

Characterization of CSC-specific cell surface markers

can be the first step towards the identification of pathways

activated in CSCs. In colon cancer, a Wnt signaling gra-

dient with the highest levels of activity in CSCs and the

lowest in their differentiated progeny, was reported [32].

Thus Wnt is an attractive target for new therapeutics.

Similar to the Wnt pathway, Hedgehog (HH) and Notch

signaling may play a critical role in cancer by dictating

CSC fate decisions [33, 34]. Strategies targeting these

developmental pathways are currently being explored.

Despite intensive research, many reports call for caution

in the acceptance of the CSC hypothesis. Hierarchical

organization in a cancer does not imply that it originated

from normal SCs, since cancer can also arise through mal-

differentiation or arrested differentiation of committed

progenitors, as well as dedifferentiation of fully differen-

tiated cells [35]. Leukemias offer a good example. Com-

mitted myeloid cells can be reprogrammed by oncogenic

factors (i.e., BCR/ABL and PML-RARa fusion protein) to

become progenitor-like cells that then develop the disease

[36, 37]. Similarly, most fully differentiated cells in the

central nervous system (CNS), upon defined genetic alter-

ation, can acquire the capacity to dedifferentiate to a more

progenitor-like (SC) state [38••]. Therefore, tumor pro-

gression likely requires a permissive microenvironment

composed of cell types and molecular pathways that can

sustain both differentiation of tumor cells and the mainte-

nance of tumor stem-like cells. Activation of epithelial-

mesenchymal transition (EMT) has also been reported to

induce somatic cells to acquire stem-like properties.

Indeed, triggering of an EMT program in immortalized

human mammary epithelial cells (HMLEs) results in the

acquisition of mesenchymal traits and in the expression of

stem-cell markers [39]. Additionally, although no direct

experimental evidence is currently available, cell fusion
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has been suggested to generate CSCs [40]. Spatial and

temporal changes in the cell-of-origin likely influence CSC

properties [41]. Subtypes of medulloblastoma and of

ependymoma arise from neural SCs isolated from region-

ally and developmentally distinct regions of the CNS that

are susceptible to transformation by different gene muta-

tions [42, 43]. Temporal changes in the regulation of the

phosphoinositide 3-kinase (PI3K) pathway lead to temporal

changes in the mechanisms that regulate hematopoietic

stem cell (HSC) function and leukemogenesis [44••]. Par-

ticularly, Pten deletion increases PI3K pathway activation

in adult, but not neonatal, HSCs. Since neonatal HSCs and

other hematopoietic cells can harbor mutations in Pten and

p53 without transforming into leukemia until adulthood,

Morrison’s group suggests that mutated cells may persist

for years in children before a change in developmental

context renders these mutations competent to induce leu-

kemia. This can clearly explain why the spectrum of dis-

ease and treatment successes differ markedly between

pediatric and adult patients [45].

Treatment resistance and disease recurrence have been

largely attributed to a CSC quiescent state [46]. However,

it is not clear whether or not CSCs are dormant. Not only

does the CSC proliferative state have fundamental impli-

cations for therapy, but the abundance of CSCs also

influences the design of new therapies. Tumorigenic cells

in cancers which follow a suggested CSC model are usu-

ally rare. Nevertheless, whether or not CSCs are truly rare

remains an open question. Xenotransplantation assays may

underestimate CSC frequency. Using the highly immuno-

compromised NOD/SCID Il2rg-/- mice, Quintana et al.

[47] reported a high percentage of melanoma cells with the

potential to proliferate extensively and form new tumours.

Thus, melanoma may not follow a CSC model. As a con-

sequence, if tumors possess a small fraction of tumorigenic

cells, anti-cancer therapies may be identified based on their

ability to selectively kill these cells rather than the bulk

population of non-tumorigenic cancer cells. Alternatively,

if cells with tumorigenic potential are common, it will not

be possible to treat cancer successfully by only focusing on

a small fraction of cells.

Importantly, while some cancers have been hypothe-

sized to initiate as a SC disease, disease progression may

occur by clonal evolution of their CSCs [48]. As a conse-

quence, therapy resistance cannot be exclusively linked to

the SC origin of cancer, but is most probably the result of

the progressive accumulation of genetic and epigenetic

changes (Fig. 1).

Taken together, the CSC hypothesis is not a universal

model that applies to all cancers and not even to all patients

with the same disease. As cancer’s Achilles’ heel, CSCs

have been intensively studied to develop more effective

therapies. However, many unanswered questions still exist

about the CSC hypothesis. Identifying the cell(s)-of-origin

for each cancer type is an important prerequisite for the

development of personalized treatment strategies.

DNA Repair and Genomic Integrity

There are many mechanisms by which CSCs can acquire

resistance to anti-cancer therapies. Cells encounter stressors

from the environment (ionizing radiation) and from intra-

cellular by-products (reactive oxygen species) that cause

DNA damage. This damage must be repaired or the cell is

destined for death by checkpoint mechanisms. There is little

consequence if this occurs in differentiated cells of an

organ, however, if this occurs in a SC, the entire lineage can

be compromised [3]. Therefore, SCs have been equipped

with better repair mechanisms than their more differentiated

progeny in an attempt to maintain genomic integrity and

persistence through an organism’s life [4]. Four major

repair pathways can be distinguished: base excision repair

(BER), nucleotide excision repair (NER), mismatch repair

(MMR) and recombination repair. The faster the repair is

made, the less p53 is activated and apoptosis is prevented,

thus conserving the SC pool [5•]. If CSCs arise from normal

SCs, it is likely they retain this proficient DNA repair,

allowing them to survive and propagate.

Disruption of the mechanisms that regulate cell-cycle

checkpoints, DNA repair and apoptosis results in genomic

instability, whose role in cancer continues to be debated.

Indeed, genomic instability, including genetic and/or epi-

genetic alterations, may lead to cellular death or provide a

fertile ground for additional mutations. From this point of

view, genomic instability seems to be a mere consequence

of tumor progression, but we believe it is responsible for the

stepwise accumulation of molecular alterations which drive

not only tumor progression and metastatic spread, but also

tumor initiation. Genomic instability could start in the long-

lived, self-renewing SC, allowing for their transformation

into CSCs. Indeed, evidence from several experiments

indicates that SC transformation might be an early event in

carcinogenesis. Colon cancer provides a clear example. In

many cases of this disease, the first mutation occurs in the

Adenomatous Polyposis Coli (APC) gene. Transformation

of normal SCs through loss of APC is an extremely efficient

route towards initiating intestinal adenomas [49]. Interest-

ingly, APC mutations not only deregulate the Wnt pathway,

but also increase the assembly of BER proteins and as a

consequence, DNA repair activity [50]. Similarly, p53

mutations, which occur late in the adenoma-carcinoma

sequence of colorectal cancer (CRC), facilitate DNA repair

by increasing the levels of apurinic/apyrimidinic endonu-

clease (APE1), a BER pathway effector [51]. Elevated

levels of APE1 also confer enhanced survival to MCF-7

Curr Pathobiol Rep (2013) 1:111–118 113

123



cancer-initiating cells following exposure to ionizing radi-

ation [52]. Of note, small-molecule inhibitors of proteins

involved in BER and inhibitors of cell-cycle checkpoints

have been developed with encouraging results in colon and

glioblastoma studies [53, 54].

Our lab was the first to indicate a correlation between

CSCs and genomic instability in colon cancer [20]. All

tumor cells analyzed expressed human karyotypes with

clonal and non-clonal numerical and structural aberrations.

The presence of genomic instability in CSCs has many

therapeutic implications. Over time, genomic instability

produces diverse tumor cell clones, which compete for

resources and evolve by natural selection. Multiple cycles

of genome rearrangement and clonal selection eventually

lead to the emergence of aggressive tumor cell phenotypes.

Indeed, high genomic instability indices often correlate

with poor prognosis in some types of cancer. Interestingly,

ionizing radiation and/or chemotherapy could enhance the

existing genomic instability, further promoting tumor

selection and CSC expansion. This concept has been well

demonstrated for chronic myeloid leukemia (CML), where

following radiation or chemotherapy exposure, CSCs are

induced to further alter their behavior and resist death

stimuli [55]. Moreover, reversion of the anticancer drug-

induced polyploidization can lead to the emergence of new

CSCs [56].

Taken together, while existing therapies could have the

harmful effect of increasing the selective pressure on CSCs

or of generating new CSCs, therapies aimed at reducing

DNA repair activity and/or the exacerbation of the cancer

cell unstable phenotype may prove clinically relevant in the

treatment of a variety of cancers. How DNA repair activity

and genomic instability affect resistance to existing che-

motherapeutic agents is therefore an urgent task to address.

ABC Transporters

The active DNA-repair capacity and genomic instability are

not the only characteristic to affect CSC resistance. Ini-

tially, CSCs seemed resistant to chemotherapeutics that

Fig. 1 Cancer develops through definable stages: initiation, transfor-

mation and progression. Cancers that follow the CSC model can

derive from the accumulation of genetic and epigenetic changes in a

normal SC, a committed progenitor cell or a fully differentiated

somatic cell. Activation of EMT can also induce mature cells to

acquire stem-like properties. Cancer can then progress as a SC

disease, giving rise to a hierarchically organized heterogeneous

population of cancer cells, or strictly adhere to the clonal evolution/

stochastic model, generating further aggressive subtypes undergoing a

positive Darwinian selection. In another scenario, hierarchically

organized cancers progress by clonal evolution of their CSCs. The

choice may be dictated by a number of molecular mechanisms

altering cell behavior, and may, therefore, change from patient to

patient. Therapeutic treatment can also enhance the existing genomic

instability, further promoting CSC expansion. Mechanisms regulating

responses to environmental stress, including DNA-repair, genomic

instability, ABC transporters, anti-apoptotic proteins, survival path-

ways and ALDH can afford protection to CSCs, shielding them from

the adverse effects of chemotherapeutic insult
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target rapidly dividing cells due to their innate slow-cycling

characteristic [46]. More recent in-depth studies indicate

that further resistance comes from the expression of ABC

transporters [6]. Using ATP hydrolysis, these transporters

translocate substrates across biological membranes against

a concentration gradient [57•]. It is the ABC transporter that

gives the SC ‘‘side-population’’ (SP) its ability to efflux

fluorescent dyes [7]. Mouse knockouts for several ABC

transporters have suggested their protective role against

drug-induced cytotoxicity [58]. Amongst the most exten-

sively studied ABC transporters in cancer are ABCB1,

ABCG2 and ABCC1 [57•]. The co-presence of more than

one transporter in cancer cells has pushed for development

of treatments targeting more than one, including polyphe-

nols and curcumin [59]. In vitro studies showed that cur-

cumin could effectively target FOLFOX (Oxaliplatin,

5-Fluorouracil, Leucovorin)-surviving colon cancer cells,

inferring that curcumin could enhance chemotherapeutic

responses by preventing the emergence of chemoresistant

cells [60]. Interestingly, ABCG2 transporter activation in

FOLFOX-resistant HCT-116 and HT29 cells could be

reduced by Schlafen-3 (Slfn-3), a protein with a role in

cellular differentiation in intestinal mucosa [61].

Additional studies indicate that ABC transporters in

CSCs play a critical role conferring higher drug resistance

than in more differentiated cancer cells. Indeed, ABCG2-

expressing CD133? colon cancer-derived tumor spheres

were found to be more resistant to standard chemotherapy

than their differentiated progeny [62]. The SP cells in

neurospheres derived from primary glioblastoma tumors

had more ABCG2 activity with respect to their differenti-

ated progeny and were eliminated through ABCG2 inhi-

bition [63]. Studies on lung [64], brain [65] and pancreatic

[66] cancer correlated resistance in SP cells expressing

ABCG2 with the CSC phenotype, identified through

CD133 glycoprotein expression.

Combination therapy with modulators of ABC trans-

porters may allow anti-cancer drugs to more effectively

attack and kill cancer cells. Initially developed based on its

ability to inhibit epidermal growth factor receptor (EGFR),

Erlotinib was later found to increase intracellular accu-

mulation of anti-cancer drugs that otherwise would have

been pumped out through ABC transporters. In AML,

Erlotinib activity enhanced chemotherapy-induced cyto-

toxicity by multiple mechanisms, including the downreg-

ulation of surface-exposed pumps and the modulation of

their ATPase [67]. Conversely, other compounds such as

low molecular weight heparin (LMWH) decrease cancer

resistance by increasing proteasome-mediated ABC trans-

porter degradation [68].

Studies on ABC transporters have often been correlated

with patient response to therapy. Interestingly, chemo-

therapy was found to increase resistance via ABC

transporter up-regulation. Indeed, breast cancer patients

resistant to 5-fluorouracil (5-FU) treatment showed an

increased expression of ABCG2 [69]. Similarly, in another

study, all hepatocellular cancer specimens exhibited

increased ABCG2 expression after chemotherapy [70, 71].

Lower miR-451 levels, a negative regulator of ABCB1,

were also found in patients who had received an Irinotecan-

based chemotherapy for metastatic CRC and did not

respond favorably [72]. These studies clearly show the

clinical significance of resistance via ABC transporters

characteristic of the CSC population.

Other Methods of Resistance

There are yet other factors that can confer resistance to

CSCs. Brain CSCs show increased resistance in response to

treatment with chemotherapy due in part to expression of

anti-apoptotic proteins [73]. Breast progenitor cells main-

tain their resistance by differential regulation of survival

pathways such as the aforementioned Wnt pathway [74]. In

breast, colon, liver and pancreatic cancers, resistance has

been linked to increased expression and activity of alde-

hyde dehydrogenases (ALDHs) in CSCs, a family of

enzymes involved in several detoxifying pathways, against

which specific inhibitors have been designed [75]. Mech-

anisms conferring resistance to CSCs are indicated in

Fig. 1.

Normal Versus Cancer Stem Cells: Implications

for Therapy

As already discussed in this review, normal and cancer SCs

share many characteristics such as cell surface markers,

survival pathways, DNA repair mechanisms, and ABC

transporters. They both have the ability to self-renew and

differentiate into the multiple cell lineages of their parent

organ while having a higher clonogenicity than other, more

differentiated, cells [1]. While these observations have

been made in breast [76] and in the hematopoietic systems

[10], the intestine offers a good model to compare normal

and cancer SC subsets. Lineage tracing studies allowed the

identification of Wnt target gene LGR5 as a marker of

mouse intestinal SCs. Indeed, LGR5? cells were able to

generate all the epithelial lineages of the adult organ [16]

as well as form crypt-villus structures in vitro, recapitu-

lating the in vivo architecture and differentiation status

[77]. Lineage tracing studies also revealed LGR5? SC

activity in mouse intestinal adenomas [78•]. Importantly,

specific deletion of APC in LGR5? intestinal SCs produced

rapidly growing adenomas, suggesting LGR5 as a bona fide

intestinal CSC marker [49]. While LGR5 expression is a

Curr Pathobiol Rep (2013) 1:111–118 115

123



shared characteristic between normal and cancer SCs, its

expression is higher in cancer than in normal tissue and

positively correlates with Ki67 staining, histological grade,

and lymph node involvement and distant metastases [79].

Recent evidences indicate that LGR5 does not simply mark

normal and cancer SCs of the intestine, but is also a reg-

ulator of Wnt responses, cell motility and cell–cell adhe-

sion [80].

Besides Wnt, another shared pathway between normal

and cancer SCs of the intestine is the Notch pathway,

which normally regulates cell lineage fate decisions [81,

82]. Indeed, emergence and self-renewal of colon CSCs

were shown to be dependent on Notch [83]. Notch sig-

naling functions through c-secretase, an enzyme which acts

to release the intracellular domain of the Notch receptor,

allowing translocation to the nucleus and activation of

transcription [84]. Treatment with a c-secretase inhibitor

(GSI) converts both normal intestinal and intestinal ade-

noma cells to post-mitotic goblet cells, reduces prolifera-

tion and induces apoptosis, indicating Notch has a critical

role in proliferation [83, 85–87]. Likewise, GSIs have been

found to inhibit the self-renewal and proliferation of breast

CSCs [88]. If GSIs are to be used in combination with

chemotherapy, a delicate balance will be required to target

CSCs while sparing normal SCs [89].

Regardless of how they come to be, the fact that CSCs

share so many fundamental characteristics with normal

SCs is a difficult obstacle to overcome. The possibility of

adverse effects is easy to ignore in in vitro settings that

promise therapies effectively targeting the CSC population.

Homeostasis requires a delicate balance of DNA repair,

transport, proliferation and self-renewal to sustain tissue

maintenance without allowing the formation of CSCs.

Systemic treatments targeting these shared pathways may

harm normal cells in a way that tips the balance to a dif-

ferent disease later in life. Therefore, it is necessary to

identify distinct differences that can be exploited between

normal and cancer SCs from the originating organ such as

specific markers or opposing molecular mechanisms.

Alternatively, treatments that offer protection and/or

recovery for normal cells may prove profitable.

Conclusion

Cancer response to environmental stressors, including

treatment, is regulated by DNA repair, genomic instability

and expression of ABC transporters in CSCs. Stochastic

alterations in response to these stressors may cause the

identity of the CSC to change over time allowing only the

fittest cell to prevail. Any therapy targeting CSCs may also

destroy healthy tissues. A priority for researchers will be to

identify important differences between normal and cancer

SCs so that therapies can be designed specifically to target

CSCs while sparing normal SCs.
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