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Abstract In this paper, the two-dimensional Bernoulli

wavelets (BWs) with Ritz–Galerkin method are applied for

the numerical solution of the time fractional diffusion-

wave equation. In this way, a satisfier function which sat-

isfies all the initial and boundary conditions is derived. The

two-dimensional BWs and Ritz–Galerkin method with

satisfier function are used to transform the problem under

consideration into a linear system of algebraic equations.

The proposed scheme is applied for numerical solution of

some examples. It has high accuracy in computation that

leads to obtaining the exact solutions in some cases.

Keywords Two-dimensional Bernoulli wavelets basis �
Fractional diffusion-wave equation � Ritz–Galerkin

method � Satisfier function � Caputo derivative

Introduction

Many phenomena in various field of the science, can be

modeled very successfully by time-fractional differential

equations. In this paper we focus on the following frac-

tional diffusion-wave equation (FDWE) with damping [1]:

oquðx; tÞ
otq

þ ouðx; tÞ
ot

¼ o2uðx; tÞ
ox2

þ hðx; tÞ;

0\x\L; 0\t\T ;

ð1:1Þ

with the initial conditions:

uðx; 0Þ ¼ f0ðxÞ;
ouðx; 0Þ

ot
¼ f1ðxÞ; 0� x� L;

ð1:2Þ

and the boundary conditions:

uð0; tÞ ¼ g0ðtÞ; uðL; tÞ ¼ g1ðtÞ; 0� t� T; ð1:3Þ

where L[ 0; T [ 0; 1\q� 2 is the order of the fractional

derivative in the Caputo sense, f0; f1; g0 and g1 are known

and sufficiently smooth functions, while the function u is to

be determined. In the case q ¼ 2, this equation is named

telegraph equation.

Recently, considerable amount of papers have been

proposed methods for solving the FDWE [2–13]. Chen

et al. [1] obtained the analytical solution by the method of

separation of variables and proposed the numerical solu-

tion with finite difference method. In [2], Bhrawy et al.

applied a spectral tau method based on the Jacobi oper-

ational matrix to solve the problem. Liu et al. [3] proposed

the fractional predictor–corrector method to solve this

problem. In [4], Mainardi derived the fundamental solu-

tions for the FDWE. The combination of the compact

difference method and alternating direction implicit

method are used for solving two-dimensional fractional

Cattaneo equation in [5]. A fully discrete difference

scheme is recommended for a diffusion-wave system by

Wess [6]. Heydari et al. [7] applied fractional operational

matrix (FOM) of integration for the Legendre wavelets

(LWs) to solve the problem. In [8] a compact finite-dif-

ference scheme is used for the fourth-order fractional

diffusion-wave system. In [9] finite difference schemes of

second-order are proposed for the time-fractional diffu-

sion-wave equation. In [10], Hu and Zhang used finite-

difference methods for fourth-order fractional diffusion-

wave. Sumudu transform method for solving fractional
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differential equations and fractional diffusion-wave

equation applied by Darzi et al. [11]. Hosseini et al. [12]

employed the meshless local radial point interpolation

method which is based on the Galerkin weak form and

radial point interpolation approximation for solving

FDWE.

The Ritz–Galerkin method is the method to transform

a continuous problem to a discrete problem. Several

partial differential equations are numerically solved by

Ritz–Galerkin method, but using of the appropriate

satisfier function in the Ritz–Galerkin method is taken

into consideration recently, see for instance [14–20].

The satisfier function fulfills all the problem conditions.

In conclusion, employing of it in Ritz–Galerkin method

provides the facility to satisfy the problem conditions,

also leads to a system of algebraic equations of smaller

size and hence reduces the computation time.

In mathematical research, wavelet theory is a relatively

new and growing area. It has been used in a wide range of

engineering; for instance, wavelets are very successfully

applied in signal analysis for waveform representations and

segmentations [21]. Wavelets allow the accurate repre-

sentation of many types of functions and operators [22, 23].

Furthermore, wavelets make a connection with fast

numerical algorithms [24].

The shifted Legendre polynomials pnðxÞ; n ¼
0; 1; 2; :::, that 0� x� 1, are more efficient in approxi-

mation theory, among other orthogonal polynomials

[25, 26]. The Bernoulli polynomials are not orthogonal

functions. In [27], the superiority of Bernoulli polyno-

mials bnðxÞ; n ¼ 0; 1; 2; :::; so that 0� x� 1; to shifted

Legendre polynomials in approximation of functions is

proposed.

In this paper, we define two-dimensional BWs for the

first time. Moreover, this is the first time the Ritz–Galerkin

method in the two-dimensional BWs basis and with uti-

lizing the satisfier function is employed to give an

approximate solution of FDWE. We also compare our

results with those results obtained by [3] and [7]. Com-

parison for the numerical examples shows the more accu-

racy and less computations of our scheme in comparison to

other published methods.

This paper is separated in to the following sections: In

Sect. 2, we introduce basic formulation of wavelets and the

Bernoulli wavelets. In Sect. 3, we construct two different

satisfier functions and apply the Ritz–Galerkin method in

the two-dimensional BWs basis for numerically discretize

the problem. Section 4 presents and discusses the numeri-

cal results for two test examples, whilst Sect. 5 includes the

conclusions of this paper.

Properties of Bernoulli wavelets

Wavelets and Bernoulli wavelets

Dilation and translation of a function (mother wavelet)

construct a family of functions called wavelets and is

defined as follows [28]

ua;bðtÞ ¼j a j�1
2 u

t � b

a

� �
; a 6¼ 0;

where a; b 2 R are dilation and translation parameters that

vary continuously. The family of discrete wavelets that

form a basis for L2ðRÞ is defined as follows

uk;nðtÞ ¼j a0 jk2 uðak0t � nb0Þ;

where n and k are positive integers and a0 [ 1; b0 [ 1.

Bernoulli wavelets are obtained, when we choose Ber-

noulli polynomial bmðtÞ as mother wavelet. BWs un;mðtÞ ¼
uðk; n̂;m; tÞ have four arguments; n̂ ¼ n� 1; n ¼
1; 2; 4; :::; 2k�1;m is the order for Bernoulli polynomials

and k can assume any positive integer. They are defined on

the interval [0, 1) for m ¼ 1; 2; :::;M � 1, that M[ 0 is a

fixed integer by [29]

un;mðtÞ ¼
2

k�1
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1Þm�1ðm!Þ2

ð2mÞ! a2m

s bmð2k�1t � n̂Þ; n̂

2k�1
� t\

n̂þ 1

2k�1
;

0; otherwise;

8>>><
>>>:

and

un;0ðtÞ ¼
2

k�1
2 ;

n̂

2k�1
� t\

n̂þ 1

2k�1
;

0; otherwise;

8<
:

where n ¼ 1; 2; :::; 2k�1. The coefficient 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1Þm�1ðm!Þ2

ð2mÞ! a2m

q is

applied to normalize the Bernoulli wavelets. Bernoulli

polynomials form a complete basis over the interval [0, 1]

[30] and are defined by [31]

bmðtÞ ¼
Xm
i¼0

m

i

� �
am�it

i; ð2:1Þ

that ai; i ¼ 0; 1; :::;m are Bernoulli numbers.

For Bernoulli polynomials we have [32]Z s

a

bmðtÞdt ¼
bmþ1ðsÞ � bmþ1ðaÞ

mþ 1
; ð2:2Þ

Z 1

0

bm1
ðtÞbm2

ðtÞdt ¼ð�1Þm1�1 m1!m2!

ðm1 þ m2Þ!
am1þm2

; m1;m2 � 1:

ð2:3Þ
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Now, let

~bmðtÞ ¼

1; m ¼ 0;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1Þm�1ðm!Þ2

ð2mÞ! a2m

s bmðtÞ; m[ 0:

8>>><
>>>:

We define, for the first time, the two-dimensional Bernoulli

wavelets un1m1n2m2
ðx; yÞ as

2
ðk1�1Þþðk2�1Þ

2 ~bm1
ð2k1�1x� n̂1Þ~bm2

ð2k2�1y� n̂2Þ; for

n̂1

2k1�1
� x\

n̂1 þ 1

2k1�1
;

n̂2

2k2�1
� y\

n̂2 þ 1

2k2�1
;

0; otherwise

8>>>><
>>>>:

where m1 ¼ 0; 1; 2; :::;M1 � 1;m2 ¼ 0; 1; 2; :::;M2 � 1.

Here, n̂1 and n̂2 are defined similarly to n̂; k1 and k2 can be

any positive integer, ~bm1
and ~bm2

are defined similarly to

~bm of order m1 and m2, respectively.

Function approximation

A function f ðx; yÞ 2 L2ð½0; 1Þ � ½0; 1ÞÞ may be expanded as

in terms of two-dimensional Bernoulli wavelets as

f ðx; yÞ ¼
X1
n¼1

X1
i¼0

X1
l¼1

X1
j¼0

cniljuniljðx; yÞ: ð2:4Þ

If the infinite series for f is truncated, then Eq. (2.4) can be

written as

f ðx; yÞ ’
X2k1�1

n¼1

XM1�1

i¼0

X2k2�1

l¼1

XM2�1

j¼0

cniljuniljðx; yÞ ¼ CTUðx; yÞ ¼ UT
1 ðxÞFU2ðyÞ;

ð2:5Þ

where U1ðxÞ and U2ðyÞ are 2k1�1M1 � 1 and 2k2�1M2 � 1

matrices, respectively, given by

U1ðxÞ ¼½u10ðxÞ;u11ðxÞ; . . .;u1M1�1ðxÞ;u20ðxÞ; . . .;
u2M1�1ðxÞ; . . .;u2k1�10ðxÞ; . . .;u2k1�1M1�1ðxÞ�T ;

U2ðyÞ ¼½u10ðyÞ;u11ðyÞ; . . .;u1M2�1ðyÞ;u20ðyÞ; . . .;
u2M2�1ðyÞ; . . .;u2k2�10ðyÞ; . . .;u2k2�1M2�1ðyÞ�T :

In Eq. (2.5), F is a 2k1�1M1 � 2k2�1M2 matrix that can be

calculated from [33]

F ¼ D�1
1 \U1ðxÞ;\f ðx; yÞ;U2ðyÞ[ [D�1

2 ;

where h:i denotes the inner product, D1 ¼ hU1ðxÞ;
U1ðxÞi ¼

R 1

0
U1ðxÞUT

1 ðxÞdx and D2 ¼ hU2ðyÞ;U2ðyÞi ¼R 1

0
U2ðyÞUT

2 ðyÞdy are 2k1�1M1 � 2k1�1M1 and 2k2�1M2 �
2k2�1M2 matrices, respectively.

Satisfier function

In the Ritz–Galerkin method with the two-dimensional

BWs basis, the approximation euðx; tÞ of the solution

u(x, t) in (1.1) is sought in the form of the truncated series

euðx; tÞ ¼ X2k1�1

n¼1

XM1�1

i¼0

X2k2�1

l¼1

XM2�1

j¼0

cniljrniljðx; tÞ þ wðx; tÞ;

ðx; tÞ 2 ½0; L� � ½0; T �;
ð3:1Þ

where rniljðx; tÞ ¼ xðx� LÞt2uniðxÞuljðtÞ and w(x, t) is a

satisfier function. The most important point in using the

Ritz–Galerkin method is finding the satisfier function,

which satisfies all the problem conditions [16]. Interpola-

tion is one of the methods that is usually used to derive

Satisfier functions. On the other hand, we have seen from

experience, when in constructing of the satisfier function

we use only the problem’s data, we get a satisfier function

that is closer to the exact solution. Therefore, we obtain the

cost-effective computational results [14, 16]. Here, we

construct two different satisfier functions for the initial and

boundary conditions:

uðx; 0Þ ¼f0ðxÞ; 0� x� L; ð3:2Þ

ouðx; 0Þ
ot

¼f1ðxÞ; 0� x� L; ð3:3Þ

uð0; tÞ ¼g0ðtÞ; 0� t� T ; ð3:4Þ

uðL; tÞ ¼g1ðtÞ; 0� t� T : ð3:5Þ

It is worth pointing out that f0ðxÞ; f1ðxÞ; g0ðtÞ and g1ðtÞ
satisfy the following compatibility conditions:

f0ð0Þ ¼g0ð0Þ; f0ðLÞ ¼ g1ð0Þ; ð3:6Þ

f1ð0Þ ¼ �g0ð0Þ; f1ðLÞ ¼ �g1ð0Þ: ð3:7Þ

The first technique for obtaining the satisfier function is as

follows:

We set

wðx; tÞ ¼ k1ðxÞg0ðtÞ þ k2ðxÞg1ðtÞ; ð3:8Þ

then we construct k1ðxÞ and k2ðxÞ, such that (3.8) fulfils the

conditions (3.2)–(3.5).

Clearly, if k1ðxÞ and k2ðxÞ satisfy the following

conditions:

k1ð0Þ ¼k2ðLÞ ¼ 1; k2ð0Þ ¼ k1ðLÞ ¼ 0; ð3:9Þ

k1ðxÞg0ð0Þ þ k2ðxÞg1ð0Þ ¼f0ðxÞ; k1ðxÞ �g0ð0Þ þ k2ðxÞ �g1ð0Þ ¼ f1ðxÞ;

ð3:10Þ

then (3.8) can be a satisfier function for (3.2)–(3.5).
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Equations (3.10) form a system of linear equations,

which can be solved for k1ðxÞ and k2ðxÞ when

g0ð0Þ �g1ð0Þ � g1ð0Þ �g0ð0Þ 6¼ 0. By solving this system, we

obtain

k1ðxÞ ¼
f0ðxÞ �g1ð0Þ � g1ð0Þf1ðxÞ
g0ð0Þ �g1ð0Þ � g1ð0Þ �g0ð0Þ

; ð3:11Þ

k2ðxÞ ¼
f1ðxÞg0ð0Þ � �g0ð0Þf0ðxÞ
g0ð0Þ �g1ð0Þ � g1ð0Þ �g0ð0Þ

: ð3:12Þ

From compatibility conditions (3.6) and (3.7), it is easy to

see that k1ðxÞ and k2ðxÞ have properties (3.9). Therefore,

we introduce the satisfier function w(x, t) which satisfies

the initial conditions (3.2) and (3.3), and the boundary

conditions (3.4) and (3.5) when

g0ð0Þ �g1ð0Þ � g1ð0Þ �g0ð0Þ 6¼ 0;

as:

wðx; tÞ ¼ k1ðxÞg0ðtÞ þ k2ðxÞg1ðtÞ; ð3:13Þ

where k1ðxÞ and k2ðxÞ are obtained from (3.11) and (3.12).

The second satisfier function is constructed as follows:

We firstly transform the nonhomogeneous boundary

condition into a homogeneous boundary condition. Let

uðx; tÞ ¼ vðx; tÞ þ /ðx; tÞ;

where

/ðx; tÞ ¼ 1 � x

L

� �
g0ðtÞ þ

x

L
g1ðtÞ:

The function v(x, t) then satisfies the problem with

homogeneous boundary conditions:

vðx; 0Þ ¼F0ðxÞ; 0� x� L; ð3:14Þ

ovðx; 0Þ
ot

¼F1ðxÞ; 0� x� L; ð3:15Þ

vð0; tÞ ¼0; 0� t� T ; ð3:16Þ

vðL; tÞ ¼0; 0� t� T ; ð3:17Þ

that F0ðxÞ ¼ f0ðxÞ � /ðx; 0Þ; and F1ðxÞ ¼ f1ðxÞ � /tðx; 0Þ:
From conditions (3.14)–(3.17), we drive compatibility

conditions:

F0ð0Þ ¼ F0ðLÞ ¼ F1ð0Þ ¼ F1ðLÞ ¼ 0:

Therefore, Wðx; tÞ ¼ F0ðxÞ þ tF1ðxÞ satisfies conditions

(3.14)–(3.17) and eventually, we introduce the satisfier

function for (3.2)–(3.5) as:

wðx; tÞ ¼ Wðx; tÞ þ /ðx; tÞ: ð3:18Þ

It is worth to mention that if g0ð0Þ �g1ð0Þ � g1ð0Þ �g0ð0Þ 6¼ 0,

we prefer the first attained satisfier function in (3.13), since

in constructing of (3.13) we used only the problem’s data.

Returning now to the Ritz–Galerkin approximation

(3.1), the expansion coefficients cnilj are determined by the

Galerkin equations:

hFðeuÞ;uniðxÞuljðtÞi ¼ 0; ð3:19Þ

where

FðuÞ ¼ oquðx; tÞ
otq

þ ouðx; tÞ
ot

� o2uðx; tÞ
ox2

� hðx; tÞ;

and

hFðeuÞ;uniðxÞuljðtÞi ¼
Z L

0

Z T

0

FðeuÞuniðxÞuljðtÞdtdx;

ð3:20Þ

where uniðxÞ;uljðtÞ are BWs. Equations (3.19) form a

linear system of equations which can be solved for the

elements of cnilj; n ¼ 1; :::; 2k1�1; i ¼ 0; :::;M1 � 1; l ¼
1; :::; 2k2�1; j ¼ 0; :::;M2 � 1 using mathematical softwares.

Numerical results and comparisons

In this section, we apply the numerical scheme in the

previous section for finding the approximation solutions of

two examples of FDWE. We compare our results with

obtained results in [3] and [7]. In all examples the package

of Mathematica ver. 10.4 has been used. The approximate

norm-2 of absolute error is given as

keðx; tÞk2
L2 ¼

Z L

0

Z T

0

e2ðx; tÞdtdx ¼
Z L

0

Z T

0

ðuðx; tÞ � euðx; tÞÞ2
dtdx

Example 1

Notice the following FDWE [7]:

oquðx; tÞ
otq

þ ouðx; tÞ
ot

¼ o2uðx; tÞ
ox2

þ hðx; tÞ;

ðx; tÞ 2 ½0; 1� � ½0; 1�; 1\q� 2;

ð4:1Þ

with the homogenous initial and boundary conditions, and

let

hðx; tÞ ¼ 2xð1 � xÞt2�q

Cð3 � qÞ þ 2txð1 � xÞ þ 2t2:

Now, we apply the numerical method presented in this

paper for k1 ¼ k2 ¼ 1 and M1 ¼ M2 ¼ 3. From Eq. (3.18)

we have wðx; tÞ ¼ 0 and from Eq. (3.19), for q ¼
1:1; 1:3; 1:5; 1:7; 1:9 we obtain

c1010 ¼ �1; c1i1j ¼ 0; i; j ¼ 1; 2:

Thus, from (3.1) we have

euðx; tÞ ¼ t2xð1 � xÞ;

198 Math Sci (2017) 11:195–202
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which is the exact solution.

In [7], Heydari et al. used fractional operational matrix

of integration for the LWs to solve this problem for

q ¼ 1:1; 1:3; 1:5; 1:7; 1:9. The best absolute error of the

approximate solutions at some different points, in [7], with

k1 ¼ k2 ¼ 3 and M1 ¼ M2 ¼ 3 is 1:6695 � 10�6.

Example 2

Consider the following FDWE [3, 7]:

oquðx; tÞ
otq

þ ouðx; tÞ
ot

¼ o2uðx; tÞ
ox2

þ hðx; tÞ;

ðx; tÞ 2 ½0; 1� � ½0; 1�; 1\q� 2;

ð4:2Þ

where

hðx; tÞ ¼ 6t3�qex

Cð4 � qÞ þ 3t2ex � t3ex:

The initial and boundary conditions are determined corre-

spondingly to the exact solution uðx; tÞ ¼ ext3:

From (3.18), we obtain wðx; tÞ ¼ t3ð1 � xþ exÞ, then

apply the numerical method presented in this paper for

k1 ¼ k2 ¼ 1 and M1 ¼ M2 ¼ 3. Tables 1 and 2 present,

respectively, the absolute error and the L2 norm error for

uðx; tÞ � euðx; tÞ with different values of q. In Table 3, the

absolute error of u(x, t) and CPU times for q ¼ 1:5 with

k1 ¼ k2 ¼ 1 and different values of M1 ¼ M2 are given. It

is seen from Table 3 that, with increase in the number of

the two-dimensional Bernoulli wavelets basis, the

approximate values of u(x, t) converge to the exact solu-

tions. In Figs. 1 and 2, the exact and approximate solutions,

and also the absolute difference between exact and

approximate solutions of u(x, t) with q ¼ 1:1 and q ¼ 1:9

are plotted, respectively. Also, the graphs of the absolute

errors for q ¼ 1:5 at t ¼ 0:5 and x ¼ 0:5 are shown in

Fig. 3.

Liu et al. [3] employed the fractional predictor–corrector

method and solved this problem with q ¼ 1:85 and dif-

ferent values of time and space step sizes. They obtained

1:6341 � 10�3 for the best maximum absolute error.

Moreover, in Table 1 we compare our results with obtained

results in [7]. These comparisons show the more accuracy

and less computations of our technique in comparison to

other published methods.

Table 1 Comparison of

absolute errors of our

scheme with scheme in [7], for

Example 2

(x, t) FOM of the LWs [7]

q ¼ 1:1 q ¼ 1:3 q ¼ 1:5 q ¼ 1:7 q ¼ 1:9

(0.1, 0.1) 6.7028E�5 6.2270E�5 6.0407E�5 4.9516E�5 2.0243E�5

(0.2, 0.2) 1.8718E�4 1.6817E�5 1.5683E�4 1.3074E�4 5.9155E�5

(0.3, 0.3) 3.0913E�4 2.8256E�4 2.7985E�4 2.3269E�4 1.0947E�4

(0.4, 0.4) 4.0221E�4 3.6211E�4 3.7035E�4 3.4739E�4 1.6790E�4

(0.5, 0.5) 4.5801E�4 3.8782E�4 3.8089E�4 3.2553E�4 1.6277E�4

(0.6, 0.6) 4.5260E�4 3.7198E�4 3.6309E�4 3.1089E�4 1.9284E�4

(0.7, 0.7) 4.0597E�4 3.0859E�4 3.2603E�4 4.6656E�5 6.2825E�5

(0.8, 0.8) 3.1039E�4 7.9174E�5 6.5594E�4 1.2388E�4 1.0181E�5

(0.9, 0.9) 1.7283E�4 2.1787E�4 7.1269E�3 1.6600E�3 2.0918E�5

Two-dimensional BWs with Ritz–Galerkin

(0.1, 0.1) 1.15559E�8 2.74255E�8 4.98128E�8 7.94344E�8 1.15539E�7

(0.2, 0.2) 5.1508E�7 4.34347E�7 3.22397E�7 1.7431E�7 1.02961E�8

(0.3, 0.3) 2.63293E�6 2.4816E�6 2.27573E�6 2.00433E�6 1.66006E�6

(0.4, 0.4) 4.60055E�6 4.45255E�6 4.25572E�6 3.99849E�6 3.66878E�6

(0.5, 0.5) 5.4117E�7 5.28932E�7 5.14574E�7 4.98345E�7 4.80654E�7

(0.6, 0.6) 1.5061E�5 1.48076E�5 1.44822E�5 140612E�5 1.35084E�5

(0.7, 0.7) 3.84166E�5 3.78505E�5 3.71462E�5 3.62581E�5 3.5106E�5

(0.8, 0.8) 5.0541E�5 4.97745E�5 4.88533E�5 4.77303E�5 4.63092E�5

(0.9, 0.9) 2.89942E�5 2.83482E�5 2.7603E�5 2.6739E�5 2.57007E�5

Table 2 The L2 norm error, for

Example 2
q kuðx; tÞ � euðx; tÞk2

L2

1.1 8.30025E�10

1.3 8.10785E�10

1.5 7.88518E�10

1.7 7.62722E�10

1.9 7.32127E�10

Math Sci (2017) 11:195–202 199

123



Table 3 Absolute error for

different values of M1 and M2 in

q ¼ 1:5, for Example 2

ðx,tÞ M1 ¼ M2 ¼ 1 M1 ¼ M2 ¼ 2 M1 ¼ M2 ¼ 3 M1 ¼ M2 ¼ 4 M1 ¼ M2 ¼ 5

(0, 0) 0 0 0 0 0

(0.1, 0.1) 6.18035E�4 2.90292E�6 4.98128E�8 5.21312E�10 7:07305E � 11

(0.2, 0.2) 3.89089E�3 1.27728E�5 3.22397E�7 2.39923E�8 3.82387E�10

(0.3, 0.3) 9.90664E�3 3.18197E�6 2.27573E�6 3.31857E�8 2.504E�9

(0.4, 0.4) 1.67023E�2 7.22114E�5 4.25572E�6 1.44036E�7 7.99214E�9

(0.5, 0.5) 2.12456E�2 2.34008E�4 5.14574E�7 5.13346E�7 5.66433E�10

(0.6, 0.6) 2.06188E�2 4.30503E�4 1.44822E�5 5.85401E�7 2.76078E�8

(0.7, 0.7) 1.34408E�2 5.26881E�4 3.71462E�5 2.95966E�7 4.00415E�8

(0.8, 0.8) 1.57144E�3 3.72958E�4 4.88533E�5 1.78359E�6 1.23163E�8

(0.9, 0.9) 7.85399E�3 6.6203E�7 2.7603E�5 1.7876E�6 6.36963E�8

(1, 1) 0 0 0 0 0

CPU times (s) 0.312 0.342 0.374 0.390 0.405

Fig. 1 The graphs of the Exact (blue) and approximate (red) solutions (left side) and the absolute error (right side) of u(x, t) in q ¼ 1:1, for

Example 2

Fig. 2 The graphs of the Exact (blue) and approximate (red) solutions (left side) and the absolute error (right side) of u(x, t) in q ¼ 1:9, for

Example 2
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Conclusion

In this paper, the two-dimensional BWs was defined. Then

the satisfier function in Ritz–Galerkin method with the

two-dimensional BWs basis was successfully applied to

solve the second-order time FDWE. Using of satisfier

function in the Ritz–Galerkin method is an efficient tool to

put on the initial and boundary conditions. Furthermore, a

small number of basis elements were sufficient to derive

accurate numerical solutions. Also, our results were com-

pared with obtained results in [3] and [7]. Comparison for

the numerical examples shows the more accuracy and less

computations of the proposed method in comparison to

other published methods.
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link to the Creative Commons license, and indicate if changes were

made.
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