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Abstract We observe that all the results involving a-type
F-contractions are not correct in their present forms. In this

article, we prove some fixed point results for extended F-

weak contraction mappings in metric and ordered-metric

spaces. Our observations and the usability of our results are

substantiated by using suitable examples. As an applica-

tion, we prove an existence and uniqueness result for the

solution of a first-order ordinary differential equation sat-

isfying periodic boundary conditions in the presence of

either its lower or upper solution.

Keywords Fixed point � F-contraction � aF-weak
contraction � Extended F-weak contraction
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Introduction and preliminaries

In 2012, Wardowski [1] generalized Banach contraction

principle in a novel way by introducing a new type of

contraction called F-contraction:

Definition 1.1 [1] A self-mapping f on a metric space

(X, d) is said to be F-contraction if there exists s[ 0 such

that

dðfx; fyÞ[ 0 ) sþ Fðdðfx; fyÞÞ�Fðdðx; yÞÞ; ð1:1Þ

for all x; y 2 X; where F : Rþ ! R is a mapping satisfying

the following conditions:

F1: F is strictly increasing,

F2: for every sequence fsng of positive real numbers,

lim
n!1

sn ¼ 0 , lim
n!1

FðsnÞ ¼ �1;

F3: there exists k 2 ð0; 1Þ such that lim
s!0þ

skFðsÞ ¼ 0:

Let us denote by F , the family of all functions F satis-

fying conditions F1–F3. Some well-known members of F
are FðsÞ ¼ ln s, FðsÞ ¼ sþ ln s, FðsÞ ¼ �1

ffiffi

s
p and

FðsÞ ¼ lnðs2 þ sÞ. Moreover, Wardowski [1] proved that

every F-contraction mapping on a complete metric space

possesses a unique fixed point. Further, on varying the

elements of F suitably, a variety of known contractions in

the literature can be deduced.

Example 1.1 [1] Consider F 2 F given by FðsÞ ¼ ln s.

Then each self-mapping f on X satisfying inequality (1.1) is

an F-contraction such that

dðfx; fyÞ� e�sdðx; yÞ;
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where x; y 2 X and x 6¼ y. Observe that this inequality

holds trivially if x ¼ y.

Using Ćirić-type generalized contraction in Definition

1.1, Wardowski and Van Dung [2] (also independently

Mnak et al. [3]) introduced the notion of F-weak contrac-

tion and utilize the same to generalize the main result of [1]

as well as several other results of the existence literature.

Definition 1.2 [2, 3] Let ðX; dÞ; s and F be as in Defini-

tion 1.1. A self-mapping f on X is said to be F-weak con-

traction if

sþ Fðdðfx; fyÞÞ�FðMf ðx; yÞÞ; ð1:2Þ

for all x; y 2 X whenever dðfx; fyÞ[ 0 where

Mf ðx; yÞ ¼ max dðx; yÞ; dðx; fxÞ; dðy; fyÞ; dðx; fyÞ þ dðy; fxÞ
2

� �

:

Usually, the following abbreviation, also, is utilized in the

literature:

mf ðx; yÞ ¼ max dðx; yÞ; dðx; fxÞ þ dðy; fyÞ
2

;
dðx; fyÞ þ dðy; fxÞ

2

� �

:

Theorem 1.1 [2, 3] Let (X, d) a complete metric space

and f : X ! X be an F-weak contraction for some F 2 F .

Then f has a unique fixed point x 2 X and for every x0 2 X,

the Picard sequence ff nx0g converges to x provided either

(a) F is continuous or

(b) f is continuous.

In 2016, Gopal et al. [4] introduced the concept of a-
type F-contraction (for simplicity we write aF-contraction)
as follows:

Definition 1.3 [4] Let ðX; dÞ; s and F be as in Definition

1.1. A mapping f : X ! X is said to be an aF-weak con-

traction if there exists a : X � X ! f�1g [ ð0;þ1Þ such
that

sþ aðx; yÞFðdðfx; fyÞÞ�FðMf ðx; yÞÞ; ð1:3Þ

for all x; y 2 X whenever dðfx; fyÞ[ 0.

Employing Definition 1.3, Gopal et al. [4] proved the

following result:

Theorem 1.2 [4] Let (X, d) be a complete metric space

and f : X ! X an aF-weak contraction satisfying the fol-

lowing conditions:

(a) there exists x0 2 X such that aðx0; fx0Þ� 1,

(b) f is a-admissible, i.e., aðfx; fyÞ� 1 whenever

aðx; yÞ� 1,

(c) f is continuous (or F is continuous and if a sequence

fxng 2 X such that aðxn; xnþ1Þ� 1 for all n 2 N and

xn ! x as n ! 1, then aðxn; xÞ� 1).

Then f has a unique fixed point x 2 X and for every such

x0 2 X, the Picard sequence ff nx0g converges to x.

In recent years, the idea of F-contraction has attracted

the attention of several researchers and by now there exists

a considerable literature on and around this concept (see

[5–18] and references therein).

Definition 1.4 A metric space (X, d) together with a

partially order ‘‘�’’ on it is called ordered metric space and

denoted by ðX; d;�Þ. Further, for arbitrary elements x, y of

X and a self-mapping f on X we say that

(i) x, y are comparable if either x � y or y � x.

(ii) f is increasing if fx � fy whenever x � y.

(iii) (X, d) is f-orbitally complete if every Cauchy

sequence ff nxg converges in X.

(iv) X is regular if for every increasing sequence fxng
in X with xn ! x, we have xn � x for all n 2 N.

Though Turinici [19, 20] initiated some order-theoretic

results in 1986, yet it is often referred to be indicated in

2004 wherein Ran and Reurings [21] presented a more

natural result which was well-followed by Nieto and

Rodrı́guez-López [22, 23]. For the work of this kind, one

can be referred to [24–31].

Remark 1.1 In the setting of ordered metric spaces, the

conditions (1.1–1.3) are required to hold merely for all

comparable pairs of elements x; y 2 X.

Abbas et al. [32] utilized the idea of F-contraction to

obtain order-theoretic common fixed point results. Very

recently, Durmaz et al. [33] proved the following result

which can be obtained by setting g ¼ I : X ! X in Theo-

rem 2 of [32]:

Theorem 1.3 [33] Let ðX;�; dÞ be a complete ordered

metric space and f : X ! X an F-contraction for some

F 2 F . If the following conditions hold:

(a) there exists x0 2 X such that x0 � fx0,

(b) f is increasing,

(c) either f is continuous (or F is continuous and X is

regular),

then f has a fixed point.

Further, the authors in [33] gave the following condition

to ensure the uniqueness of the fixed point in Theorem 1.3:

B: Every pair of elements of X has a lower bound and

upper bound.

Remark 1.2 Very recently, Vetro [34] enlarged the class

F (and denote the same F) by withdrawing the condition

F3 and replacing the constant s by a function r : Rþ ! Rþ
with lim inft!sþ rðtÞ[ 0 for all s� 0. Obviously, F � F
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and FðsÞ ¼ �1=s is a member of F which is not in F . We

denote with S the family of all functions r.

The aim of this article is to point out that all the existing

results regarding a-type F-contraction are not correct in

their existing forms. We also generalize Theorem 1.3 uti-

lizing Ćirić-type contraction in two directions wherein r 2
S is utilized rather than the constant s: In doing so, we

obtain a slightly sharpened form of Theorem 1.1. We

support our results by suitable examples and an application.

An observation on a-type F-contractions

We begin our observation with [4] wherein authors

enlarged the co-domain of a to include �1 and at the same

time assumed that the expression �1 . 0 has the value �1
which is quite unnatural. Inspired by this substitution, we

are able to furnish the following counterexamples:

Example 2.1 Let X ¼ f0; 1
4
; 1
2
; 1g equipped with usual

metric d. Then (X, d) is a complete metric space. Define

a : X � X ! f�1g [ ð0;1Þ by

aðx; yÞ ¼

�1; for x; y 2 f0; 1g; x 6¼ y;

2� ln 3

ln 4
; for x; y 2 f1

4
;
1

2
g; x 6¼ y;

1; otherwise:

8

>

>

<

>

>

:

Let f be a self-mapping on X defined as

f0 ¼ 1; f 1
4
¼ 1

2
; f 1

2
¼ 1

4
, and f1 ¼ 0. Then f is continuous as

well as a-admissible. By a routine calculation, one can

verify that f satisfies the contraction condition (1.3) for

FðsÞ ¼ ln s and s ¼ ln 4
3
. Especially, for x ¼ 0 and y ¼ 1,

we have

�1 ¼ ln
�

4=3
�

þ ð�1Þ lnð1Þ� ln
�

max
�

1; 1; 1; 0
��

¼ 0:

Observe that, f is fixed point free which disproves

Theorem 1.2.

Even if we restrict the co-domain of a to ð0;1Þ in

Definition 1.3 with a view to recover Theorem 1.2, still the

theorem continues to be erroneous. The following example

exhibits this fact:

Example 2.2 Consider X ¼ ½1;1Þ equipped with the

discrete metric D, that is,

Dðx; yÞ ¼
0; for x ¼ y;

1; otherwise:

�

Take fx ¼ ax; for all x 2 X where a 2 ð1;1Þ. Then with

aðx; yÞ ¼ 2; for all x; y 2 X and FðsÞ ¼ � 1
ffiffi

s
p , f satisfies all

the requirements of Theorem 1.2 (for s\1) but f is a fixed

point free.

Indeed, in all the proofs of the results on aF-contrac-
tions, e.g. in [4, line 4, page 962] and also in [12, equation

(2.4)], the authors assumed that FðsÞ� aðx; yÞFðsÞ, for

aðx; yÞ� 1 which is not true in general (as F may have

negative values).

Main results

In order to generalize Theorem 1.3, the following defini-

tions are required:

Definition 3.1 Let (X, d) be a metric space and r 2 S. A

mapping f : X ! X is said to be an extended F-weak

contraction if for all x; y 2 X, we have

rðdðx; yÞÞ þ Fðdðfx; fyÞÞ�FðMf ðx; yÞÞ ð3:1Þ

whenever dðfx; fyÞ[ 0, where F 2 F.

Definition 3.2 An ordered metric space ðX; d;�Þ is said
to be �-regular if for every increasing sequence fxng in

X with xn ! x, there exists a subsequence fxnkg of fxng
and a positive integer k0 such that xnk � x for all k� k0.

First, we prove the following result:

Theorem 3.1 Let ðX;�; dÞ be an ordered metric space

and f : X ! X an extended F-weak contraction for some

function F 2 F. If (X, d) is f-orbitally complete such that

the following conditions hold:

(a) there exists x0 2 X such that x0 � fx0,

(b) f is increasing,

(c) F is continuous and X is �-regular

Then f has a fixed point x 2 X. Moreover, for every x0 2 X

satisfies (a), the sequence ff nx0g converges to x.

Proof Let x0 2 X be such that x0 � fx0. Define a sequence

fxng in X by xnþ1 ¼: fxn for all n 2 N0 ¼: N [ f0g. If xn ¼
xnþ1 for some n 2 N0, then we are done. Otherwise, we

assume dðxn; xnþ1Þ[ 0 for all n 2 N . As x0 � fx0 and f is

increasing, we have

x0 � x1 � x2 � � � � � xn � xnþ1 � � � � :

Now, on setting x ¼ xn�1 and y ¼ xn in (3.1), we have

rðdðxn�1; xnÞÞ þ Fðdðxn; xnþ1ÞÞ�FðMf ðxn�1; xnÞÞ
¼ F

�

max dðxn�1; xnÞ; dðxn; xnþ1Þf g
�

:

If dðxn�1; xnÞ� dðxn; xnþ1Þ for some n 2 N, then

Fðdðxn; xnþ1ÞÞ�Fðdðxn; xnþ1ÞÞ � rðdðxn�1; xnÞÞ;

a contradiction as rðdðxn�1; xnÞÞ[ 0. Therefore,

Fðdðxn; xnþ1ÞÞ�Fðdðxn�1; xnÞ � rðdðxn�1; xnÞÞ;

which, in turn, yields
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Fðdðxn; xnþ1ÞÞ�Fðdðx0; x1ÞÞ � nrðdðx0; x1ÞÞ; ð3:2Þ

for all n 2 N: On letting n ! 1 in (3.2), we get

lim
n!1

Fðdðxn; xnþ1ÞÞ ¼ �1: Therefore, (due to F2)

lim
n!1

dðxn; xnþ1Þ ¼ 0: ð3:3Þ

We assert that fxng is a Cauchy sequence . Let us assume

that fxng is not so. Then there exists �[ 0 and two sub-

sequences fxnkg and fxmk
g of fxng such that

nk [mk � k; dðxnk ; xmk
Þ� �anddðxnk�1; xmk

Þ\�forallk 2 N:

Now, we have

�� dðxnk ; xmk
Þ� dðxnk ; xnk�1Þ þ dðxnk�1; xmk

Þ� dðxnk ; xnk�1Þ þ �

so that

lim
k!1

dðxnk ; xmk
Þ ¼ �:

Again, we have

�� dðxnk ; xnkþ1Þ þ dðxnkþ1; xmkþ1Þ þ dðxmkþ1; xmk
Þ

so that (on letting k ! 1)

�� lim inf
k!1

dðxnkþ1; xmkþ1Þ:

Similarly, we can deduce that

�� lim inf
k!1

dðxnkþ1; xmk
Þand�� lim inf

k!1
dðxmkþ1; xnkÞ:

It follows that there exists l 2 N with dðxnkþ1; xmkþ1Þ[ 0,

dðxnkþ1; xmk
Þ[ 0 and dðxmkþ1; xnkÞ[ 0 for all k� l: Then

for all k� l, we have (on setting x ¼ xnk and y ¼ xmk
in (3.1))

rðdðxnk ; xmk
ÞÞ þ Fðdðxnkþ1; xmkþ1ÞÞ�FðMf ðxnk ; xnkÞÞ; ð3:4Þ

where

Mf ðxnk ; xmk
Þ ¼ max

�

dðxnk ; xmk
Þ; dðxnk ; xnkþ1Þ; dðxmk

; xmkþ1Þ;

dðxnk ; xmkþ1Þ þ dðxmk
; xnkþ1Þ

2

�

� max

�

dðxnk ; xmk
Þ; dðxnk ; xnkþ1Þ; dðxmk

; xmkþ1Þ;

dðxnk ; xmk
Þ þ dðxmk

; xmkþ1Þ þ dðxmk
; xnkÞ þ dðxnk ; xnkþ1Þ

2

�

:

Letting k ! 1 in presiding inequality and in view of the

definition of r and the continuity of F, we get

Fð�Þ\ lim inf
k!1

rðdðxmk
; xnkÞÞ þ Fð�Þ�Fð�Þ;

a contradiction so that fxng is a Cauchy sequence and

having a limit x 2 X. Next, we show that x is a fixed

point. Suppose that xn ¼ fx for infinitely many n 2 N,

then there exists a subsequence of fxng which converges

to fx and the uniqueness of the limit finish the proof.

Henceforth, we assume that fxn 6¼ fx for all n 2 N0. On

using the �-regularity of X, there exists a subsequence

fxnkg of fxng and a positive integer k0 such that xnk � x

for all nk � k0. Now, for nk � k0, we can set x ¼ xnk and

y ¼ x in (3.1) so that

rðdðxnk ; xÞÞ þ Fðdðxnkþ1; fxÞÞ�FðMðxn; xÞÞ

�F

	

max
n

dðxnk ; xÞ; dðxnk ; xnkþ1Þ; dðx; fxÞ;

1

2
½dðxnk ; xÞ þ dðx; fxÞ þ dðx; xnkþ1Þ	

o




:

ð3:5Þ

Let it be on the contrary that dðx; fxÞ[ 0. Making n ! 1
in (3.4), one gets

cþ Fðdðx; fxÞÞ�Fðdðx; fxÞÞ;

where 0\c ¼ lim infdðxn;xÞ!0þ rðdðxn; xÞÞ; a contradiction

so that dðx; fxÞ ¼ 0 which concludes the proof. h

The following result is yet another version of Theo-

rem 3.1 :

Theorem 3.2 Theorem 3.1 remains true if the condition

(c) is replaced by the continuity of f whenever F 2 F .

Proof The proof is identical to the proof of Theorem 3.1

up to (3.3), i.e.,

lim
n!1

dðxn; xnþ1Þ ¼ 0:

Due to (F3), there exists k 2 ð0; 1Þ such that

lim
n!1

ðdðxn; xnþ1ÞÞkFðdðxn; xnþ1ÞÞ ¼ 0: ð3:6Þ

Now, from (3.2), we have

dðxn; xnþ1Þk Fðdðxn; xnþ1ÞÞ � Fðdðx0; x1ÞÞ½ 	
� � nrðdðx0; x1ÞÞdðxn; xnþ1Þk � 0:

ð3:7Þ

On using (3.3), (3.5) and letting n ! 1 in (3.6), we get

lim
n!1

nrðdðx0; x1ÞÞdðxn; xnþ1Þk ¼ 0:

Hence, there exists m 2 N0 such that ndðxn; xnþ1Þk � 1 for

all n�m; so that

dðxn; xnþ1Þ�
1

n
1
k

foralln�m: ð3:8Þ

We assert that fxng is a Cauchy sequence. Consider s; t 2
N0 with s[ t�m. Using the triangle inequality and (3.7),

we have
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dðxt; xsÞ�
X

s�1

i¼t

dðxi; xiþ1Þ

�
X

1

i¼t

dðxi; xiþ1Þ

�
X

1

i¼t

1

i
1
k

:

As
P1

i¼1
1

i
1
k

is convergent, letting s; t ! 1 gives rise to

lim
s;t!1

dðxs; xtÞ ¼ 0

so that the assertion is established. Since X is f-orbitally

complete, there exists x 2 X such that lim
n!1

xn ¼ x: The

continuity of f implies

x ¼ lim
n!1

xnþ1 ¼ f ð lim
n!1

xnÞ ¼ fx:

This concludes the proof. h

Remark 3.1 Theorem 3.5 carries some advantage over

Theorem 3.6 as F remains a relatively larger class as

compared to F , and at the same time most of the utilized

functions in F are already continuous.

Corollary 3.1 Theorem 1.3 follows from Theorems 3.1

and 3.2.

The following example exhibits that Theorem 3.1 is a

proper generalization of Theorem 1.3:

Example 3.1 Let X ¼ A [ B [ C where A ¼ ½0; 1	;B ¼
ð1; 3

2
	 and C ¼ ð3

2
; 2	. Then, ðX; d;�Þ is an ordered metric

space wherein d is the usual metric and the partial order

’�’ on X is defined by

x � y , eitherx ¼ yor
�

x� y : ðx 2 Aandy 2 BÞorðx 2 Bandy 2 CÞg:

Consider F 2 F given by FðsÞ ¼ �1
ffiffi

s
p , for s[ 0 and rðtÞ ¼

1
4
; for all t 2 Rþ. Define a self-mapping f on X by

f ðxÞ ¼

1; forx 2 A;

3

2
; forx 2 B;

2; forx 2 C:

8

>

>

<

>

>

:

Now, in order to verify inequality (3.1), we distinguish the

following two cases:

Case 1: x 2 A and y 2 B. Here, we have

F
�

inf
x2A;y2B

Mf ðx; yÞ
�

¼ F
�

inf
x2A;y2B

n

max
n

y� x; 1� x;
3

2
� y;

y� x

2
þ 1

4

oo�

¼ F
�

inf
y2B

n

max
n

y� 1;
3

2
� y; y� 1

4

oo�

¼ F
� 3

4

�

¼ � 2
ffiffiffi

3
p :

Since rðdðx; yÞÞ þ F
�

dðfx; fyÞ
�

¼ 1
4
þ F

�

1
2

�

¼ 1
4
�

ffiffiffi

2
p

,

f verifies (3.1).

Case 2: x 2 B and y 2 C. Here, we have

F
�

inf
x2B;y2C

Mf ðx; yÞ
�

¼ F
�

inf
x2B;y2C

n

max
n

y� x; x� 3

2
; 2� y;

y� x

2
þ 1

4

oo�

¼ F
�

inf
y2C

n

max
n

y� 3

2
; 2� y; y� 1

2

oo�

¼ Fð1Þ ¼ � 1:

Since rðdðx; yÞÞ þ F
�

dðfx; fyÞ
�

¼ 1
4
þ F

�

1
2

�

¼ 1
4
�

ffiffiffi

2
p

,

f verifies (3.1) in this case too. Therefore, in all, f is an F-

contraction ensuring the existence of some fixed point of f.

Observe that for x ¼ 3
2
and y ¼ 2, the right-hand side of

(1.1) gets us Fð1=2Þ ¼ �
ffiffiffi

2
p

. As 1
4
þ Fðdðf ð3=2Þ; f2ÞÞ ¼

1
4
�

ffiffiffi

2
p

; the inequality (1.1) does not hold so that Theo-

rem 1.3 is not applicable in the context of present example.

Now we prove the following uniqueness result corre-

sponding to Theorems 3.1 and 3.2:

Theorem 3.3 If in addition to the hypotheses of Theorem

3.1 (or Theorem 3.2), the following condition is satisfied,

then f has a unique fixed point:

B: Fixðf Þ :¼ fx 2 X; fx ¼ xg is a totally ordered set.

Proof We prove the conclusion for Theorem 3.1 (for

Theorem 3.2, the proof is similar). If F 2 F the proof is

similar with rðdðx; yÞÞ 
 s. Let x, y be two elements of

Fix(f) such that dðx; yÞ[ 0. Then,

rðdðx; yÞÞ þ Fðdðx; yÞÞ� rðdðx; yÞÞ þ Fðdðfx; fyÞÞ

�F

	

max dðx; yÞ; dðx; fxÞ; dðy; fyÞ;f

dðx; fyÞ þ dðy; fxÞ
2

�


¼Fðdðx; yÞÞ;

a contradiction so that dðx; yÞ ¼ 0: h

In the following uniqueness result, we weaken the

condition (B) at the cost of a relatively more stronger

contraction condition.

Theorem 3.4 If in addition to the hypotheses of Theorem

3.1, the condition (B) is satisfied, then f has a unique fixed

point provided Mf ðx; yÞ in the contraction condition (3.1) is
replaced by mf ðx; yÞ.

Proof Let x, y be two elements of Fix(f). Then there

exists z 2 X such that z is comparable to both x and y. For

x �� z, we may assume that z � x (similar arguments for

y �� z). Since f is increasing, we deduce that
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f nz � x; f nz � y:

Let nn ¼: dðx; f nzÞ. We assert that lim
n!1

nn ¼ 0. For sub-

stitution x ¼ x; y ¼ f nz in the contraction condition, we

have

Fðnnþ1Þ� rðnnÞ þ Fðnnþ1Þ
�Fðmf ðx; f nzÞÞ

¼F

	

max nn;
0þ dðf nz; f nþ1zÞ

2
;
nnþ1 þ nn

2

� �


¼F

	

max nn;
nnþ1 þ nn

2

� �


:

ð3:9Þ

Now, if nn\nnþ1, then (3.9) becomes

Fðnnþ1Þ�F
� nnþ1 þ nn

2

�

;

and since F is strictly increasing, we have nnþ1 � nn which
is a contradiction. Therefore, nn � nnþ1 so that nn is a

decreasing sequence of nonnegative reals such that

lim
n!1

nn ¼ r� 0. If r[ 0, then on letting n tends to infinity

in (3.8), we get FðrÞ\FðrÞ which is not possible. Thus, in

all situations, limn!1 dðx; f nzÞ ¼ 0: Similarly, we can

prove that limn!1 dðy; f nzÞ ¼ 0: Since

dðx; yÞ� dðx; f nzÞ þ dðf nz; yÞ ! 0 as n ! 1, the unique-

ness of the fixed point is established. This concludes the

proof. h

Remark 3.2 As 1 and 2 are not comparable elements, in

the context of Example 3.1, the fixed point is not unique

supporting our uniqueness results.

The following result is immediate. Observe that by

widening the class of functions F in Definition 1.2, one can

derive the following result which remains a metric-version

of Theorem 3.1:

Theorem 3.5 Let (X, d) be a metric space and f : X ! X

an extended F-weak contraction for some function F 2 F.

If (X, d) is f-orbitally complete and the following condition

holds:

(a) F is continuous.

Then f has a unique fixed point x 2 X. Moreover, for every

x0 2 X, the Picard sequence ff nx0g converges to x.

Proof The proof of existence part is very similar to that

one of Theorem 3.1 and the uniqueness follows from

Theorem 3.3 . Only we mention here that the extra con-

ditions therein ensure the comparability between the ele-

ment in which we apply to inequality (3.1). h

Remark 3.3 With a view to check the validity of Theo-

rem 3.5 in the context of Example 3.1 (without any partial

order on X), observe that for x ¼ 1 and y ¼ 2, (3.1) gives

rise

� 1

2
¼ 1

2
þ Fðdðf1; f2ÞÞ�Fð1Þ ¼ �1

so that the inequality (3.1) is not satisfied. This demon-

strates the utility of proving an ordered-version of

Theorem 3.5.

The following is yet another version of Theorem 3.5

which remains a slightly sharpened form of Theorem 1.1

(proved for continuous mapping f).

Theorem 3.6 Let (X, d) be a metric space and f : X ! X

an extended F-weak contraction for some function F 2 F .

If (X, d) is f-orbitally complete and

(a) f is continuous,

then f has a unique fixed point x 2 X. Moreover, for every

x0 2 X, the Picard sequence ff nx0g converges to x.

The proof is omitted as it is very similar to that of [18,

Theorem 2.4] and [3, Theorem 2.2] where the complete-

ness of the whole space is utilized rather than the com-

pleteness of the orbit of f.

Corollary 3.2 Theorem 1.1 follows from Theorems 3.5

and 3.6.

Corollary 3.3 Let (X, d) be a complete metric space and

f : X ! X. Assume there exists F 2 F and r 2 S such that

f is F-contraction of Hardy-Rogers, i.e.,

rðdðx; yÞÞ þ Fðdðfx; fyÞÞ�F
�

a1dðx; yÞ þ a2dðx; fxÞ þ a3dðy; fyÞ
þ a4dðx; fyÞ þ a5dðy; fxÞ

�

;

for all x; y 2 X whenever dðfx; fyÞ[ 0, where

ai 2 ½0;1Þ8i, a1 þ a2 þ a3 þ 2a4 ¼ 1, a3 6¼ 1 and

a1 þ a3 þ a5 � 1. Then f has a unique fixed point x 2 X.

Proof For all x; y 2 X, we have

a1dðx; yÞ þ a2dðx; fxÞ þ a3dðy; fyÞ þ a4dðx; fyÞ þ a5dðy; fxÞ

� ða1 þ a2 þ a3 þ 2a4Þmax

�

dðx; yÞ; dðx; fxÞ; dðy; fyÞ;

dðx; fyÞ þ dðy; fxÞ
2

�

¼ max

�

dðx; yÞ; dðx; fxÞ; dðy; fyÞ; dðx; fyÞ þ dðy; fxÞ
2

�

:

h
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Applications

Inspired by [22], we establish the existence and uniqueness

solution for the following first-order periodic boundary

value problem with respect to its lower or upper solution:

u0ðsÞ ¼ f ðs; uðsÞÞ; s 2 I ¼ ½0; S	
uð0Þ ¼ uðSÞ;

�

ð4:1Þ

where S[ 0 and f : I � R ! R is a continuous function.

Let CðIÞ denote the space of all continuous functions

defined on I. We recall the following two definitions:

Definition 4.1 [22] A function c 2 C1ðIÞ is called a lower

solution of (4.1), if

c0ðsÞ� f ðs; cðsÞÞ; s 2 I

cð0Þ� cðSÞ:

�

Definition 4.2 [22] A function c 2 C1ðIÞ is called an

upper solution of (4.1), if

c0ðsÞ� f ðs; cðsÞÞ; s 2 I

cð0Þ� cðSÞ:

�

Now, we prove the following result on the existence

and uniqueness of solution of the problem described by

(4.1) in the presence of a lower solution (or an upper

solution).

Theorem 4.1 In respect of the problem (4.1), suppose

that the following conditions hold:

(i) there exists s[ 0 such that for all x; y 2 R with

x� y

0� f ðs; yÞ þ e�sy� ½f ðs; xÞ þ e�sx	 � e�sðy� xÞ:
ð4:2Þ

(ii) there exists a function x : R2 ! R such that for

all s 2 I and for all a; b 2 R with xða; bÞ� 0,

x
�

Z S

0

Gðs; tÞ½f ðt; uðtÞÞ þ e�suðtÞ	dt; cðsÞ
�

� 0;

where c 2 C1ðIÞ is a lower solution of (4.1).

(iii) for all s 2 I and all x; y 2 C1ðIÞ, xðxðsÞ; yðsÞÞ� 0

implies

x
�

Z S

0

Gðs; tÞ½f ðt; xðtÞÞ þ e�sxðtÞ	dt;
Z S

0

Gðs; tÞ½f ðt; yðtÞÞ þ e�syðtÞ	dt
�

� 0;

(iv) if xn ! x 2 C1ðIÞ and xðxnþ1; xnÞ� 0; then

xðxn; xÞ� 0 for all n 2 N. Then the existence of

a lower solution of problem (4.1) ensures the

existence and uniqueness of a solution of problem

(4.1).

Proof The problem described by (4.1) can be rewritten as

u0ðsÞ þ e�suðsÞ ¼ f ðs; uðsÞÞ þ e�suðsÞ 8s 2 I

uð0Þ ¼ uðSÞ

�

;

which is equivalent to the integral equation

uðsÞ ¼
Z S

0

Gðs; tÞ½f ðt; uðtÞÞ þ e�suðtÞ	dt; ð4:3Þ

where Green function G(s, t) is given by

Gðs; tÞ ¼

ee
�sðSþt�sÞ

ee
�sS � 1

0� t\s� S;

ee
�sðt�sÞ

ee
�sS � 1

0� s\t� S:

8

>

>

<

>

>

:

Define a function X : CðIÞ ! CðIÞ by

ðXuÞðsÞ ¼
Z S

0

Gðs; tÞ½f ðt; uðtÞÞ þ e�suðtÞ	dt 8s 2 I:

ð4:4Þ

Clearly, if u 2 CðIÞ is a fixed point of X , then u 2 C1ðIÞ is a
solution of (4.3) and hence of (4.1). Now, define a metric d

on CðIÞ by

dðu; vÞ ¼ sup
s2I

juðsÞ � vðsÞj 8u; v 2 CðIÞ: ð4:5Þ

On CðIÞ, define a partial order � given by

u; v 2 CðIÞ; u � v () uðsÞ� vðsÞ 8s 2 I: ð4:6Þ

Clearly, ðCðIÞ; d;�Þ is a complete ordered metric space.

We check that all other conditions of Theorem 3.4:

First, let c 2 C1ðIÞ be a lower solution of (4.1); we have

c0ðsÞ þ e�scðsÞ� f ðs; cðsÞÞ þ e�scðsÞ 8s 2 I:

Multiplying both the sides by ee
�ss, we get

ðcðsÞee�ssÞ0 � ½f ðs; cðsÞÞ þ e�scðsÞ	ee�ss 8s 2 I;

which implies that

cðsÞee�ss � cð0Þ þ
Z s

0

½f ðt; cðtÞÞ þ e�scðtÞ	ee�stdt 8s 2 I:

ð4:7Þ

As cð0Þ� cðSÞ, we have

Math Sci (2017) 11:247–255 253

123



cð0Þee�sS � cðSÞee�sS � cð0Þ þ
Z S

0

½f ðt; cðtÞÞ þ e�scðtÞ	ee�stdt

so that

cð0Þ�
Z S

0

ee
�st

ee
�sS � 1

½f ðt; cðtÞÞ þ e�scðtÞ	dt: ð4:8Þ

On using (4.7) and (4.8), we obtain

cðsÞee�ss �
Z S

0

ee
�st

ee
�sS � 1

½f ðt; cðtÞÞ þ e�scðtÞ	dt

þ
Z s

0

ee
�st½f ðt; cðtÞÞ þ e�scðtÞ	dt

�
Z s

0

ee
�sðSþtÞ

ee
�sS � 1

½f ðt; cðtÞÞ þ e�scðtÞ	dt

þ
Z S

s

ee
�st

ee
�sS � 1

½f ðt; cðtÞÞ þ e�scðtÞ	dt

so that

cðsÞ�
Z s

0

ee
�sðSþt�sÞ

ee
�sS � 1

½f ðt; cðtÞÞ þ e�scðtÞ	dt

þ
Z S

s

ee
�sðt�sÞ

ee
�sS � 1

½f ðt; cðtÞÞ þ e�scðtÞ	dt

¼
Z S

0

Gðs; tÞ½f ðt; cðtÞÞ þ e�scðtÞ	dt

¼ðXcÞðsÞ

for all s 2 I, which implies that c � XðcÞ.
Second, take u; v 2 CðIÞ such that u � v; then by (4.2),

we have

f ðs; uðsÞÞ þ e�suðsÞ� f ðs; vðsÞÞ þ e�svðsÞ 8s 2 I: ð4:9Þ

On using (4.4), (4.9) and the fact that Gðs; tÞ[ 0 for

ðs; tÞ 2 I � I, we get

ðXuÞðsÞ ¼
Z S

0

Gðs; tÞ½f ðt; uðtÞÞ þ e�suðtÞ	dt

�
Z S

0

Gðs; tÞ½f ðt; vðtÞÞ þ e�svðtÞ	dt

¼ðXvÞðsÞ 8s 2 I;

which, owing to (4.6), implies that XðuÞ � XðvÞ so that X
is increasing.

Finally, take an increasing sequence fung 
 CðIÞ such

that un ! u 2 CðIÞ; then for each s 2 I, funðsÞg is a

sequence in R converging to u(s). Hence, for all n 2 N and

for all s 2 I, we have unðsÞ� uðsÞ for all n 2 N0 so that

CðIÞ is �-regular.

Now we show that X is F-contraction for some F 2 F.

Take u; v 2 CðIÞ such that u � v, using (4.2), (4.4) and

(4.5), we have

dðXu;XvÞ ¼ sup
s2I

jðXuÞðsÞ � ðXvÞðsÞj ¼ sup
s2I

�

ðXvÞðsÞ � ðXuÞðsÞ
�

� sup
s2I

Z S

0

Gðs; tÞ½f ðt; vðtÞÞ þ e�svðtÞ � f ðt; uðtÞÞ � e�suðtÞ	dt

� sup
s2I

Z S

0

Gðs; tÞe�sðvðtÞ � uðtÞÞdt

¼e�sdðu; vÞ sup
s2I

Z S

0

Gðs; tÞdt

¼e�sdðu; vÞ sup
s2I

1

ee
�sS � 1

� 1

e�s
ee

�sðSþt�sÞ
is

0
þ 1

e�s
ee

�sðt�sÞ
iS

s

�

¼e�sdðu; vÞ 1

ðee�sS � 1Þ ðe
e�sS � 1Þ

¼e�sdðu; vÞ

� e�smax dðu; vÞ; dðu;XuÞ þ dðv;XvÞ
2

;
dðu;XvÞ þ dðv;XuÞ

2

� �

;

for all u; v 2 X with u � v. Hence, X is F-weak contraction

for s chosen as in (i) and FðsÞ ¼ ln s. Thus, all the condi-

tions of Theorem 3.1 are satisfied ensuring the existence of

some fixed point of X . Observe that, for arbitrary

u; v 2 CðIÞ, w :¼ maxfu; vg 2 CðIÞ is comparable to both u

and v. Therefore, by Theorem, 3.4, X has a unique fixed

point which means that problem (4.1) has a unique solu-

tion. h

Theorem 4.2 Theorem 4.1 remains true if we replace the

existence of the lower solution of (4.1) by the existence of

an upper solution
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