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Abstract Evaluating profit efficiency measure needs input

costs and output prices as well as input–output quantities. It

is important to rank production units based on relative or

absolute values of their production when costs and prices

are available. Ranking production units in data envelop-

ment analysis constitutes ranking individual units based on

their profit efficiency ratio measures. Two novel models are

presented in this paper for evaluating units based on a

profit-dominance criterion. Models consider not only self-

appraisal DEA optimal weights, but also all feasible input

and output weights. A novel ratio-based and complete

ranking method is introduced that is based on computing

upper and lower boundaries for profit performance of

observed units. An illustrative application of the models is

then presented and results are discussed.

Keywords Data envelopment analysis � Profit efficiency �
Ranking � Feasible weights

Introduction

Evaluating performance of production systems and

improving them as well as determining efficiency scores

and inefficiency resources of production units are impor-

tant issues for system managers. Data Envelopment Anal-

ysis, DEA, is a nonparametric optimization approach that

was first introduced by Charnes et al. [1] to evaluate effi-

ciency scores of decision-making units, DMUs. Basic DEA

models are founded upon input–output data without the

need for input costs and output prices. Some DEA models

are available for cost, revenue, and profit analysis when

costs and prices are available.

A profit efficiency model needs both input costs and

output prices as discussed by Färe et al. [2, 3], while Färe

and Grosskopf [4] derived cost and profit functions from

directional technology distance function. More recent DEA

efforts deal directly with profit efficiency from different

perspectives. Examples include Chambers and Färe [5],

Briec et al. [6], and Ruiz and Sirvent [7] among others.

Ranking is one of the more challenging items in per-

formance management DEA that has received much

attention. It is well known that the efficiency scores sug-

gested by classical DEA models cannot fully discriminate

efficient units, and inefficient units are evaluated by a mere

set of optimal weights in a self-appraisal approach.

Sexton et al. [8] produced some of the first research that

deals directly with the traditional ranking issues. Authors

suggested a cross-efficiency matrix to rank units against

self-appraisal weighting systems. However, cross-effi-

ciency ranking method is inherently compromised by the

existence of multiple optimal weights. To overcome this

obstacle, Doyle and Green [9] suggested using weights as a

secondary objective approach. The same approach is

employed in some of the more recent efforts in this area,
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such as research conducted by Rodder and Reucher [10],

Ruiz [11], or Yang et al. [12]. As an alternative approach,

Anderson and Peterson [13] utilized a super-efficiency

method for ranking units in DEA. To avoid over expen-

diture of efficiency for some units in Anderson and

Peterson ranking method, Sueyoshi [14] suggested

boundaries for weights. Seiford and Zhu [15] presented

conditions that would render the super-efficiency method

infeasible. Modified versions of super-efficiency method in

ranking have been produced, such as those by Chen [16],

Lee et al. [17], and Lee and Zhu [18]. A more recent

ranking technique was introduced by Salo and Punkka [19],

which considers all feasible weights and evaluates effi-

ciency dominance relationships for each pair of DMUs by

introducing ranking intervals.

There is much research devoted to profit efficiency and

ranking methods in DEA literature. However, there is no

direct approach for ranking units using profit efficiency

scores. Common ranking methods, such as super-effi-

ciency, do not consider input and output prices of DMUs

and ignore vital information about them. Therefore, com-

mon methods are not accurate enough for ranking DMUs in

the presence of prices.

The presented research introduces a new approach in

ranking units by expanding upon the approach taken by

Salo and Punkka [19] for profit models. All feasible

weights of DMUs are calculated and units are ranked based

upon their profit efficiency scores by taking the worst and

the best profit rankings of a DMU in comparison with other

DMUs. This paper will discuss the following:

• A novel approach to determining the best and the worst

rankings of systems based on their profit efficiency.

• Models that consider all feasible weights and not only

self- appraisal optimal DEA weights.

• Models providing ranking intervals for all systems and

not only efficient ones.

• A numerical example demonstrating the applicability

and efficiency of proposed models for hospitals.

Basic notations and workings of a DEA profit efficiency

model are introduced in ‘‘Basic concept: illustration’’.

‘‘Ranking units based on profit efficiency score’’ will intro-

duce ranking intervals and a novel ranking method based on

profit efficiency scores. ‘‘Illustrative application’’ will

demonstrate the new method through an illustrative exam-

ple, and conclusions will be discussed in ‘‘Conclusions’’.

Basic concept: illustration

A two-dimensional example is used to illustrate the best

and the worst possible ranking positions obtained from

efficiency ratios. Let us start with the numerical example in

Table 1. Example consists of six DMUs with two outputs

and a single identical input as indicated.

Figure 1 presents the Production Possibility Set, PPS,

for the example in Table 1.

There are four efficient DMUs A, B, C, D and two

inefficient ones E and F shown in Fig. 1.

Data in Table 2 are produced using models proposed by

Salo and Punkka [19] for determining the best and the

worst ranking positions of DMUs.

The best and the worst ranking positions are graphically

perceived by first considering the efficient frontier and its

Table 1 Numerical example

DMU Output 1 Output 2 Input

A 2 8 1

B 5 7 1

C 6 5 1

D 7 3 1

E 2.5 3.5 1

F 5 3 1

Table 2 Best and worst rankings

DMUs rmin
k

rmax
k

A 1 6

B 1 4

C 1 3

D 1 6

E 3 6

F 2 6

Fig. 1 PPS for numerical example in Table 1
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corresponding supporting hyperplanes. Four different sup-

porting hyperplanes L1 through L4 may be denoted in Fig. 1.

Each supportinghyperplane is equivalent to anoptimal solution

of a CCR DEA model corresponding to at least one DMU. L1
and L2 are obtained from alternative optimal solutions of DEA

model corresponding to DMU-A, while L2 and L3 are obtained

from alternative optimal solutions of DMU-B and so on.

Mathematical equations corresponding to the supporting

hyperplanes are as follows:

L1: 0:125 y2 ¼ 1

L2: 0:038462 y1 þ 0:115385 y2 ¼ 1

L3: 0:117647 y1 þ 0:058824 y2 ¼ 1

L4: 0:142857 y1 ¼ 1:

Each supporting hyperplane supplies an efficiency score

to the six DMUs, and Table 3 summarizes these scores.

Table 3 may be used to interpret the best and the worst

ranking positions for each DMU given in Table 2. The best

ranking for DMU-A would be equal to 1 which is clearly

obtained from the two passing supporting hyperplanes L1
and L2. In addition, the worst ranking position for DMU-A

is equal to 6 which is obtained from the supporting

hyperplane L4 where the corresponding efficiency score of

DMU-A given in the last column of Table 3, or 0.286 is the

lowest score among the six DMUs. Other values in Table 2

may be interpreted similarly. It must be noted that some of

the ranks of the intervals in Table 2 may not be obtained

from Table 3, because they are calculated by considering

all feasible weights and not only the optimal ones.

The concept of utilizing profit efficiency determination

as the bare model in determining the best and the worst

ranking positions is discussed in the next section.

Ranking units based on profit efficiency score

It is assumed throughout this write up that there are

n DMUs which consume m inputs to produce s outputs. In

addition, input and output vectors are denoted by xl =

(x1l,…,xml) and yl = (y1l,…,ysl).

Efficiency of any DMUk under CRS assumption and in

the absence of prices is the optimal value of the following

CCR model:

b� ¼ min
u;v

u0yk

v0xk ¼ 1

s:t: u0yl � v0xl � 0 for l ¼ 1; . . .; n

u� 0; v� 0

ð1Þ

where u = (u1,…,us) and v = (v1,…,vm) are the weight

vectors of inputs and outputs. Weight vectors are assumed

to be nonnegative.

Optimal weights in the above model vary across

units, but preferred information on relative values of

inputs and outputs is captured by their respective

weights. When input and output prices are available,

evaluating that profit efficiency is contained in pro-

ducing an output vector y using an input vector x at

maximum profit.

Assuming, input price vector for all units is equal to c

and output price vector for all units is equal to p, actual

profit for DMUk would then be equal to pyk - cxk and the

maximum profit of yk production by xk consumption may

be calculated by the following model as presented by Färe

et al. [2, 3]:

b� ¼ max
x;y;k

p0y� c0x

p0yk � c0xk

s:t: x�
X

j

xjkj

y�
X

j

yjkj

k� 0:

ð2Þ

To avoid creating unbounded solutions, Cooper et al.

[20] modified the profit model as the following:

b�k ¼
p0y� � c0x�

p0yk � c0xk
¼ max

x;y;k

p0y� c0x

p0yk � c0xk

s:t: x ¼
X

j

xjkj � xk

y ¼
X

j

yjkj � yk

k� 0:

ð3Þ

Profit efficiency score for DMUk is then measured as

PEk ¼ 1
b�k
¼ p0yk�c0xk

p0y��c0x�. Therefore, 0\PEk � 1 under the

assumption of p0yk [ c0xk. DMUk is profit efficient if and

only if PEk ¼ 1.

The dual formula in Model 3 may be presented by the

following Model 4:

Table 3 Efficiency scores of six DMUs

DMUs L1 L2 L3 L4

A 1.000 1.000 0.706 0.286

B 0.875 1.000 1.000 0.714

C 0.625 0.808 1.000 0.857

D 0.375 0.615 1.000 1.000

E 0.438 0.500 0.500 0.357

F 0.375 0.538 0.765 0.714
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b�k ¼ min
u;v

�u0yk þ v0xk

s:t: u0yl � v0xl þ �p0yl � �c0xl � 0 for l ¼ 1; . . .; n

�c ¼ c

p0yk � c0xk

�p ¼ p

p0yk � c0xk

u� 0; v� 0: ð4Þ

Note that �c and �p are input cost and output price vectors,

respectively. Values are normalized by the observed profit

of the unit under evaluation.

Using the second and third equations in Model 4,

�p0yk � �c0xk ¼ 1 is obtained. Therefore, model may be

rewritten as:

b�k ¼ min
u;v

�u0yk þ v0xk
�p0yk � �c0xk

s:t: u0yl � v0xl þ �p0yl � �c0xl � 0 for l ¼ 1; . . .; n

�c ¼ c

p0yk � c0xk

�p ¼ p

p0yk � c0xk

u� 0; v� 0: ð5Þ

Profit efficiency score of each DMU is dependent on its

corresponding optimal output and input weights, or shadow

prices derived from the above linear programming Model

5. It must be noted that optimal output and input weights

vary across firms under study.

More general constraints on the relative importance of

output and input weights may be imposed to avoid zero

weights and to apply decision maker preferred information

to outputs and inputs. Examples include choosing input and

output weights from restricted sets U � Rs
þþ and V � Rm

þþ
derived in the Cone-Ratio approach by Charnes et al. [21]

or in Assurance Region approach introduced by Thompson

et al. [22].

Best and worst profit rankings are determined in each

DMU by considering possible choices of DEA weights as a

collective consequence of all DMUs. The workings of the

presented method are first demonstrated by an example

using data from Table 1. Weight restrictions in Table 1 are

taken as u; v� 0. In addition, input vector for all units (c) is

set as 2 and output price vector for all units (p) is taken as

equal to 5.

Using arbitrary feasible weights, Table 4 is obtained for

efficiency scores of 6 DMUs.

First column in Table 4 indicates the profit efficiency

score of each unit based on optimal weights for DMU-C

and its respective �p and �c: Next, three columns indicate the

profit efficiency scores of each unit based on three sets of

arbitrary feasible weights besides �p and �c: of DMU-C. ui

(i = 1, 2) and v represent the arbitrary feasible weights of

their corresponding outputs and inputs, respectively.

It may be ascertained now that worst profit ranking of

any DMU signifies the number of DMUs which have at

least as high of profit efficiency scores as the one under

evaluation. Moreover, best ranking indicates the number of

DMUs that have a higher efficiency score than the one

under evaluation.

As evident in Table 4, DMU-C has the highest profit

efficiency score of allDMUs. Therefore, DMU-Cmay have a

best ranking of 1 and a value of 3 at itsworst ranking, because

the other two DMUs have as high of profit efficiency scores

as DMU-C. Similarly, the best and the worst rankings of

DMU-C in the other three columns are 3, 2, and 2.

Since analyzing all feasible weights is not possible, a new

approach of evaluating all feasible weights and not just

optimal weights must be considered to rank DMUs based on

their profit efficiency scores. However, considering this

approach necessitates introduction of new sets and notations.

Therefore, certain sets and notations are introduced to pre-

sent the approach proposed in this write up.

The following sets determine the indexes of DMUs with

strictly higher profit efficiency scores than DMUk (PRk\)

or at least as high of profit efficiency score under a com-

mon set of output–input weights. Sets are defined as per the

following:

PRk\ ¼ l 2 1; . . .; nf gjPEl u; vð Þ[PEk u; vð Þf g
¼ l 2 1; . . .; nf gjb�l u; vð Þ\b�k u; vð Þ

� �

PRk� ¼ l 2 1; . . .; nf g � kf gjPEl u; vð Þ�PEk u; vð Þf g
¼ l 2 1; . . .; nf g � kf gjb�l u; vð Þ� b�k u; vð Þ

� �
:

Corresponding profit efficiency ranking may then be

defined as follows: prk\ ¼ 1þ PRk\j j and prk� ¼
1þ PRk�j j in the above sets, where || shows cardinality

number of the set.

Based on the above relations, there exist feasible

weights for DMUk that make the unit profit efficient. That

is to say, if there is no DMUs with strictly higher profit

Table 4 Profit efficiency score of 6 DMUs based on arbitrary fea-

sible weights

DMUs C u1 = 0.0

u2 = 0.1

v = 1.9

u1 = 0.3

u2 = 0.0

v = 3

u1 = 0.25

u2 = 0.1

v = 3.2

A 0.638 0.976 0.447 0.565

B 1.000 0.976 0.780 0.937

C 1.000 0.714 0.833 0.833

D 1.000 0.518 0.921 0.721

E 0.351 0.362 0.249 0.252

F 0.583 0.427 0.455 0.414
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efficiency score than DMUk, then prk\ ¼ 1, and prk� is

equal to the number of all profit efficient DMUs plus one.

Then again, should DMUk be profit inefficient for some

feasible weights, then prk\ and prk� would increase

according to the number of DMUs that have higher profit

efficiency scores than DMUk or at least have the same

profit efficiency scores as DMUk. When utilizing all fea-

sible weights, it is sufficient to minimize prk\ and maxi-

mize prk� over the feasible weight spectrum to determine

the best and the worst profit rankings of DMUk.

Salo and Punkka [19] method may now be extended to

present the following models for determining profit effi-

ciency ranking intervals.

min
z;u;v

1þ
X

l 6¼k

zl

s:t: � u0yk þ v0xk ¼ 1

u0yl � v0xl þ �p0yl � �c0xl

�Mkzll 6¼ k

zl 2 0; 1f g for l 6¼ k

u 2 U; v 2 V ð6Þ

max
z;u;v

1þ
X

l6¼k

zl

s:t: � u0yk þ v0xk ¼ 1

� u0yl þ v0xl � �p0yl þ �c0xl

�Mkð1� zlÞl 6¼ k

zl 2 0; 1f g for l 6¼ k

u 2 U; v 2 V: ð7Þ

Mk is the smallest positive constant in the above that

makes the models feasible for unit k. However, Mk may not

be identical in both models.

Models 6 and 7 are used in determining the minimum

number of DMUs that have higher efficiency scores than

DMUk. The same models are also used in determining

the maximum number of DMUs that have at least as

high of efficiency scores as DMUk. Similar methodology

may be utilized to illustrate ranking intervals of DMUs,

or to determine the best and worst profit efficiency

rankings of DMUs in Variable Return to Scale, VRS

technology.

Ranking intervals in profit efficiency evaluation of

observed units may be obtained by utilization of the fol-

lowing Theorems 1 and 2:

Theorem 1 Optimal objective value in Model 6 is the

best profit ranking of DMUk.

Theorem 2 Optimal objective value in Model 7 is the

worst profit ranking of DMUk.

Proofs for Theorems 1 and 2 are presented in

‘‘Appendix’’.

Illustrative application

Assume a set of data for 14 hospitals having two inputs and two

outputs each. Inputs are number of doctors and nurses and

outputs are number of outpatient and inpatient visits. This is the

same input–output data as used in Cooper et al. [20].

Models 6 and 7 are utilized with weight restrictions of

u; v� 0. Common input prices are taken as 5 and 2, and

common output prices are chosen as 3 and 7, respectively.

Table 5 illustrates profit efficiency scores of the hospitals

in column 2, and the best and the worst profit efficiency

rankings in columns 3 and 4, respectively.

Profit efficient Hospitals 2, 3, 6, 8, and 10 achieve the

best possible performance for certain feasible weights, and

their profit ranking intervals of are [1,7], [1,2], [1,5],

[1,11], and [1,1], respectively. This demonstrates that their

rankings are flexible within their corresponding intervals

according to different feasible weights. Units are unable to

have the worst ranking of 14 among feasible input-output

weights.

Hospital 10 in its worst possible scenario performs

better than all other units for certain feasible weights;

therefore, it may be stated that this unit has the best per-

formance among all units. Meanwhile, Hospital 8 in the

worst possible case performs better than only three other

units for certain feasible weights; therefore, this unit would

have the worst performance among all units.

Table 5 Profit efficiency scores, and the best and the worst rankings

of 14 hospitals

Hospital Profit efficiency Best rank Worst rank

1 0.858 7 9

2 1 1 7

3 1 1 2

4 0.597 11 14

5 0.814 8 11

6 1 1 5

7 0.772 10 12

8 1 1 11

9 0.947 2 3

10 1 1 1

11 0.872 6 10

12 0.909 4 9

13 0.691 12 14

14 0.912 3 14
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Consider three Hospitals 4, 13, and 14. As evident from

Table 5, these hospitals may obtain the worst possible rank

14 with nonnegative input and output weights. Hospital 13

has the worst performance among the three hospitals,

because certain feasible weights would lead this unit to be

ranked 12 at its best ranking. This indicates that hospital

unit 13 may be better than only two other hospital units at

best.

Figure 2 is a column chart for efficiency rankings of the

hospital units that visually illustrate the results.

Individual columns in Fig. 2 refer to the 14 hospital

units under study and indicate their individual profit effi-

ciency ranking intervals. Horizontal axis in the chart indi-

cates the hospital unit, and the vertical axis is a measure of

their respective profit efficiency ranking. The bottom of

each column indicates the best profit efficiency ranking for

the hospital unit, while the top of the column indicates its

worst ranking.

The height of each column displays the profit efficiency

ranking that could be achieved by each hospital based on

different feasible weights. Note that the produced rankings

are just natural numbers. Profit efficiency ranking of hos-

pital 1 could not be less than seven or more than nine.

Hospitals 8 and 14 exhibit the largest range of variations in

their profit rankings, and the smallest variations are dis-

played in Hospitals 3, 9, and 10. Although both Hospitals 3

and 9 could be ranked on two levels for all feasible

weights, performance of Hospital 3 is better than that of

Hospital 9, because the performances of its best and worst

profit rankings are better.

Interval range of some hospitals, such as Hospitals 8 and

14, is larger than others due to inclusion of all their feasible

weights and not only their self-appraisal DEA optimal

weights. To illustrate this point, ranking interval for hos-

pital 8 is calculated to be [1, 11]. This means that its

ranking varies between 1 as the best and 11 as the worst

depending on the set of feasible weights. For example,

there is at least one set of feasible weight that allows this

hospital to rank as the 7th best performing hospital.

Obtained ranking interval range may be utilized to

determine the performance stability of a unit. Shortest

range between the best and the worst rankings of a hospital

unit is indicative of that unit having the most stable per-

formance of all compared hospital units. In this example,

Hospital 10 is the most stable hospital unit and Hospitals 8

and 14 are the least stable ones.

Managerial implications

Comparative analysis has an important role in improving

performance of production systems in assisting managers in

optimizing their systems and in decision-making criteria.

When input and output prices are available, profit efficiency

scores help decision makers to analyse their system perfor-

mance. The profit efficiency-based ranking intervals pre-

sented in this research would help decision makers to acquire

information on their system ranking in comparison to other

systems. Managers would be able to improve the performance

of their systems with respect to other competing systems

based on profit efficiency or availability of a set of feasible

weights. Therefore, decision-making managers may choose to

continue a process or seek improvements.

Conclusions

Basic DEA models are concerned with full information on

input and output quantities without necessarily having any

information on prices. Although profit model is the best

model for evaluating the performance of units when input

and output prices are available, profit mode could not

discriminate among units with precision.

Relative performance of units based on their profit

efficiency score is studies in this research while consider-

ing feasible weights. In this regard, upper and lower

boundaries of profit ranking of a special DMU are deter-

mined in comparison with others by considering all alter-

native profit efficiency scores; each unit could achieve over

a set of feasible weights.

A numerical example was finally used to illustrate and

demonstrate the novelty of the introduced method.

It is recommended that further research concerning

ranking intervals of DMUs be conducted based on profit

efficiency with price uncertainty to address more practical

situations.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were
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Fig. 2 Profit efficiency ranking interval of 14 hospitals
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Appendix

Proof of Theorem 1 Assume that the best ranking of DMUk

is achieved at u 2 U; v 2 V . Therefore, there must exist

L ¼ PRk\, so that

PEl u; vð Þ[ PEk u; vð Þ ) b�l u; vð Þ\b�k u; vð Þ for all l 2 L

PEl u; vð Þ� PEk u; vð Þ ) b�l u; vð Þ� b�k u; vð Þ for all l 62 L:

Let û ¼ u
�u0ykþv0xk

;^¼ v
�u0ykþv0xk

. Then û 2 U; v̂ 2 V and

�û0yk þ v̂0xk = 1

Let zl ¼ 1 l 6¼ kð Þ for l 2 L and zl ¼ 0 l 6¼ kð Þ for l 62 L.

zl; l 6¼ kð Þ is the lth component of z.

So that for any l 62 L,

b�l u; vð Þ� b�k u; vð Þ ) 1� b�l u; vð Þ
b�k u; vð Þ ¼

b�l û; v̂ð Þ
b�k û; v̂ð Þ¼

�û0ylþv̂0xl
�p0yl��c0xl

�û0ykþv̂0xk
�p0yk��c0xk

¼ �û0yl þ v̂0xl
�p0yl � �c0xl

) �û0yl þ v̂0xl � �p0yl � �c0xl

) �û0yl þ v̂0xl � �p0yl þ �c0xl � 0

) û0yl � v̂0xl þ �p0yl � �c0xl � 0:

Therefore;

b�l u; vð Þ\b�k u; vð Þ ) 1[
b�l u; vð Þ
b�k u; vð Þ ¼

b�l û; v̂ð Þ
b�k û; v̂ð Þ ¼

�û0ylþv̂0xl
�p0yl��c0xl

�û0ykþv̂0xk
�p0yk��c0xk

¼ �û0yl þ v̂0xl
�p0yl � �c0xl

) �û0yl þ v̂0xl\�p0yl � �c0xl

) �û0yl þ v̂0xl � �p0yl þ �c0xl\0

) û0yl � v̂0xl þ �p0yl � �c0xl [ 0:

Considering that zl ¼ 1 l 6¼ kð Þ for l 2 L and

zl ¼ 0 l 6¼ kð Þ forl 62 L, and multiplying zl by Mk points,

then the first constraint is established. Moreover, solution

to Model 6 is not larger than the best ranking of DMUk,

because 1þ
P

l6¼k zl ¼ 1þ Lj j ¼ 1þ PRk\j j ¼ min prk\.

Conversely, assume optimal solution to Model 6 is

obtained at u; v; zð Þ. Let L ¼ ljzl ¼ 1; l 6¼ kð Þf g for all

l 62 L, then zl ¼ 0; l 6¼ kð Þ. The first constraint of Model 6

reaches û0yl � v̂0xl � � �p0yl þ �c0xl. Therefore,

b�l u; vð Þ
b�k u; vð Þ ¼

�û0yl þ v̂0xl
�p0yl � �c0xl

� 1 ) PEl u; vð Þ
PEk u; vð Þ � 1

is held because of the second constraint of Model 6 and the

expressions of �p and �c. For l 2 L, the û0yl � v̂0xl � �
�p0yl þ �c0xl does not held, because setting zl ¼ 0 l 6¼ kð Þ
instead of zl ¼ 1 l 6¼ kð Þ causes the first constraint to remain

satisfied, but the objective function decreases and violates

the optimality of z. Thus, PRk\ ¼ L and

min prk\ � 1þ PRk\j j ¼ 1þ Lj j ¼ 1þ
P

l6¼k zl:

Proof of Theorem 2 Proof of this theorem is similar to

Theorem 1.

References

1. Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency

of decision making units. Eur. J. Oper. Res. 2, 429–444 (1978)

2. Färe, R., Grosskopf, S., Lovell, C.A.K.: Measurement of effi-

ciency of production. Kluwer-Nijhoff Publishing Co., Inc, Boston

(1985)
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