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Abstract In this article we present a way of treating stochastic partial differential
equations with multiplicative noise by rewriting them as stochastically perturbed evo-
lutionary equations in the sense of Picard and McGhee (Partial differential equations:
a unified Hilbert space approach, DeGruyter, Berlin, 2011), where a general solution
theory for deterministic evolutionary equations has been developed. This allows us to
present a unified solution theory for a general class of stochastic partial differential
equations (SPDEs) which we believe has great potential for further generalizations.
We will show that many standard stochastic PDEs fit into this class as well as many
other SPDEs such as the stochastic Maxwell equation and time-fractional stochastic
PDEswithmultiplicative noise on sub-domains ofRd . The approach is in spirit similar
to the approach in DaPrato and Zabczyk (Stochastic equations in infinite dimensions,
CambridgeUniversity Press, Cambridge, 2008), but complementing it in the sense that
it does not involve semi-group theory and allows for an effective treatment of coupled
systems of SPDEs. In particular, the existence of a (regular) fundamental solution or
Green’s function is not required.

Keywords Stochastic partial differential equations · Evolutionary equations ·
Stochastic equations of mathematical physics · Weak solutions

Mathematics Subject Classification Primary 60H15 · 35R60; Secondary 35Q99 ·
35F46

B Marcus Waurick
m.waurick@bath.ac.uk

1 Zurich, Switzerland

2 Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40072-016-0088-8&domain=pdf


Stoch PDE: Anal Comp (2017) 5:278–318 279

1 Introduction

The study of stochastic partial differential equations (SPDEs) attracted a lot of inter-
est in the recent years, with a wide range of equations already been investigated. A
common theme in the study of these equations is to attack the problem of existence
and uniqueness of solutions to SPDEs by taking solution approaches from the deter-
ministic setting of PDEs and applying them to a setting that involves a stochastic
perturbation. Examples for this are the random-field approach that uses the funda-
mental solution to the associated PDE in [5,7,39], the semi-group approach which
treats evolution equations in Hilbert/Banach spaces via the semi-group generated by
the differential operator of the associated PDE, see [8] or [20,21] for a treatise, and
the variational approach which involves evaluating the SPDE against test functions,
which corresponds to the concept of weak solutions of PDEs, see [32,34,36].

In this article we aim to transfer yet another solution concept of PDEs to the case
when the right-hand side of the PDE is perturbed by a stochastic noise term. This
solution concept, see [26] for a comprehensive study and [28,37,42] for possible gen-
eralizations, is of operator-theoretic nature and takes place in an abstract Hilbert space
setting. Its key features are establishing the time-derivative operator as a normal, con-
tinuously invertible operator on an appropriateHilbert space and a positive definiteness
constraint on the partial differential operator of the PDE (realized as an operator in
space–time). Actually, this solution theory is a general recipe to solve a first-order
(in time and space) system of coupled equations, and when solving a higher-order
(S)PDE, it gets reduced to such a first-order system. In this sense the solution theory
we will apply is roughly similar in spirit to the treatment of hyperbolic equations in
[13,19], see also [2] for an application to SPDEs.

We shall illustrate the class of SPDEs we will investigate using this approach.
Throughout this article let H be a Hilbert space, that we think of as basis space for
our investigation. We assume A to be a skew-self-adjoint, unbounded linear operator
on H (i.e. iA is a self-adjoint operator on H ) which is thought of as containing the
spatial derivatives. Furthermore, we denote by ∂0 the time-derivative operator that
will be constructed as a normal and continuously invertible operator in Sect. 2.1. In
particular, it can be shown that the spectrum of ∂−1

0 is contained in a ball of the right
half plane touching 0 ∈ C. Let for some r > 0, M : B(r, r) → L(H) be an analytic
function, where B(r, r) is the open ball in C with radius r > 0 centered at r > 0, and
L(H) the set of bounded linear operators on H . Then one can define via a functional
calculus the linear operator M(∂−1

0 ) as a function of the inverse operator ∂−1
0 , which

will be specified below. The idea to define this operator is to use the Fourier–Laplace
transform as explicit spectral representation asmultiplication operator for ∂0 yielding a
functional calculus for both ∂0 and its inverse. The role that M(∂−1

0 ) plays is coupling
the equations in the first-order system. In applications, M(∂−1

0 ) also contains the
information about the ‘constitutive relations’ or the ‘material law’.

Throughout this article we consider the following (formal) system of coupled
SPDEs

(
∂0M(∂−1

0 ) + A
)
u(t) = (B(u))(t) +

∫ t

0
σ(u(s))dW (s), (1.1)
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subject to suitable initial conditions, where u(t) admits values in a Hilbert space H ,
σ and B are Lipschitz-continuous (in some suitable norms) functions and W is a
cylindrical G-valued Wiener process for some separable Hilbert space G (possibly
different from H ). Though seeming to represent first-order equations, only, it is pos-
sible to handle for instance the wave (or heat) equation with (1.1) as well, see below.
Moreover, note that M(∂−1

0 ) is an operator acting in space–time and ∂0M(∂−1
0 ) is the

composition of time differentiation and the application of the operator M(∂−1
0 ).

We emphasize that in the formulation of (1.1), A does not admit the usual form of
stochastic evolution equations as, for instance, in [8]. Furthermore, (1.1) should not
be thought of being of a similar structure as the problems discussed in [11,22]. In fact,
the coercitivity is encoded in M(∂−1

0 ) rather than A.
In Eq. (1.1) possible boundary conditions are encoded in the domain of the (par-

tial differential) operator A. The way of dealing with this issue will also be further
specified below. The main achievement of this article is the development of a suitable
functional analytic setting for the class of equations (1.1), which allows us to discuss
well-posedness issues of this class of equations, that is, existence, uniqueness and
continuous dependence of solutions on the input data.

Now we comment on a notational unfamiliarity in Eq. (1.1). Note that in (1.1) a
stochastic integral appears on the right-hand side of the equation instead of the more
familiar formal product σ(u(t))Ẇ (t). We stress here that we are not aiming at solving
a different class of equations, but in fact we deal with a more general formulation of
the common way to write an SPDE. Let us illustrate this point using two common
examples, the stochastic heat equation and the stochastic wave equation. The former
is usually expressed in the classic formulation in the following way

du(t) = (� + b(u(t)))dt + σ(u(t))dW (t),

or—formally dividing by dt—

(
∂

∂t
− �

)
u(t) = b(u(t)) + σ(u(t))Ẇ (t),

where � = div grad is the Laplacian on the Euclidean space Rd with d ∈ N, and b, σ

are linear or nonlinear mappings on some Hilbert space, for instance some L2-space
overRd . See [8, Chap. 7] for more details on this formulation.We can reformulate this
equation as a first-order system using the formal definition v := − grad ∂−1

0 u, where
∂−1
0 denotes the inverse of the time derivative operator briefly mentioned above. Then
the stochastic heat equation becomes

(
∂0

(
0 0
0 1

)
+

(
1 0
0 0

)
+

(
0 div

grad 0

)) (
u
v

)
=

(
∂−1
0 b(u) + ∂−1

0 (σ (u)Ẇ )

0

)
.

Thus, with (∂−1
0 b(u), 0) = B(u) and if we interpret the term ∂−1

0 (σ (u)Ẇ ) as a sto-
chastic integral, we immediately arrive at (1.1). So the operator-valued function M
and the operator A in (1.1) respectively equal
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M(z) =
(

z 0
0 1

)
and A =

(
0 div

grad 0

)
.

Indeed, with these settings, we get

∂0M(∂−1
0 ) + A = ∂0

(
∂−1
0 0
0 1

)
+

(
0 div

grad 0

)
= ∂0

(
0 0
0 1

)
+

(
1 0
0 0

)
+

(
0 div

grad 0

)
.

In particular, H = L2(λRd )d+1, where λRd denotes the Lebesgue measure on R
d .

In a similar fashion, one can reformulate the stochastic wave equation, which in
the classic formulation is given by

(
∂2

∂t2
− �

)
u(t) = b(u(t)) + σ(u(t))Ẇ (t),

by using v = − grad ∂−1
0 u as

(
∂0

(
1 0
0 1

)
+

(
0 div

grad 0

)) (
u
v

)
=

(
∂−1
0 b(u) + ∂−1

0 (σ (u)Ẇ )

0

)
,

where here

M(z) =
(
1 0
0 1

)
.

In comparison to the example of the stochastic heat equation, this formulation in terms
of a first-order system is already well-known and heavily used. The main advantage
of the formulation (1.1) is that many more examples of PDEs in mathematical physics
can be written in this form, see [25]. The hand-waving arguments handling ∂−1

0 that
we have used in the reduction to first-order systems will be made rigorous in Sect. 2.

This paper is structured in the following way. In Sect. 2 we present a brief overview
over the solution theory for PDEs which will be used in this article, in particular we
explain the construction of the time derivative operator and the concept of so-called
Sobolev chains. We state the results and sketch the respective proofs referring to [26]
for the details and highlight some further generalizations. In Sect. 3 we show how
the solution theory for deterministic PDEs carries over to the case of SPDEs which
we think of as random perturbations of PDEs. We clarify the way how to interpret
the stochastic integral, and then present a solution theory to SPDEs with additive and
multiplicative noise. In Sect. 4 we show using concrete examples how this solution
theory can be successfully applied to concrete SPDEs, some of which—to the best
of our knowledge—have not yet been solved in this level of generality. We conclude
Sect. 4 with a SPDE of mixed type, that is, an equation which is hyperbolic, parabolic
and elliptic on different space–time regions. This demonstrates the versatility of the
approach presented as for instance the semi-groupmethod fails towork in this example
for there is no semi-group to formulate the (non-homogeneous) Cauchy problem in the
first place. Furthermore, we provide some connections of this new solution concept
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to some already known approaches to solve SPDEs. More precisely, we draw the
connection of variational solutions of the heat equation to the solutions obtained here.
Further, for the stochastic wave equation, we show that the mild solution derived via
the semi-group method coincides with the solution constructed in this exposition. We
summarize our findings in Sect. 5.

In this article we denote the identity operator by 1 or by 1H and indicator functions
by χK for some set K . The Lebesgue measure on a measurable subset D ⊆ R

d for
some d ∈ N will be denoted by λD . All Hilbert spaces in this article are endowed
with C as underlying scalar field. L2-spaces of (equivalence classes of) scalar-valued
square integrable functions over a measure space (�,A, μ) are denoted by L2(μ).
The corresponding space of Hilbert space H -valued L2-functions will be denoted by
L2(μ; H). P will always denote a probability measure.

2 The deterministic solution theory

In this section wewill review the solution theory for a class of linear partial differential
equations developed in [26, Chap. 6] or [25]. This solution theory of partial differential
equations relies on twomain observations: (1) to establish the time-derivative operator
as a normal and continuously invertible operator on an appropriate Hilbert space and
(2) a positive definiteness constraint on the partial differential operators realized as
operators in space–time.

2.1 Functional analytic ingredients

Let throughout this article ν > 0. This is a free parameter which controls the growth
of solutions to PDEs for large times. Consider the space

Hν,0(R) :=
{

f ∈ L2
loc(λR); (

x �→ e−νx f (x)
) ∈ L2(λR)

}

of L2-functions with respect to the exponentially weighted Lebesgue measure
exp(−2ν(·))λR. The latter space becomes a Hilbert space if endowed with the scalar
product

〈·, ·〉ν,0 : Hν,0(R) × Hν,0(R) → C,

( f, g) �→
∫

R

f (x)∗g(x)e−2νx dx,

where ∗ denotes complex conjugation. Note that the operator exp(−νm) given by

exp(−νm) : Hν,0(R) → L2(λR), f �→ e−ν· f (·) (2.1)

of multiplying with the function t �→ e−νt is unitary from Hν,0(R) to H0,0(R)(=
L2(λR)).
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Define dom(∂0,ν) := { f ∈ Hν,0(R); f ′ ∈ Hν,0(R)}, where f ′ is the distributional
derivative of f ∈ L1

loc(λR), and

∂0,ν : dom(∂0,ν) ⊆ Hν,0(R) → Hν,0(R), f �→ f ′. (2.2)

Then this operator has the following properties, see also [16, Corollary 2.5].

Lemma 2.1 ∂0,ν is a continuously invertible linear operator with ‖∂−1
0,ν‖ � 1

ν
and

�∂0,ν = ν.

Proof Recall exp(−νm) from (2.1) is unitary. By the product rule we deduce the
equality

∂0,ν = exp(−νm)−1(∂ + ν) exp(−νm), (2.3)

where ∂ : H1(R) ⊆ L2(λR) → L2(λR) is the (usual) distributional derivative operator
realized in L2(λR). Indeed, for a smooth compactly supported function φ, we observe
that

(
exp(−νm)−1(∂ + ν) exp(−νm)φ

)
(x)

= exp(νx) ((∂ + ν) exp(−νm)φ) (x)

= exp(νx)(−νe−νxφ(x) + e−νxφ′(x) + ν exp(−νx)φ(x)) = φ′(x) = ∂0,νφ(x)

Since ∂ is skew-self-adjoint in L2(λR) [17, Chap. V, Example 3.14], the spectrum of
∂ lies on the imaginary axis. Hence, the operator ∂ + ν is continuously invertible. By
(2.3), the operators ∂ + ν and ∂0,ν are unitarily equivalent. Thus, the operator ∂0,ν
is continuously invertible as well. The norm estimate also follows from (2.3) as so
does the formula �∂0,ν = ν since �(∂0,ν) = exp(−νm)−1((−i)∂) exp(−νm), by the
skew-self-adjointness of ∂ . 
�
Remark 2.2 By [16, Corollary 2.5 (d)], we have

∂−1
0,ν f (t) =

∫ t

−∞
f (τ )dτ (t ∈ R)

for all f ∈ Hν,0(R).

Note that for a Hilbert space H , there exists a canonical extension of ∂0,ν to the
space Hν,0(R; H) of corresponding H -valued functions by identifying Hν,0(R; H)

with Hν,0(R) ⊗ H and the extension of ∂0,ν by ∂0,ν ⊗ 1H .
An important tool in this article is the (Hilbert space valued) Fourier transformation

F : L2(λR; H) → L2(λR; H)

defined by the unitary extension of

Fφ(x) := 1√
2π

∫

R

e−ixyφ(y)dy
(
x ∈ R, φ ∈ L1(λR; H) ∩ L2(λR; H)

)
,
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to L2(λR; H). In fact, the norm preservation is the same as saying that Plancherel’s
theorem also holds for the Hilbert space valued case. Recall that the inverse Fourier
transform satisfies (F−1φ)(x) = (F∗φ)(x) = (Fφ)(−x).

Next, recall [1, Volume 1, pp. 161–163] that for the derivative ∂ : H1(R) ⊆
L2(λR) → L2(λR), the Fourier transformation realizes an explicit spectral repre-
sentation for ∂ as multiplication operator in the Fourier space:

∂ = F∗imF ,

where (m f )(x) := x f (x) denotes the multiplication-by-argument-operator in
L2(λR; H).

Wedefine theFourier–Laplace transformationLν := F exp(−νm)with exp(−νm)

given in (2.1). Then, Lν defines a spectral representation for ∂0,ν given in (2.2) (and
hence also for ∂−1

0,ν ). Indeed, we get ∂0,ν = L∗
ν(im + ν)Lν and

∂−1
0,ν = L∗

ν

(
1

im + ν

)
Lν .

The latter formula carries over to (operator-valued)-functions of ∂−1
0,ν , that is, we set

up a functional calculus for ∂−1
0,ν . We define

M(∂−1
0,ν ) := L∗

ν M

(
1

im + ν

)
Lν, (2.4)

where M : B(r, r) → L(H) is analytic and bounded, r > 1
2ν , as well as for all x ∈ R

and φ ∈ Cc(R; H)

M

(
1

im + ν

)
φ(x) := M

(
1

ix + ν

)
φ(x).

Note that the right hand side is the application of the bounded linear operator

M
(

1
ix+ν

)
∈ L(H) to the Hilbert space element φ(x) ∈ H .

In principle, one could cope with (operator-valued) functions M being defined on
∂ B(r ′, r ′)\{0} with r ′ := 1/(2ν), only. In fact, (2.4) is still possible. However, in the
solution theory to be developed in the next section, we want to establish causality for
the solution operator, that is, the solution vanishes up to time t if the data do (see below
for the details). But, vanishing up to time 0 is intimately related to analyticity:

We denote the open complex right half plane by C>0 = {it + ν; t ∈ R, ν > 0}.

Theorem 2.3 (Paley–Wiener, cf. [35, Chap. 19] and [25, Corollary 2.7]). Let H be a
Hilbert space, u ∈ L2(λR; H). Then the following properties are equivalent:
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1. C>0 � it + ν �→ (Lνu)(t) ∈ H belongs to the Hardy–Lebesgue space

H2(H) := { f : C>0 → H ; f analytic,

f (i · +ν) ∈ L2(λR; H) (ν > 0), sup
ν>0

‖ f (i · +ν)‖L2 < ∞}

2. u = 0 on (−∞, 0).

We introduce Sobolev chains, which may be needed in the later investigation, see
[26, Chap. 2], or [24]. These concepts are the natural generalizations of Gelfand triples
to an infinite chain of rigged Hilbert spaces. We shall also refer to similar concepts
developed in [10,18] or, more recently, [9].

Definition 2.4 Let C : dom(C) ⊆ H → H be densely defined and closed.
If C is continuously invertible, then we define Hk(C) to be the completion of
(dom(C |k|), ‖Ck ·‖H ) for all k ∈ Z. The sequence (Hk(C))k is called Sobolev chain
associated with C .

Obviously, Hk(C) is a Hilbert space for each k ∈ Z. Moreover, it is possible to
extend the operator C unitarily to an operator from Hk(C) to Hk−1(C). We will use
these extensions throughout and use the same notation. It can be shown that Hk(C∗)∗
can be identified with H−k(C) via the dual pairing

Hk(C
∗) × H−k(C) � (φ,ψ) �→

〈(
C∗)k

φ, C−kψ
〉

H

for all k ∈ Z, where we identify H with its dual space. Further, note that Hk ↪→ Hm

as long as k � m. Hence, the name “chain”.

Example 2.5 (a) A particular example for such operatorsC is the time-derivative ∂0,ν .
We denote Hν,k(R) := Hk(∂0,ν) for all k ∈ Z and correspondingly for the Hilbert
space valued case.

(b) A second important example to be used later on is the case of a skew-self-adjoint
operator A in some Hilbert space H . We build the Sobolev chain associated with
C = A + 1.

2.2 The solution theory

The solution theory which we will apply covers a large class of partial differential
equations in mathematical physics. We will summarize it in this section, and for
convenience, we shall also provide outlines of the proofs. For the whole arguments,
the reader is referred to [26] and [28,42]. The following observation, a variant of
coercitivity, provides the functional analytic foundation.

Lemma 2.6 Let G be a Hilbert space, B : dom(B) ⊆ G → G a densely defined,
closed, linear operator. Assume there exists c > 0 with the property that

�〈Bφ, φ〉 � c〈φ, φ〉, (2.5)
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and

�〈B∗ψ,ψ〉 � c〈ψ,ψ〉, (2.6)

for all φ ∈ dom(B) and ψ ∈ dom(B∗). Then B−1 exists as an element of L(G), the
space of bounded linear operators on G and ‖B−1‖ � 1/c.

Proof Using the Cauchy–Schwarz-inequality, we can read off from the first inequality
(2.5) that B is one-to-one. More precisely, we have for all φ ∈ dom(B)

c‖φ‖ � ‖Bφ‖. (2.7)

Thus, B−1 is well-defined on ran(B), the latter being a closed subset of G. In fact,
take (ψn)n in ran(B) converging to some ψ ∈ G. We find (φn)n in dom(B) with
Bφn = ψn . Then, again relying on the inequality involving B, we get

c‖φn − φm‖ � ‖Bφn − Bφm‖ = ‖ψn − ψm‖ (n, m ∈ N),

which shows that (φn)n is a Cauchy-sequence in G, and, thus, convergent to some
φ ∈ G. The closedness of B gives that φ ∈ dom(B) and Bφ = ψ ∈ ran(B) as
desired.

Next, again by the Cauchy–Schwarz inequality, we deduce that also B∗ is one-
to-one, or expressed differently ker(B∗) = {0}. Thus, by the projection theorem,
G = ker(B∗)⊕ ran(B) = {0}⊕ ran(B) yielding that B is onto. The inequality for the
normof B−1 can be read off from (2.7) by settingφ := B−1g for any g ∈ ran(B) = G:

c‖B−1g‖ � ‖B B−1g‖ = ‖g‖.

This finishes the proof. 
�
Remark 2.7 Given a densely defined closed linear operator A0 : dom(A0) ⊆ H →
H , there exists a closed, densely defined (canonical) extension A to Hν,0(R; H) in
the way that (Au)(t) := A0u(t) for t ∈ R and u ∈ Cc(R; dom(A0)). Indeed, the
construction can be done similarly to the extension of the time-derivative by setting
A := 1Hν,0(R) ⊗ A0. Then, if A0 is continuously invertible, then so is A. The adjoint
of A is the extension of the adjoint of A0. Due to these similarities there is little use in
distinguishing notationally A0 from its extension A. Hence, we will use throughout
the same notation for A0 and its extension.

The next result is the main existence and uniqueness theorem in the deterministic
setting.

Theorem 2.8 [26, Theorem 6.2.5],[25, Solution Theory]. Let H be a Hilbert space,
A : dom(A) ⊆ H → H a skew-self-adjoint linear operator. For some r > 0, let
M : B(r, r) → L(H) be a bounded and analytic mapping. Assume that there exists
c > 0 such that

�〈z−1M(z)φ, φ〉H � c‖φ‖2H (z ∈ B(r, r), φ ∈ H). (2.8)

123



Stoch PDE: Anal Comp (2017) 5:278–318 287

Then for all ν > 1/(2r) the operator

∂0,ν M(∂−1
0,ν ) + A : dom(A) ∩ dom(∂0,ν) ⊆ Hν,0(R; H) → Hν,0(R; H)

is closable with continuously invertible closure. Denoting Sν to be the inverse of the
closure,

Sν := (
∂0,ν M(∂−1

0,ν ) + A
)−1

,

we get that Sν is causal, that is, for a ∈ R and f, g ∈ Hν,0(R; H) the implication

f = g on (−∞, a) ⇒ Sν f = Sνg on (−∞, a) (2.9)

holds true. Moreover, ‖Sν‖ � c−1.

Proof At first we show the existence and uniqueness of solutions to the equation

(∂0,ν M(∂−1
0,ν ) + A)u = f

for given f ∈ Hν,0(R; H), which boils down to (closability and) continuous invert-
ibility of the (closure of the) partial differential operator B0 := ∂0,ν M(∂−1

0,ν ) + A.
At first, we observe that B0 with dom(B0) = dom(A) ∩ dom(∂0,ν) is closable.

Indeed, it is easy to check that ∂∗
0,ν M(∂−1

0,ν )
∗ − A with dense domain dom(B0) is a

formal adjoint. Hence, B0 is closable. For the proof of the continuous invertibility of
B := B0, we apply Lemma 2.6 with G := Hν,0(R; H). To this end, take φ ∈ dom(B0)

and compute

�〈(∂0,ν M(∂−1
0,ν ) + A)φ, φ〉 = �〈∂0,ν M(∂−1

0,ν )φ, φ〉 + �〈Aφ, φ〉
= �〈∂0,ν M(∂−1

0,ν )φ, φ〉
= �〈(im + ν)M

(
1

im + ν

)
Lνφ,Lνφ〉

� c〈Lνφ,Lνφ〉 = c〈φ, φ〉,

where we have used that A is skew-self-adjoint (hence, �〈Aφ, φ〉 = −�〈φ, Aφ〉 =
−�〈Aφ, φ〉), (2.4), (2.8) as well as Plancherel’s identity, that is, the unitarity of Lν .
This inequality carries over to all φ ∈ dom(B).

In order to use Lemma 2.6, we need to compute the adjoint of B. For this, note that
(1 + ε∂∗

0,ν)
−1 converges strongly to the identity as ε → 0. So, fix f ∈ dom(B∗) and

ε > 0. Observe that (1 + ε∂0,ν)
−1 commutes with B0 and leaves the space dom(B0)

invariant. Then we compute for φ ∈ dom(B0)

〈φ, (1 + ε∂∗
0,ν)

−1B∗ f 〉 = 〈(1 + ε∂0,ν)
−1φ, B∗ f 〉

= 〈B0(1 + ε∂0,ν)
−1φ, f 〉

= 〈(1 + ε∂0,ν)
−1B0φ, f 〉
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= 〈B0φ, (1 + ε∂∗
0,ν)

−1 f 〉
= 〈∂0,ν M(∂−1

0,ν )φ, (1 + ε∂∗
0,ν)

−1 f 〉 + 〈Aφ, (1 + ε∂∗
0,ν)

−1 f 〉
= 〈φ, M(∂−1

0,ν )
∗∂∗

0,ν(1 + ε∂∗
0,ν)

−1 f 〉 + 〈Aφ, (1 + ε∂∗
0,ν)

−1 f 〉
= 〈φ, ∂∗

0,ν M(∂−1
0,ν )

∗(1 + ε∂∗
0,ν)

−1 f 〉 + 〈Aφ, (1 + ε∂∗
0,ν)

−1 f 〉.

Hence, as dom(B0) is a core for A, we infer that (1+ ε∂∗
0,ν)

−1 f ∈ dom(A∗) and that

A∗(1 + ε∂∗
0,ν)

−1 f = −A(1 + ε∂∗
0,ν)

−1 f

= (1 + ε∂∗
0,ν)

−1B∗ f − ∂∗
0,ν M(∂−1

0,ν )
∗(1 + ε∂∗

0,ν)
−1 f,

or, equivalently,

(1 + ε∂∗
0,ν)

−1B∗ f = (∂∗
0,ν M(∂−1

0,ν )
∗ − A)(1 + ε∂∗

0,ν)
−1 f.

Note that also dom(B0) = dom(∂∗
0,ν) ∩ dom(A), since dom(∂0,ν) = dom(∂∗

0,ν).
Letting ε → 0 in the last equality, we infer that

B∗ ⊆ (∂∗
0,ν M(∂−1

0,ν )
∗ − A)|dom(B0).

But as �〈(∂∗
0,ν M(∂−1

0,ν )
∗ − A)ψ,ψ〉 � c〈ψ,ψ〉 for all ψ ∈ dom(B0), we conclude

that for all ψ ∈ dom(B∗)

�〈B∗ψ,ψ〉 � c〈ψ,ψ〉.

Hence, Lemma2.6 implies that B is continuously invertible, andwedenote Sν := B−1.
The norm estimate for ‖Sν‖ follows from Lemma 2.6.

The next step is to show causality, and here we only sketch the arguments and we
refer to [25, Sect. 2.2, Theorem 2.10] for the details. First of all, note that B commutes
with time-translation τh f := f (· + h) as it is also a function of ∂0,ν . In fact, one
has τh = L∗

νe(im+ν)hLν . Hence, causality needs only being checked for a = 0 in
(2.9). Moreover, by the linearity of Sν , it suffices to verify the implication in (2.9)
for g = 0. So, take f ∈ Hν,0(R; H) vanishing on (−∞, 0]. We have to show that
Sν f also vanishes on (−∞, 0]. Observe that e−νm f ∈ L2(λ[0,∞); H). Hence, by the
Paley–Wiener theorem Lν f = Fe−νm f belongs to the Hardy–Lebesgue space of
analytic functions on the half plane being uniformly in L2(λR; H) on any line parallel
to the coordinate axis, see Theorem 2.3.

Next, ((im + ν)M( 1
im+ν

) + A)
−1

as multiplication operator on the Hardy–Lebesgue
space leaves the Hardy–Lebesgue space invariant, by the boundedness of the
inverse and the analyticity of both the resolvent map and the mapping M .

Thus, ((im + ν)M( 1
im+ν

) + A)
−1Lν f belongs to the Hardy–Lebesgue space. Thus,

F∗((im + ν)M( 1
im+ν

) + A)
−1Lν f is supported on [0,∞), by the Paley–Wiener the-

orem. Hence,
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Sν f = L∗
ν

(
(im + ν)M

(
1

im + ν

)
+ A

)−1

Lν f

is also supported on [0,∞) only, yielding the assertion. 
�
The operator Sν defined in the previous theorem is also denoted as solution operator

to the PDE. The concept of causality is an action-reaction principle, i.e. only if there is
some non-zero action on the right-hand side of the equation, the solution can become
non-zero.

Remark 2.9 (a) As it was pointed out in [26, p. 494], we can freely work with ∂0,ν in
the PDE so that instead of solving (∂0,ν M(∂−1

0,ν ) + A)u = f , we could also solve

(
∂0,ν M(∂−1

0,ν ) + A
)
v = ∂−1

0,ν f, (2.10)

and obtain the original solution u = ∂0,νv. This will be advantageous when dealing
with irregular right-hand sides, especially stochastic ones. In particular, ∂−1

0,ν (and scalar
functions thereof) commute with the solution operator Sν given in Theorem 2.8. Thus
(see also [26, Theorem6.2.5]), the solution theory obtained inTheorem2.8 carries over
to Hν,k(R; H), that is, the solution operator Sν admits a continuous linear extension
to all Hν,k-spaces:

Sν ∈ L(Hν,k(R; H)) (k ∈ Z).

(b) It can be shown that for all ε > 0 and u ∈ dom(∂0,ν M(∂−1
0,ν ) + A) we have that

(1+ ε∂0,ν)
−1u ∈ dom(∂0,ν) ∩ dom(A), see [26, Theorem 6.2.5] or [42, Lemma 5.2].

(c)With the notion of Sobolev chains as introduced in the previous section, we may
neglect the closure bar in

(∂0,ν M(∂−1
0,ν ) + A)u = f. (2.11)

Indeed, the latter equation holds in Hν,0(R; H), but, since

Hν,0(R; H)) ↪→ Hν,−1(R; H) ∩ Hν,0(R; H−1(A + 1)) continuously,

we obtain equality (2.11) also in the space Hν,−1(R; H) ∩ Hν,0(R; H−1(A + 1)).
Moreover, for u ∈ Hν,0(R; H), we have ∂0,ν M(∂−1

0,ν )u ∈ Hν,−1(R; H) and Au ∈
Hν,0(R; H−1(A + 1)). Thus,

(∂0,ν M(∂−1
0,ν ) + A)u = ∂0,ν M(∂−1

0,ν )u + Au.

In fact, in the proof of Theorem 2.8 we have shown that dom(∂0,ν)∩ dom(A) is dense
in

dom((∂0,ν M(∂−1
0,ν ) + A))
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with respect to the graph normof (∂0,ν M(∂−1
0,ν ) + A). But, a sequence (un)n converging

to u in dom((∂0,ν M(∂−1
0,ν ) + A)) converges to u particularly in Hν,0(R; H). So, since

∂0,ν : Hν,0(R; H) → Hν,−1(R; H) and A : Hν,0(R; H) → Hν,0(R; H−1(A + 1)) are
continuous, we obtain

f = lim
n→∞(∂0,ν M(∂−1

0,ν ) + A)un = lim
n→∞ ∂0,ν M(∂−1

0,ν )un

+ lim
n→∞ Aun = ∂0,ν M(∂−1

0,ν )u + Au

with limits computed in Hν,−1(R; H) ∩ Hν,0(R; H−1(A + 1)).

We shall now sketch how to deal with initial value problems. In fact, until now we
have only considered equations like

(∂0,ν M(∂−1
0,ν ) + A)u = f,

that is, equations with a source term on the right-hand side, and some boundary con-
ditions encoded in the domain of the (partial differential) operator A, but no initial
conditions. In fact, we will show now, how to incorporate them into the right-hand
side of the PDE. For a simple case, we rephrase the arguments in [26, Sect. 6.2.5, The-
orem 6.2.9].

Take u0 ∈ dom(A), and f ∈ Hν,0(R; H) with f vanishing on (−∞, 0]. Then, our
formulation for initial value problems is as follows. For the sake of presentation, we let
M(∂−1

0,ν ) = M0 + ∂−1
0,ν M1 for some self-adjoint, non-negative M0 ∈ L(H) and some

M1 ∈ L(H) satisfying νM0 + �M1 � c. An example for this would be M0 = 1H

and M1 = 0. Consider

(∂0,ν M0 + M1 + A)v = f − χ[0,∞)M1u0 − χ[0,∞) Au0.

Note that due to the exponential weight, we have χ[0,∞)M1u0 + χ[0,∞) Au0 ∈
Hν,0(R; H). The solution theory in Theorem 2.8 gives us a unique solution v ∈
Hν,0(R; H). Moreover, v is supported on [0,∞), due to causality.

Lemma 2.10 With the notation above, u := v + χ[0,∞)u0 solves the initial value
problem

{
(∂0,ν M0 + M1 + A)u = f on (0,∞)

(M0u)(0+) = M0u0. in H−1(A + 1)

Proof Note that on (0,∞) we get

f − χ[0,∞)M1u0 − χ[0,∞) Au0 = (∂0,ν M0 + M1 + A)(u − χ[0,∞)u0)

= ∂0,ν M0(u − χ[0,∞)u0) + (M1 + A)(u − χ[0,∞)u0),

where these equalities hold in Hν,−1(R; H) ∩ Hν,0(R; H−1(A + 1)). Hence, as
∂0,ν M0χ[0,∞)u0 vanishes on (0,∞), we arrive at
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f = (∂0,ν M0 + M1 + A)u on (0,∞).

It remains to check whether the initial datum is attained. From the equation

(∂0,ν M0 + M1 + A)v = f − χ[0,∞)M1u0 − χ[0,∞) Au0

we see that ∂0,ν M0v ∈ Hν,0(R; H−1(A + 1)). Thus, M0v ∈ Hν,1(R; H−1(A + 1)).
By the Sobolev embedding theorem (see e.g. [16, Lemma 5.2]), we infer M0v ∈
C(R; H−1(A + 1)). In particular, we get

(M0v)(0−) = (M0v)(0+)

with limits in H−1(A + 1). By causality, M0v(0−) = 0 and, thus, we arrive at

0 = M0(u − χ[0,∞)u0)(0+),

which gives (M0u)(0+) = M0u0, that is, the initial value is attained in H−1(A + 1).

�

The results above enable us to solve linear partial differential equations with initial
conditions just by looking at non-homogeneous problems with Hν,0 right-hand sides.
A few comments are in order.

Remark 2.11 (a) The solution operator in Theorem 2.8 is independent of ν, in the fol-
lowing sense: let ν, μ be sufficiently large and denote the corresponding solution
operators by Sν and Sμ respectively. Then for f ∈ Hν,0(R; H)∩ Hμ,0(R; H) we
have Sν f = Sμ f , see e.g. [26, Theorem 6.1.4] or [38, Lemma 3.6] for a detailed
proof. Therefore we shall occasionally drop the index ν in the time-derivative or
the solution operator if there is no risk of confusion.

(b) For the sake of presentation,we state the above treatment of the deterministic PDEs
in a rather restricted way. In fact the solution theory mentioned in Theorem 2.8
can be generalized to maximal monotone relations A, see e.g. [37], or to non-
autonomous coefficients, see [28,42]. For our purposes of investigating random
right-hand sides however, Theorem 2.8 is sufficient.

Now we present the last ingredient before turning to stochastic PDEs. We shall
present a perturbation result which will help us to deduce well-posedness of SPDEs,
where we interpret the stochastic part as a nonlinear perturbation on the right-hand
side of the PDE. In order to do so, we give a definition of so-called evolutionary
mappings, which is a slight variant of the notions presented in [40, Definition 2.1] and
[16, Definition 4.7].

Definition 2.12 Let H, G Hilbert spaces, ν0 > 0. Let

F : dom(F) ⊆
⋂

ν�0

Hν,0(R; H) →
⋂

ν�ν0

Hν,0(R; G),
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where dom(F) is supposed to be a vector space. We call F evolutionary (at ν0), if for
all ν � ν0, F satisfies the following properties

(i) F is Lipschitz-continuous as a mapping

F0,ν : dom(F) ⊆ Hν,0(R; H) → Hν,0(R; G), φ �→ F(φ),

(ii) ‖F‖ev,Lip := lim supν→∞ ‖Fν‖Lip < ∞, with Fν := F0,ν .

The non-negative number ‖F‖ev,Lip is called the the eventual Lipschitz constant of F.

If, in addition, Fν leaves dom(Fν) = dom(F)
Hν,0 invariant, thenwe call F invariant

evolutionary (at ν0).

Similar to the solution operator Sν to certain partial differential equations (see
Remark 2.11), evolutionary mappings are independent of ν in the following sense:

Lemma 2.13 Let F be evolutionary at ν0 > 0. Assume that multiplication by the
cut-off function χ(−∞,a] leaves the space dom(F) invariant for all a ∈ R, that is, for
all a ∈ R, φ ∈ dom(F)

χ(−∞,a]φ ⊆ dom(F). (2.12)

Then Fν |dom(Fν )∩dom(Fμ) = Fμ|dom(Fν )∩dom(Fμ) for all ν � μ � ν0.

Proof Take u ∈ dom(Fν) ∩ dom(Fμ) and assume as a first step, that χ(−∞,a]u = 0
for some a ∈ R. By definition, there exists (φn)n in dom(F) such that φn → u in
Hμ,0(R; H). As dom(F) is a vector space and by being left invariant bymultiplication
by the cut-off function, we also have that ψn := χ(a,∞)φn ∈ dom(F) as well as
ψn → u in Hμ,0(R; H). From ν > μ, we infer that ψn → u in Hν,0(R; H). Hence,
as Hν,0(R; G) and Hμ,0(R; G) are continuously embedded in L2

loc(λR; G),

Fμ(u) = lim
n→∞ Fμ(ψn) = lim

n→∞ Fν(ψn) = Fν(u).

For general u ∈ dom(Fν) ∩ dom(Fμ), note that the sequence (un)n∈N :=
(χ[−n,∞)u)n∈N converges in both spaces Hν,0(R; H) and Hμ,0(R; H) by dominated
convergence. The continuity of Fν and Fμ implies convergence of (Fν(un))n∈N and
(Fμ(un))n∈N in Hν,0(R; G) and Hμ,0(R; G), respectively. Therefore we get equality
of the respective limits by Fν(un) = Fμ(un) by the arguments in the first step of this
proof, again by the fact that both spaces Hν,0(R; G) and Hμ,0(R; G) are continuously
embedded in L2

loc(λR; G). 
�
Remark 2.14 In both articles [40, Definition 2.1] and [16, Definition 4.7], where the
notion of evolutionary mappings was used, we assumed that the mappings under
considerations are densely defined (and linear). Hence, the invariance condition is
superfluous. But in the context of SPDEs, one should think of F to be a stochastic
integral. This, however, is only a Lipschitz continuous mapping, if the processes to be
integrated are adapted to the filtration given by the integrating process. The adapted
processes form a closed subspace of all stochastic processes, and they will play the
role of dom(Fν). This shall be specified in the next section.
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As the final statement of this section, we provide the perturbation result which is
applicable to SPDEs.

Corollary 2.15 Let H be a Hilbert space, ν0 > 0. Assume that F is invariant evo-
lutionary (at ν0) as in Definition 2.12 for G = H. Let r > 1

2ν0
, and suppose that

M : B(r, r) → L(H) is analytic and bounded, satisfying

�〈z−1M(z)φ, φ〉H � c‖φ‖2H ,

for all z ∈ B(r, r), all φ ∈ H and some c > 0. Assume that ‖F‖ev,Lip < c and
that Fν is causal for all ν > ν0. Furthermore suppose that for all ν > ν0, we have
Sνφ ⊆ dom(Fν), for all φ ∈ dom(Fν) with Sν from Theorem 2.8.

Then the mapping

�ν : dom(�ν) ⊆ dom(Fν) → dom(Fν)

u �→ (∂0,ν M(∂−1
0,ν ) + A)u + Fν(u)

with domain

dom(�ν) =
{

u ∈ dom(Fν); (∂0,ν M(∂−1
0,ν ) + A)u + Fν(u) ∈ dom(Fν)

}

admits a Lipschitz-continuous inverse mapping defined on the whole of dom(Fν) for
all ν > ν0 large enough. Moreover, �−1

ν is causal.

Proof Choose ν > ν0 so large such that ‖Fν‖Lip < c and let f ∈ dom(Fν). Now,
u ∈ dom(�ν) satisfies

(∂0,ν M(∂−1
0,ν ) + A)u + Fν(u) = f

if and only if u is a fixed point of the mapping

� : dom(Fν) → dom(Fν), x �→ (∂0,ν M(∂−1
0,ν ) + A)

−1
( f − Fν(x)) .

Note that, since dom(Fν) is a vector space, � is in fact well-defined. Moreover, � is
a contraction, by the choice of ν. Indeed, let u, v ∈ dom(Fν) then

‖�(u) − �(v)‖ =
∥
∥∥∥(∂0,ν M(∂−1

0,ν ) + A)
−1

× ( f − Fν(u)) − (∂0,ν M(∂−1
0,ν ) + A)

−1
( f − Fν(v))

∥∥∥∥

=
∥
∥∥∥(∂0,ν M(∂−1

0,ν ) + A)
−1

(Fν(u)) − (∂0,ν M(∂−1
0,ν ) + A)

−1
(Fν(v))

∥
∥∥∥
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�
∥
∥∥∥(∂0,ν M(∂−1

0,ν ) + A)
−1

∥
∥∥∥ ‖(Fν(u)) − (Fν(v))‖

� 1

c
‖(Fν(u)) − (Fν(v))‖ � 1

c
‖Fν‖Lip‖u − v‖,

so � is strictly contractive as ‖Fν‖Lip < c. Hence, the inverse of �ν is a well-defined
Lipschitz continuous mapping, by the contraction mapping principle.

Next, we show causality of the solution operator. For this it suffices to observe that
� is causal. But, by Theorem 2.8,� is a composition of causal mappings, yielding the
causality for � and, hence, the same for the solution mapping of the equation under
consideration in the present corollary. 
�

As already mentioned, we use the above perturbation result to conclude well-
posedness of stochastically perturbed partial differential equations. In the application,
we have in mind, the invariance of dom(Fν) under Sν is a consequence of causality.
In fact, we will have that dom(Fν) is the restriction of Hν,0-functions to the class of
predictable processes. A remark on the dependence of �−1

ν on ν is in order.

Remark 2.16 In order to show independence of ν, that is, �−1
ν f = �−1

μ f for f ∈
dom(Fν)∩dom(Fμ) for ν, μ chosen large enough, we need to assume condition (2.12)
in addition. Indeed, take f ∈ dom(Fν) ∩ dom(Fμ) for ν, μ sufficiently large as in

Corollary 2.15. Then, with �ν := (∂0,ν M(∂−1
0,ν ) + A)

−1
( f − Fν(·)) (and similarly

for �μ), the proof of Corollary 2.15 shows that �−1
ν ( f ) = limn→∞ �n

ν ( f ). But, as
f ∈ dom(Fν) ∩ dom(Fμ), we get

�ν( f ) = Sν( f − Fν( f )) = Sν( f − Fμ( f )) = Sμ( f − Fμ( f )) = �μ( f ),

by Remark 2.11(a) and Lemma 2.13. In particular, �ν( f ) ∈ dom(Fν) ∩ dom(Fμ). In
the same way, one infers that �n

ν ( f ) = �n
μ( f ) for all n ∈ N. Consequently, �−1

ν ( f )

and �−1
μ ( f ) are limits of the same sequence in dom(Fν) and dom(Fμ), respectively.

Thus, as both the latter spaces are continuously embedded into L2
loc(λR; H) these

limits coincide.

Due to Remark 2.16, in what follows, we will not keep track on the value of ν > 0
in the notation of the operators involved as it will be clear from the context in which
Hilbert space the operators are established in.

3 Application to SPDEs

In this section we show how to apply the solution theory from Sect. 2.2 to an SPDE of
the form (1.1). The basic idea is to replace the Hilbert space H in Sect. 2.2 by L2(P)⊗
H(∼= L2(P; H)), where L2(P) = L2(�,A ,P) is the L2-space of a probability space
(�,A ,P) and H is the Hilbert space where the (unbounded) operator A is thought
of as being initially defined. A typical choice would be H = L2(λD)d+1, for some
open D ⊆ R

d , and A being some differential operator, but also more general operator
equations are possible.
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As already mentioned in the introduction, we consider the stochastic integral on
the right-hand side as a perturbation of the deterministic partial differential equation.
Therefore we need to make sense of the term

(
∂0M(∂−1

0 ) + A
)−1

( ∫ t

0
σ(u(s))dW (s)

)
.

In Sect. 3.1 we establish that this term is well-defined, and after that, in Sect. 3.2, we
can use this to treat SPDEs with multiplicative noise using the fixed-point argument
carried out in Corollary 2.15. In principle, using this idea, one can also treat SPDEs
with additive noise, but a slightly different analysis in Sect. 3.3 also gives us a result
on SPDEs with additive noise.

3.1 Treatment of the stochastic integral

The concept of stochastic integration we use in the following is the same as in [8], and
we repeat the most important points here.

Definition 3.1 (Wiener process) Let G be a separable Hilbert space, (ek)k∈N an ortho-
normal basis of G, (λk)k∈N ∈ �1(N) with λk � 0 for all k ∈ N, and let (Wk)k∈N be
a sequence of independent real-valued Brownian motions. For t ∈ [0,∞) we define
the G-valued Wiener process, by

W (t) =
∞∑

k=1

√
λk Wk(t)ek,

and we set W (t) = 0 for all negative times t ∈ (−∞, 0).

In order to make sense of stochastic integration we reinterpret the notion of a
filtration in an operator-theoreticway.Wewill use the notation A � B for two bounded
linear operators on a Hilbert space H if 〈Ax, x〉 � 〈Bx, x〉 for all x ∈ H .

Definition 3.2 (Filtration and predictable processes) (a) Let H be a Hilbert space,
P = (Pt )t�0 is called a filtration on H, if for all t ∈ R+ the operator Pt is an orthogonal
projection, Ps � Pt � 1H for all s � t .

(b) Let ν > 0, Z : R → H . We call Z predictable (with respect to P), if

Z ∈ Hν,0(R; P) := SP ,

where

SP := lin{χ(s,t]φ;φ ∈ ran(Ps), s, t ∈ R, s < t} (3.1)

and the closure is taken in Hν,0(R; H).
(c) LetG be aHilbert space.We say that Z : R → H⊗G is predictable (with respect

to P) with values in G, if Z is predictable with respect to P ⊗ 1G := (Pt ⊗ 1G)t∈R.
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Remark 3.3 In applications, H = L2(P) for some probability space (�,A ,P) and
(Pt )t∈R is given by a family of nested σ -algebras (Ft )t∈R. More precisely,

Pt : L2(P) → L2(P), X �→ E(X |Ft ) (t ∈ R). (3.2)

In particular, if we are given a G-valued Wiener process W with underlying proba-
bility space (�,A ,P) as in Definition 3.1, the natural filtration is given by Ft :=
σ(Wk(s); k ∈ N,−∞ < s � t), t ∈ R. The corresponding family of projections
PW = (Pt )t is then given as in (3.2). Hence, SPW (see also (3.1)) reads

SPW = lin{χ(s,t]φ;φ ∈ ran(Ps), s, t ∈ R, s < t}
= lin{χ(s,t]φ; Psφ = φ, s, t ∈ R, s < t}
= lin{χ(s,t]φ;E(φ|Fs) = φ, s, t ∈ R, s < t}
= lin{χ(s,t]φ;φ is Fs-measurable, s, t ∈ R, s < t}.

Note that SPW are also called simple predictable processes. In this case, one could

also take A = F∞ := σ
(⋃

t�0 Ft

)
.

For later use, we also have to show that the solution map as defined in Sect. 2.2 does
not destroy the predictability. This is however a direct consequence of the causality
of the solution map stated in Theorem 2.8. For ease of presentation, we will freely
identify H ⊗ H1 with H1 ⊗ H and Hν,0(R; H) with Hν,0(R) ⊗ H . In particular, this
effects the following loose notation: a continuous operator M on H is then extended
to a continuous linear operator on H1 ⊗ H by M ⊗ 1H1 (and of course by 1H1 ⊗ M),
if we want to stress that it is extended at all (and not simply write M).

Theorem 3.4 Let H, G be Hilbert spaces, P a filtration on H. Let M : Hν,0(R; G) →
Hν,0(R; G) be a causal, continuous linear operator. Then the canonical extension of
M to Hν,0(R; G) ⊗ H leaves the space of predictable processes invariant, that is,

M ⊗ 1H
[
Hν,0(R; P ⊗ 1G)

] ⊆ Hν,0(R; P ⊗ 1G).

Proof By continuity of M , it suffices to prove (M ⊗1H )[SP⊗1G ] ⊆ Hν,0(R; P ⊗1G).
Let f ∈ SP⊗1G . By linearity of M ⊗ 1H , we may assume without loss of generality
that f = χ(s,t]η for some η = (Ps ⊗ 1G)(η) ∈ H ⊗ G and s, t ∈ R. Next, by the
density of the algebraic tensor product of H and G, we find sequences (φn)n in H and
(ψn)n in G with the property

∞∑

n=1

φn ⊗ ψn = η ∈ H ⊗ G.

But,

η = (Ps ⊗ 1G)(η) = (Ps ⊗ 1G)

∞∑

n=1

φn ⊗ ψn =
∞∑

n=1

(Psφn) ⊗ ψn .
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Thus, without restriction, we may assume that φn = Psφn for all n ∈ N. Since, by
definition, the predictable mappings form a closed subset of Hν,0(R; H ⊗ G) and
M ⊗ 1H is continuous, it suffices to prove that for all N ∈ N,

(M ⊗ 1H )

(

χ(s,t]
N∑

n=1

φn ⊗ ψn

)

is predictable. By linearity of M ⊗ 1H , we are left with showing that (M ⊗
1H )

(
χ(s,t]φ ⊗ ψ

)
is predictable for all φ ∈ ran(Ps) and ψ ∈ G. Note that

(M ⊗ 1H )
(
χ(s,t]φ ⊗ ψ

) = (M(χ(s,t]ψ)) ⊗ φ.

Next, causality of M implies that spt M(χ(s,t]ψ) ⊆ [s,∞), where spt denotes the
support of a function. We conclude with the observation that M(χ(s,t]ψ) can be
approximated by simple functions in Hν,0(R; G) supported on (s,∞) only. Hence,
(M(χ(s,t]ψ)) ⊗ φ is predictable. 
�

Next, we come to the discussion of the stochastic integral involved:

Definition 3.5 (Stochastic integral) Let H , G be separable Hilbert spaces

W =
∞∑

k=1

√
λk Wk(·)ek

a G-valued Wiener process. Let Z be a predictable stochastic process with respect
to the natural filtration induced by W as in Remark 3.3 with values in L2(G, H),
the space of Hilbert–Schmidt operators from G to H . Then we define the stochastic
integral of Z with respect to W for all t ∈ [0,∞) as follows

∫ t

0
Z(s)dW (s) :=

∑

k∈N
λ
1/2
k

∫ t

0
Z(s)ekdWk(s).

We put
∫ t
0 Z(s)dW (s) := 0 for all t < 0.

Remark 3.6 (Itô isometry) In the situation of Definition 3.5, the following Itô isometry
holds

E

[∥∥
∥∥

∫ t

0
Z(s)dW (s)

∥∥
∥∥

2

H

]
= E

[ ∫ t

0
‖Z(s)‖2L2(G,H)ds

]
.

Moreover, the stochastic integral seen as a process in t ∈ R is continuous and pre-
dictable with values in H , see [8, Chap. 4] for details.

Next, we will show the assumptions in Corollary 2.15 applied to F : u �→∫ (·)
0 σ(u)dW with suitable Lipschitz continuous σ . For this we need the following
key observation; we recall also Remark 3.3. We denote the Hilbert–Schmidt norm
also by ‖ · ‖L2 .
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Theorem 3.7 Let G be a separable Hilbert space, and W a G-valued Wiener process,
(�,A ,P) as its underlying probability space and (Ft )t the natural filtration induced
by W and corresponding filtration PW = (E(·|Ft ))t on L2(P). Then the mapping

F : SPW ⊗1L2(G,H)
⊆ Hν,0(R; PW ⊗ 1L2(G,H)) → Hν,0(R; PW ⊗ 1H ),

where F is given by

F(Z) =
(

t �→
∫ t

0
Z(s)dW (s)

)

is evolutionary at ν for all ν > 0 with eventual Lipschitz constant 0.

Proof Since F is linear and maps simple predictable processes to predictable
processes, it suffices to prove boundedness of F . In order to do so, let Z ∈
SPW ⊗1L2(G,H)

. Then, we get using Fubini’s Theorem and the Itô isometry,

E

[∥∥∥∥

∫ ·

0
Z(s)dW (s)

∥∥∥∥

2

ν,0

]

=
∫

R

E

[∥∥∥
∥

∫ t

0
Z(s)dW (s)

∥∥∥
∥

2

H

]
exp(−2νt)dt

=
∫

R

E

[ ∫ t

0

∥∥Z(s)
∥∥2

L2
ds

]
exp(−2νt)dt

= E

[ ∫

R

∥∥Z(s)
∥∥2

L2

∫ ∞

s
exp(−2νt)dtds

]

= 1

2ν
E

[ ∫

R

∥∥Z(s)
∥∥2

L2
exp(−2νs)ds

]

= 1

2ν
E

[‖Z‖2ν,0

]
. (3.3)

From this we see that F is Lipschitz continuous, and that its Lipschitz constant goes
to zero as ν → ∞. 
�
Remark 3.8 (On space–time white noise) Note that in the proof of the previous theo-
rem, the crucial ingredients are Fubini’s Theoremand the Itô isometry. The Itô isometry
is true also for the stochastic integral with the Wiener process attaining values in a
possibly larger Hilbert space G ′ ⊇ G. Hence, the latter theorem remains true, if we
consider space–timewhite noise instead of thewhite noise discussed in this exposition,
see (in particular) [12, formula (3.16)].

3.2 SPDEs with multiplicative noise

In this section we apply the solution theory presented in Sect. 2.2 to equations with a
stochastic integral. As alreadymentioned in the introduction, we consider equations of
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the form (1.1)with a stochastic integral instead of themore common randomnoise term
σ(u(t))Ẇ (t). This formulation is however in line with the usual way of formulating an
SPDE, since in some sense we consider “a once integrated SPDE” and we interpret the
noise term ∂−1

0 (σ (u(t))Ẇ (t)) as the stochastic integral in Hilbert spaces with respect
to a cylindrical Wiener process denoted by

∂−1
0

(
σ(u(t))Ẇ (t)

) :=
∫ t

0
σ(u(s))Ẇ (s)ds :=

∫ t

0
σ(u(s))dW (s).

As a matter of convenience, we treat the case of zero initial conditions first. In
Remark 3.10(b) we shall comment on how non-vanishing initial data can be incorpo-
rated into our formulation.

Theorem 3.9 (Solution theory for (abstract) stochastic differential equations) Let H,
G be separable Hilbert spaces, and let W be a G-valued Wiener process with under-
lying probability space (�,A ,P). Assume that the filtration PW = (Pt )t on L2(P) is
generated by W (see Remark 3.3). Let r > 0, and assume that M : B(r, r) → L(H)

is an analytic and bounded function, satisfying

�〈(z−1M(z))φ, φ〉H � c‖φ‖2H , (3.4)

for all z ∈ B(r, r), φ ∈ H and some c > 0. Let A : dom(A) ⊆ H → H be skew-self-
adjoint, and σ : H → L2(G, H) with

‖σ(u) − σ(v)‖L2 � L‖u − v‖H (u, v ∈ H)

for some L � 0.
Then there exists ν1 � 0 such that for all ν > ν1, and f ∈ Hν,0(R; PW ⊗ 1H ) the

equation

(∂0,ν M(∂−1
0,ν ) + A)u = f +

∫ ·

0
σ(u(s))dW (s) (3.5)

admits a unique solution u ∈ Hν,0(R; PW ⊗ 1H ). The solution does not depend on ν

in the sense of Remark 2.11.

Proof We apply Corollary 2.15 for F : Z �→ ∫ ·
0 σ(Z)dW (s). By Theorem 3.7 and

the Lipschitz continuity of σ , we infer that F is invariant evolutionary with eventual
Lipschitz constant being 0. Indeed, since W (t) = 0 for t < 0, we may write

∫ ·

0
σ(u(s))dW (s) =

∫ ·

0
χ[0,∞)(s)σ (u(s))dW (s).

But, for all ν > 0, s �→ χ[0,∞)(s)σ (0) ∈ Hν,0(R; PW ⊗ 1L2(G;H)) and, therefore, we
get for u ∈ Hν,0(R; PW ⊗ 1H )
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‖χ[0,∞)(·)σ (u(·))‖Hν,0(R;PW ⊗1L2(G;H))

� ‖χ[0,∞)(·)σ (u(·)) − χ[0,∞)(·)σ (0)‖Hν,0(R;PW ⊗1L2(G;H))

+ ‖χ[0,∞)(·)σ (0)‖Hν,0(R;PW ⊗1L2(G;H))

� L‖χ[0,∞)(·)u(·)‖Hν,0(R;PW ⊗1H ) + ‖χ[0,∞)(·)σ (0)‖Hν,0(R;PW ⊗1L2(G;H)) < ∞.

Moreover, it is equally easy to see that

χ[0,∞)σ : Hν,0(R; PW ⊗ 1H ) → Hν,0(R; PW ⊗ 1L2(G;H)), u �→ χ[0,∞)(·)σ (u(·))

is Lipschitz continuouswith Lipschitz constant bounded by L . Hence, by Theorem3.7,
we obtain that

Hν,0(R; PW ⊗ 1H ) � u �→
∫ ·

0
σ(u(s))dW (s) ∈ Hν,0(R; PW ⊗ 1H )

is Lipschitz continuous with eventual Lipschitz constant 0. By Theorem 3.4, we obtain
that

Sν[dom(Fν)] = Sν[Hν,0(R; PW ⊗ 1H )] ⊆ Hν,0(R; PW ⊗ 1H )

with Sν from Theorem 2.8. Hence, the assertion follows from Corollary 2.15. (The
independence of the solution of the parameter ν follows from Lemma 2.13 because
the multiplication with a cut-off function leaves the space of predictable processes
invariant). 
�
Remark 3.10 (a) The above result is of course stable under Lipschitz continuous per-
turbations of the right-hand side. Indeed, let B be an invariant evolutionary mapping,
leaving the space of predictable processes invariant, with B being causal and with
the property that the eventual Lipschitz constant of u �→ B(u) + ∫ (·)

0 σ(u)dW (s) is
strictly less than c > 0, then the assertion of Theorem 3.9 remains the same, if one
considers the equation

(∂0,ν M(∂−1
0,ν ) + A)u = f +

∫ (·)

0
σ(u(s))dW (s) + B(u) (3.6)

instead of (3.5).
(b) (Initial valueproblems)Similarly to thedeterministic case treated inLemma2.10,

we can also formulate initial value problems for the special case M(∂−1
0,ν ) = M0 +

∂−1
0,ν M1. Indeed the following initial value problem

{
(∂0,ν M0 + M1 + A)u = f + ∫ ·

0 σ(u(s))dW (s), on (0,∞)

M0u(0+) = M0u0, in H−1(A + 1)

with given adapted H -valued process f vanishing on (−∞, 0] can be rephrased iden-
tifying M0u0 ∈ H ⊗ L2(P). With this notation, the initial value problem above can
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be reformulated as

(∂0,ν M0 + M1 + A)v = f +
∫ ·

0
σ(v(s) + χ[0,∞)(s)u0)dW (s)

−χ[0,∞)M1u0 − χ[0,∞) Au0

as our appropriate realization of the initial value problem. Note that the map

v �→
∫ ·

0
σ(v(s) + χ[0,∞)(s)u0)dW (s)

is still invariant evolutionary. Thus, solving for v ∈ Hν,0(R; H ⊗ L2(P)) gives, follow
the lines of Lemma 2.10, that M0v(0−) = 0 = M0v(0+) ∈ H−1(A + 1) ⊗ L2(P),
which eventually leads to the attainment of the initial value M0u(0+) = M0u0 in
H−1(A + 1) ⊗ L2(P).

Example 3.11 Asaparticular example forRemark3.10(a), anydeterministicLipschitz
continuous mapping from H with values in H , is an eligible right-hand side in (3.6).
These mappings have been used in [8, Chap. 7].

3.3 SPDEs with additive noise

In this section we investigate the solution theory of equations with additive noise, that
is, the stochastic integral on the right-hand side in (1.1) is replaced by a stochastic
process X : Let, in this section, X be any H -valued stochastic process,more specifically,
the map (t, ω) �→ X (t, ω) belongs to Hν,0(R; H ⊗ L2(P)). This includes in particular
stochastic processes on Hilbert spaces that have continuous or càdlàg paths, and in
particular Lévy processes and fractional Brownian motions. Hence, the equation to be
solved is given by

(∂0,ν M(∂−1
0,ν ) + A)u = f + X

Then we can apply Theorem 2.8 to these equations and we will obtain a unique
solution—for any stochastic process X whose paths are in Hν,0(R; H ⊗L2(P)), which
is only a condition on the integrability of its paths.

Now we we are going to show a more general result. With the notation as in
Theorem 2.8, we consider the equation

(∂0,ν M(∂−1
0,ν ) + A)u = f + ∂k

0,ν X, (3.7)

where the right-hand side is an element of Hν,−k(R; H ⊗ L2(P)), for all k ∈ N0.
Then, the noise term is interpreted as the k-times distributional time derivative of the
paths of the stochastic process X . The space Hν,−k(R; H ⊗ L2(P)) is the distribution
space belonging to ∂0,ν realized as an operator in Hν,0(R; H ⊗ L2(P)). The solution
theory for such a class of equations is then a corollary to the general solution theory
in Theorem 2.8.
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Theorem 3.12 Assume that M and A satisfy the conditions in Theorem 2.8. Suppose
that X is a H-valued stochastic process whose paths belong to Hν,0(R; H ⊗ L2(P)).
Then there exists a unique solution u to (3.7) in Hν,−k(R; H ⊗ L2(P)).

Proof The assertion follows once observed that (∂0M(∂−1
0 )+ A)−1 can be realized as

a continuous linear operator in Hν,−k(R; H ⊗L2(P))with Lipschitz constant bounded
above by 1/c (see also Remark 2.9). 
�

We note the main achievement of this section. The right-hand side has to be in
Hν,−k(R; H ⊗ L2(P)), only. Note that there are no stochastic integrals involved,
neither did we make any assumption on the regularity of the noise term ∂k

0,ν X , other
than that it is the k-th time-derivative of a stochastic process X . Therefore we have
found a way to make sense of stochastic differential equations in Hilbert spaces where
the random noise can be a very irregular object, given by the distributional derivative
of any stochastic process (Lévy,Markov etc.) with only the assumption of integrability
of its paths. The solution to these equations is an element of the space of stochastic
distributions (in the time argument).

4 Examples

In this section, we shall give some examples for the solution theory presented above.
We emphasize, that—at least in principle—the only thing to be taken care of is the
formulation of the respective problem in an appropriate way as an operator equation
in appropriate Hilbert spaces. The way how we do it is to start with the equation given
formally as a stochastic differential equation and, after some algebraic manipulations,
we shall give the appropriate replacement to be solved with the solution theory based
on Theorem 3.9 or Theorem 3.12. In thewhole section, we let W be a G-valuedWiener
process for some separable Hilbert space G and we assume that σ : H0 → L2(G, H0)

is Lipschitz continuous, where H0 will be clear from the context. For simplicity of
the exposition, we assume that we only have a stochastic term containing σ on the
right-hand side and null initial conditions. The way how to incorporate a path-wise
perturbation and/or non-zero initial conditions was shown in Remark 3.10.

For the stochastic heat as well as for the stochastic wave equation, we justify our
findings and put them into perspective of more classical solution concepts. For this, we
note a general observation: Although the solutions constructed in this exposition live
on the whole real time line, the support of the solutions is concentrated on the positive
real axis provided the one of the right-hand side is. Indeed, this is a consequence of
causality of the respective solution operators.

4.1 Stochastic heat equation

We consider the following SPDE in an open set D ⊆ R
d

∂0u(t) − �u(t) = σ(u(t))Ẇ (t),

u(0) = 0, u|∂ D = 0, (4.1)
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where � is the Laplace operator acting on the deterministic spatial variables x ∈ D
only. This equation has been studied in [39], see also [8, Example 7.6] for a treatment
in Hilbert spaces. We establish the boundary condition in the way that u ∈ H1

0 (D), the
Sobolev space of the onceweakly differentiable functions,whichmaybe approximated
in the H1(D)-norm by smooth functions with compact support contained in D. Before
we formulate the heat equation in our operator-theoretic setting, we need to introduce
some differential operators.

Definition 4.1 We define

gradc : C∞
c (D) ⊆ L2(λD) → L2(λD)d

φ �→ (∂ jφ) j∈{1,...,d},
grad : H1(D) ⊆ L2(λD) → L2(λD)d

φ �→ (∂ jφ) j∈{1,...,d}

and let div := − grad∗
c , ˚div := − grad∗ as well as ˚grad := gradc.

Throughout this section, we will use these operators to reformulate the SPDEs in
an adequate way. The meaning of these operators is that the ones with the superscript
“˚” carry the homogeneous boundary conditions on ∂ D: ˚div carries zero Neumann
boundary conditions and ˚grad carries zero Dirichlet boundary conditions. With these
operators we can rewrite the Laplacian with homogeneous Dirichlet boundary condi-
tions as � = div ˚grad.

We may now come back to the stochastic heat equation. We perform an algebraic
manipulation to reformulate it as a system of first order SPDEs. First, we apply the
operator ∂−1

0 to Eq. (4.1), see also Remark 2.9(a), and we arrive at

u(t) − ∂−1
0 �u(t) = ∂−1

0 σ(u(t))Ẇ (t). (4.2)

We interpret the right-hand side as the following stochastic integral

∂−1
0 σ(u(t))Ẇ (t) :=

∫ ·

0
σ(u)dW.

Observe that ∂−1
0 and any spatial (partial differential) operator commute (see also

Lemma 4.6 below for a more precise statement). Therefore, formally, we can rewrite
the second term in (4.2) as

−∂−1
0 �u = −∂−1

0 div ˚gradu = −div∂−1
0

˚gradu.

Then, setting q := −∂−1
0

˚gradu, we arrive at the following first-order system

(
∂0

(
0 0
0 1

)
+

(
1 0
0 0

)
+

(
0 div
˚grad 0

)) (
u
q

)
=

(∫ ·
0 σ(u)dW

0

)
, (4.3)
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which we think of being an appropriate replacement for (4.1).
Assuming that σ : L2(λD) → L2(G, L2(λD)) to be Lipschitz continuous, we can

use Theorem 3.9 to show the existence and uniqueness of solutions to this system. The
only things still to be checked are whether

A =
(

0 div
˚grad 0

)

is skew-self-adjoint and whether

M(z) :=
(
0 0
0 1

)
+ z

(
1 0
0 0

)

satisfies condition (3.4), for some r > 0. The former statement being easy to check
using the definition of div and ˚grad as skew-adjoints of one another in Definition 4.1
and upon relying on Remark 2.7. In order to prove the validity of condition (3.4), we
let (φ,ψ) ∈ L2(λD) ⊕ L2(λD)d and compute using z−1 = it + μ if z ∈ B(r, r) for
some μ > 1

2r and t ∈ R

�
〈
z−1M(z)

(
φ

ψ

)
,

(
φ

ψ

) 〉

L2(λD)d+1
= �(〈(i t + μ)ψ,ψ〉L2(λD)d ) + �〈φ, φ〉L2(λD)

= μ‖ψ‖2L2(λD)d + ‖φ‖2L2(λD)

� min
{
1, (2r)−1}

∥∥∥∥

(
φ

ψ

)∥∥∥∥

2

L2(λD)d+1
, (4.4)

which yields (3.4). Using Theorem 3.9, we have thus proven the following.

Corollary 4.2 With the notations from the beginning of this section, assume that
σ : L2(λD) → L2(G, L2(λD)) satisfies

‖σ(u) − σ(v)‖L2 � L‖u − v‖H

for all u, v ∈ H and some L � 0.
Then there exists ν1 � 0 such that for all ν > ν1, the equation

(
∂0

(
0 0
0 1

)
+

(
1 0
0 0

)
+

(
0 div
˚grad 0

)) (
u
q

)
=

(∫ ·
0 σ(u)dW

0

)
,

has a unique solution (u, q) ∈ Hν,0(R; PW ⊗ 1L2(λD)d+1), which is independent of ν

(For a definition of PW one might recall Remark 3.3).

The solution theory is not limited to the case of partial differential operators with
constant coefficients. The following remark shows how to invoke partial differential
operators with variable coefficients.
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Remark 4.3 Starting outwith a deterministic boundedmeasurablematrix-valued coef-
ficient function a : D → C

d×d being pointwise self-adjoint and uniformly strictly
positive, that is, 〈a(x)ξ, ξ 〉 � c〈ξ, ξ 〉 for all x ∈ D, ξ ∈ R

d and some c > 0, we
consider the stochastic heat equation

∂0u − diva ˚gradu = σ(u)Ẇ ,

with the same vanishing boundary and initial data as above. Substituting a−1q =
− ˚grad∂−1

0 u, we arrive at the system

(∂0M(∂−1
0 ) + A)

(
u
q

)
=

(∫ ·
0 σ(u)dW

0

)
,

with the same A as in the constant coefficient case and

M(z) =
(
0 0
0 a−1

)
+ z

(
1 0
0 0

)
.

Under the conditions on a, we can show the existence and uniqueness of solutions
using Theorem 3.9 (Note that a(x) = a(x)∗ � c > 0 implies a(x)−1 � c/‖a(x)‖2 in
the sense of positive definiteness).

Connection to variational solutions

Wewill compare our solution to the one defined in [36, Definition 2.1] (with g = 0 and
φ = 0), see also [32,34]. We understand the following notion as a variational/weak
solution to the heat equation (4.1):

Definition 4.4 A predictable stochastic process u supported on [0,∞) with values in
H1
0 (D) is called a variational solution to the stochastic heat equation if

∫ T

0
‖u(t)‖2H1(D)

dt < ∞

for all 0 � T < ∞ almost surely, has at most exponential growth in T almost surely
(with some exponential growth bound ν > 0), and for all η ∈ H1

0 (D) the following
equation holds almost surely for all t � 0

〈u(t), η〉L2(λD) +
∫ t

0
〈grad u(τ ), grad η〉L2(λD)d dτ

=
∑

k∈N

∫ t

0

√
λk〈σ(u(τ ))ek, η〉L2(λD)dWk(τ ), (4.5)

where (ek)k∈N is an orthogonal basis of L2(λD), (λk)k∈N ∈ �1(N) is the sequence of
eigenvalues of the covariance operator ofW , and (Wk)k∈N is a sequence of independent
one-dimensional Brownian motions.
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In the next few lines, we will show that any variational solution in the sense of
Definition 4.4 is a solution constructed in Corollary 4.2. In order to avoid unnecessarily
cluttered notation, we shall occasionally neglect referring to the real numbers in the
notation of the vector-valued spaces to be studied in the following. For instance, for
Hν,0(R; H1

0 (D)) we write Hν,0(H1
0 (D)) instead.

Proposition 4.5 Let ν > 0, u ∈ Hν,0(R; H1
0 (D) ⊗ L2(P)) a variational solution

to the stochastic heat equation. Then, (u,−∂−1
0

˚gradu) solves the equation for (u, q)

given in Corollary 4.2.

Proof Since u is supported on [0,∞) only, we get, using Remark 2.2,

∫ t

0

˚gradu(τ )dτ =
∫ t

−∞
˚gradu(τ )dτ = ∂−1

0
˚gradu(t).

Next, by Definition 3.5, we obtain

∑

k∈N

∫ t

0

√
λk〈σ(u(τ ))ek, η〉L2(λD)dWk(τ ) =

〈∫ t

0
σ(u(τ ))dW (τ ), η

〉

L2(λD)

.

Hence, for all v ∈ Hν,0(R), η ∈ H1
0 (D), we obtain from (4.5)

〈u, vη〉Hν,0(L2(λD)) + 〈∂−1
0

˚gradu, v ˚gradη〉Hν,0(L2(λD)d )

=
〈∫ (·)

0
σ(u(τ ))dW (τ ), vη

〉

Hν,0(L2(λD))

.

In consequence, by linearity and continuity, we obtain for all φ ∈ Hν,0(R; H1
0 (D))

〈u, φ〉Hν,0(L2(λD)) + 〈∂−1
0

˚gradu, ˚gradφ〉Hν,0(L2(λD)d )

=
〈∫ (·)

0
σ(u(τ ))dW (τ ), φ

〉

Hν,0(L2(λD))

.

Substituting q := −∂−1
0

˚gradu, we obtain ∂0q = − ˚gradu. Hence, (u, q) solves the
equation in Corollary 4.2 (even without the closure bar). 
�

For the reverse direction, we need an additional regularity assumption. Before
commenting on this, we shall derive an equality, which is almost the one in (4.5). We
need the following prerequisite of abstract nature.

Lemma 4.6 Let H0, H1 be Hilbert spaces, ν > 0, C : dom(C) ⊆ H0 → H1 densely

defined, closed. Then ∂−1
0 C = C∂−1

0 .
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Proof The operator ∂−1
0 is continuous from Hν,0(H0) into itself and the operator C

is closed. Hence, ∂−1
0 C ⊆ C∂−1

0 . On the other hand, note that (1 + εC∗C)−1 → 1
and (1 + εCC∗)−1 → 1 in the strong operator topology as ε → 0. Thus, for u ∈
dom(C∂−1

0 ) we let uε := (1 + εC∗C)−1u and get uε ∈ dom(C) = dom(∂−1
0 C).

Moreover, C(1 + εC∗C)−1 is a continuous operator and (1 + εCC∗)−1C ⊆ C(1 +
εC∗C)−1. Hence, for ε > 0

∂−1
0 Cuε = ∂−1

0 C(1 + εC∗C)−1u = C(1 + εC∗C)−1∂−1
0 u = (1 + εCC∗)−1C∂−1

0 u.

Letting ε → 0 in the latter equality, we obtain u ∈ dom(∂−1
0 C) and ∂−1

0 Cu = C∂−1
0 u,

which yields the assertion. 
�
Theorem 4.7 Let (u, q) ∈ Hν,0(R; (L2(λD) × L2(λD)d) ⊗ L2(P)) be a pre-
dictable process solving the equation in Corollary 4.2. Then q ∈ dom(div) and
u ∈ dom( ˚grad∂−1

0 ), u = − ˚grad∂−1
0 q and

〈u(·), η〉L2(λD)) +
〈

grad
∫ (·)

0
u(τ )dτ, grad η

〉

L2(λD)d

=
∑

k∈N

∫ (·)

0

√
λk〈σ(u(τ ))ek, η〉L2(λD)dWk(τ ), (4.6)

almost surely.

Proof By causality and the fact that W = 0 for negative times, we infer (u, q) is
supported on [0,∞) only. Moreover, by Remark 2.9 ((a) and (b)), we obtain that

(uε, qε) := (
(1 + ε∂0)

−1u, (1 + ε∂0)
−1q

) ∈ dom(∂0) ∩ dom

((
0 div
˚grad 0

))
.

Furthermore, we have

(
∂0

(
0 0
0 1

)
+

(
1 0
0 0

)
+

(
0 div
˚grad 0

)) (
uε

qε

)
=

(
(1 + ε∂0)

−1
∫ ·
0 σ(u)dW

0

)
. (4.7)

Hence, the first line of the latter equality yields

uε + divqε = (1 + ε∂0)
−1

∫ ·

0
σ(u)dW.

Thus, using (1+ ε∂0)
−1 → 1 as ε → 0 in the strong operator topology, we obtain by

the closedness of div that

q ∈ dom(div) and divq = −u +
∫ ·

0
σ(u)dW. (4.8)
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Next, the second line of (4.7) reads

∂0qε + ˚graduε = 0 or qε + ∂−1
0

˚graduε = 0.

Thus, by Lemma 4.6, we obtain as ε → 0,

q = − ˚grad∂−1
0 u.

Therefore, from (4.8) we read off

u − div ˚grad∂−1
0 u =

∫ ·

0
σ(u)dW.

Thus, testing the latter equality with η ∈ H1
0 (D) = dom( ˚grad), and using that

−〈
div ˚grad∂−1

0 u, η
〉
L2(λD)

= 〈
˚grad∂−1

0 u, ˚gradη
〉
L2(λD)

we infer the asserted equality. 
�

Corollary 4.8 In the situation of Theorem 4.7, we additionally assume that u ∈
Hν,0(H1

0 (D) ⊗ L2(P)). Then u is a solution in the sense of Definition 4.4.

4.2 Stochastic wave equation

Similarly to the treatment of the stochastic heat equation in the previous section, we
show now how to reformulate the stochastic wave equation into a first order system and
then prove the existence and uniqueness of solutions. This equation has been treated in
[7,39] with a random-field approach and for instance in [8, Example 5.8, Sect. 13.21]
with a semi-group approach. Consider the following equation

∂20u − �u = σ(u)Ẇ ,

u(0) = 0, ∂0u(0) = 0, u|∂ D = 0. (4.9)

As in the previous section, we first apply the operator ∂−1
0 to (4.9), write� = div ˚grad,

and finally define v := ˚grad∂−1
0 u.With thesemanipulations, we arrive at the following

first-order system

(
∂0

(
1 0
0 1

)
−

(
0 div
˚grad 0

)) (
u
v

)
=

(∫ ·
0 σ(u)dW

0

)
, (4.10)

which we think of as the appropriate formulation for the stochastic wave equation.
Now we can show, with σ : L2(λD) → L2(G, L2(λD)) Lipschitz continuous, the
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existence and uniqueness of a solution to (4.10) with the help of Theorem 3.9. The
only thing to be verified is that

M(z) :=
(
1 0
0 1

)

satisfies condition (3.4) for all z ∈ B(r, r), for some r > 0. This, however, is easy
(see also the computation in (4.4)). Thus, we just obtained the following:

Corollary 4.9 There is ν0 > 0 such that for all ν � ν0, there is a unique (u, v) ∈
Hν,0(R; PW ⊗ 1L2(λD)d+1) such that

(
∂0

(
1 0
0 1

)
−

(
0 div
˚grad 0

)) (
u
v

)
=

(∫ ·
0 σ(u)dW

0

)
.

The solution is independent of ν.

Weemphasize that theway ofwriting the stochasticwave equation into a first-order-
in-time system is not unique. Indeed, a more familiar way is to set w := −�∂−1

0 u.
With this we arrive at the following system

(
∂0

(
1 0
0 1

)
+

(
0 1
� 0

)) (
u
w

)
=

(∫ ·
0 σ(u)dW

0

)
. (4.11)

The latter system is essentially the same as the system in (4.10), see [27, p. 16/17]
for the mathematically rigorous statement. However, the spatial Hilbert spaces differ
from one another: in (4.10) the spatial Hilbert space is H = L2(λD) ⊕ L2(λD)d , and
in (4.11) it coincides with H = H1

0 (D) ⊕ L2(λD). The domains of the two spatial
partial differential operators

(
0 div
˚grad 0

)
and

(
0 1
� 0

)

are dom( ˚grad)⊕dom(div) = H1
0 (D)⊕dom(div) and dom(�)⊕H1

0 (D), respectively,
where dom(�) = dom(div ˚grad). However, the solvability of one system implies the
solvability of the other one. In any case, for bounded D, endowing H1

0 (D) with the
scalar product induced by (u, v) �→ 〈grad u, grad v〉, it can be shown that

(
0 1
� 0

)
: dom(div ˚grad) ⊕ H1

0 (D) ⊆ H1
0 (D) ⊕ L2(λD)

→ H1
0 (D) ⊕ L2(λD), (u, v) �→ (v,�u)

is skew-self-adjoint. For the latter assertion, it is sufficient to note the following propo-
sition:
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Lemma 4.10 Assume that D ⊆ R
d is bounded. Let C : dom(div ˚grad) ⊆ H1

0 (D) →
L2(λD) with Cu = �u. Then, for C∗ : dom(C∗) ⊆ L2(λD) → H1

0 (D) we have

C∗v = −v for all v ∈ dom(C∗) = H1
0 (D),

where H1
0 (D) is endowed with the scalar product (u, v) �→ 〈grad u, grad v〉.

Proof Let v ∈ L2(λD) and f ∈ H1
0 (D). Then we compute

v ∈ dom(C∗), C∗v = f ⇐⇒ ∀φ ∈ dom(C) : 〈Cφ, v〉L2(λD) = 〈φ, f 〉H1
0 (D)

⇐⇒ ∀φ ∈ dom(div ˚grad) : 〈div ˚gradφ, v〉L2(λD)

= 〈 ˚gradφ, ˚grad f 〉L2(λD)

⇐⇒ ∀φ ∈ dom(div ˚grad) : 〈div ˚gradφ, v〉L2(λD)

= −〈div ˚gradφ, f 〉L2(λD)

⇐⇒ ∀φ ∈ dom(div ˚grad) : 〈div ˚gradφ, v + f 〉L2(λD) = 0.

But, div ˚grad : dom(div ˚grad) ⊆ L2(λD) → L2(λD) is continuously invertible. In
particular, div ˚grad is onto. Hence,

∀φ ∈ dom(div ˚grad) : 〈div ˚gradφ, v + f 〉L2(λD) = 0 ⇐⇒ v = − f ∈ H1
0 (D).

The assertion follows. 
�
Hence, with Lemma 4.10 in mind, in either formulation—(4.10) or (4.11)—our

solution theory, Theorem 3.9, applies. We shall also note that the functional analytic
framework provided serves to treat deterministic variable coefficients a : D → C

d×d

satisfying the same assumptions as in Remark 4.3 and to treat the corresponding wave
equation

(∂20 − diva ˚grad)u = σ(u)Ẇ

or, rather,

(
∂0

(
1 0
0 a−1

)
−

(
0 div
˚grad 0

)) (
u
v

)
=

(∫ ·
0 σ(u)dW

0

)
.

Connection to mild solutions

Next, we will comment on the relationship of the solution obtained for (4.11) to amore
classical way of deriving the solution by means of C0-semi-groups: On the bounded,
open D ⊆ R

d consider the classical reformulation of the stochastic wave equation as
a first-order system

((
∂0 0
0 ∂0

)
−

(
0 1
� 0

)) (
u
v

)
=

(
0

σ(u)Ẇ

)
, (4.12)
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with zero initial conditions and homogeneous Dirichlet boundary conditions, see [8,
Example 5.8] for this reformulation. So, � = div ˚grad with a suitable domain. The
solution to (4.12) can be computed using the semi-group approach in [8] to be

(
u(t)
v(t)

)
=

∫ t

0
S(t − s)

(
0

σ(u(s))dW (s)

)

=
(∫ t

0 (−�)−1/2 sin((−�)1/2(t − s)σ (u(s))dW (s)∫ t
0 cos((−�)1/2(t − s))σ (u(s))dW (s)

)
, (4.13)

where S(t) is the semi-group defined by

S(t) =
(

cos((−�)1/2t) (−�)−1/2 sin((−�)1/2t)
−(−�)1/2 sin((−�)1/2t) cos((−�)1/2t)

)
.

However, in (4.11), we have arrived at a different reformulation as a first-order
system, given by

((
∂0 0
0 ∂0

)
+

(
0 1
� 0

)) (
u
w

)
=

(∫ ·
0 σ(u(r))dW (r)

0

)
. (4.14)

Our aim in this section will be to establish the following result.

Theorem 4.11 Let (u, v) satisfy (4.13). Then (u, w) solves (4.14) with

w =
∫ ·

0
σ(u(r))dW (r) − v. (4.15)

For this, we need some elementary prerequisites:

Lemma 4.12 Let r, t ∈ R. Then the following statements hold.
(a) For any ζ ∈ R>0, we have

∫ t

r
ζ 1/2 sin(ζ 1/2(s − r))ds = 1 − cos(ζ 1/2(t − r))

and

∫ t

r
cos(ζ 1/2(s − r))ds = ζ−1/2 sin(ζ 1/2(t − r)).

(b) For all φ ∈ dom(�) = dom(div ˚grad) we have

∫ t

r
(−�)(−�)−1/2 sin((−�)1/2(s − r))φds = (I − cos((−�)1/2(t − r)))φ
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and

∫ t

r
cos((−�)1/2(s − r))φds = (−�)−1/2 sin((−�)1/2(t − r))φ.

Proof The equations in (a) can be verified immediately. In order to settle (b), we use
the spectral theorem for the (strictly positive definite) Dirichlet–Laplace operator −�

on the underlying open and bounded set D. Hence, (b) is a consequence of (a) by
Fubini’s theorem. 
�

Next, we proceed to a proof of the main result in this section.

Proof of Theorem 4.11 Using (4.15) together with the second line of (4.13), we obtain
for φ ∈ dom(�)

〈w(t), φ〉L2(λD)

=
〈 ∫ t

0

(
I − cos((−�)1/2(t − r))

)
σ(u(r))dW (r), φ

〉

L2(λD)

=
∑

k∈N
λ
1/2
k

∫ t

0

〈(
I − cos((−�)1/2(t − r))

)
σ(u(r))ek, φ

〉

L2(λD)

dWk(r)

=
∑

k∈N
λ
1/2
k

∫ t

0

〈
σ(u(r))ek,

(
I − cos((−�)1/2(t − r))

)
φ

〉

L2(λD)

dWk(r).

With Lemma 4.12, we further obtain

〈w(t), φ〉L2(λD)

=
∑

k∈N
λ
1/2
k

∫ t

0

〈
σ(u(r))ek,

( ∫ t

r
(−�)(−�)−1/2 sin((−�)1/2(s − r))φds

)〉

L2(λD)

dWk(r)

=
∑

k∈N
λ
1/2
k

∫ t

0

〈( ∫ t

r
(−�)−1/2 sin((−�)1/2(s − r))ds

)
σ(u(r))ek,−�φ

〉

L2(λD)

dWk(r)

=
〈 ∑

k∈N
λ
1/2
k

∫ t

0

( ∫ t

r
(−�)−1/2 sin((−�)1/2(s − r))ds

)

σ(u(r))ekdWk(r),−�φ
〉

L2(λD)

=
〈 ∫ t

0

( ∫ t

r
(−�)−1/2 sin((−�)1/2(s − r))ds

)
σ(u(r))dW (r),−�φ

〉

L2(λD)

=
〈 ∫ t

0

∫ s

0
(−�)−1/2 sin((−�)1/2(s − r))σ (u(r))dW (r)ds,−�φ

〉

L2(λD)
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=
〈(

∂−1
0

∫ ·

0
(−�)−1/2 sin((−�)1/2(· − r))σ (u(r))dW (r)

)
(t),−�φ

〉

L2(λD)

= 〈∂−1
0 u(t),−�φ〉L2(λD),

where in the last equality we used the first line of (4.13). We read off ∂−1
0 u ∈ dom(�)

and

w = −�∂−1
0 u

Moreover, we compute with (4.13) and Lemma 4.12,

∂−1
0 v(t) =

∫ t

0

∫ s

0
cos((−�)1/2(s − r))σ (u(r))dW (r)ds

=
∫ t

0

∫ t

r
cos((−�)1/2(s − r))dsσ(u(r))dW (r)

=
∫ t

0
(−�)−1/2 sin((−�)1/2(t − r))σ (u(r))dW (r)

= u(t).

Therefore, together with (4.15), we get

∂0u + w = v + w =
∫ ·

0
σ(u(r))dW (r),

w + �∂−1
0 u = 0.

So, again by multiplying both these equations with (1 + ε∂0)
−1 and setting uε :=

(1 + ε∂0)
−1u as well as wε := (1 + ε∂0)

−1w, we obtain

(
∂0

(
1 0
0 1

)
+

(
0 1
� 0

)) (
uε

wε

)
=

(
(1 + ε∂0)

−1
∫ ·
0 σ(u(r))dW (r)

0

)
.

Hence, by letting ε → 0, we obtain the assertion. 
�

4.3 Stochastic Schrödinger equation with additive noise

In this section we treat the stochastic Schrödinger equation on an open set D ⊆ R
d ,

see for instance [3, Chap. 2]. It can be formulated as

∂0u − i�u = b(u) + ∂0X, u(0) = 0,

with appropriate boundary conditions such that � becomes a self-adjoint operator
(recall that then i� is skew-selfadjoint) and

b : Hν,−1(R; L2(λD) ⊗ L2(P)) → Hν,−1(R; L2(λD) ⊗ L2(P))
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being Lipschitz continuous with Lipschitz constant less than ν. We assume that ∂0X
is the derivative of a stochastic process as discussed in Sect. 3.3. Then the stochastic
Schrödinger equation is well-posed according to Theorem 3.12.

4.4 Stochastic Maxwell equations

Before discussing the stochasticMaxwell equations,we need to introduce somevector-
analytic operators. In the whole section let D ⊆ R

3 be open.

Definition 4.13 We define

curlc : C∞
c (D)3 ⊆ L2(λD)3 → L2(λD)3,

⎛

⎝
φ1
φ2
φ3

⎞

⎠ �→
⎛

⎝
0 −∂3 ∂2
∂3 0 −∂1

−∂2 ∂1 0

⎞

⎠

⎛

⎝
φ1
φ2
φ3

⎞

⎠ ,

where ∂1, ∂2, ∂3 are the partial derivatives with respect to the first, second and third
spatial variable, respectively. Let curl := curl∗c and ˚curl := curl∗.

We introduce the linear operators ε, μ, ζ ∈ L(L2(λD)3), modeling the respective
material coefficients dielectricity, magnetic permeability and electric conductivity,
with the following additional properties

• ε is self-adjoint and positive definite, ε∗ = ε � 0,
• μ is self-adjoint, μ∗ = μ,
• both the operators μ and νε + �ζ are strictly positive definite if ν > 0 is chosen
large enough.

Then Maxwell’s equations can be written in the form

(
∂0

(
ε 0
0 μ

)
+

(
ζ 0
0 0

)
+

(
0 − curl
˚curl 0

)) (
E
H

)
=

(
J
0

)
.

This first-order system is well-posed in solving for (E, H) ∈ Hν,0(R; L2(λD)6),
where the quantity J ∈ Hν,0(R; L2(λD)3), the external currents, is a given right-hand
side. Indeed, this follows from our deterministic solution theory in Theorem 2.8, see
[26, Sect. 3.1.12.4] for a detailed treatment. Hence, incorporating stochastic integrals
in the Maxwell equations leads to

(
∂0

(
ε 0
0 μ

)
+

(
ζ 0
0 0

)
+

(
0 − curl
˚curl 0

)) (
E
H

)
=

(∫ (·)
0 σ(E, H)dW + J

0

)
,

which in turn is well-posed by Theorem 3.9.

Remark 4.14 Note that the Maxwell equations with multiplicative noise have not
been—to the best of our knowledge—discussed yet in the literature. The above for-
mulation of this particular reformulation is in fact a possible way to understand the
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‘stochastic Maxwell equations with multiplicative noise’. Stochastic Maxwell equa-
tionswith additive noise have, however, beendiscussed in the literature, see for instance
[6,14,15]. A solution theory for this line of problem can again be found in Sect. 3.3.

4.5 SPDEs with fractional time derivatives

Due to the generality of our ansatz with respect to the freedom in the operator coeffi-
cient M(∂−1

0 ), wemay also treat SPDEswith fractional time derivatives. As an instant,
let us consider the following super-diffusion equation for α ∈ (0, 1):

∂1+α
0 u − �u = σ(u)Ẇ ,

subject to zero initial and, for instance, homogeneous Neumann boundary conditions
in an open set D ⊆ R

d . Note that we can incorporate these homogeneous boundary
conditions in the formulation of the abstract setting (without regards to the smoothness
of the boundary of D) in the way that � := ˚div grad, where ˚div carries the homo-
geneous Neumann boundary conditions. As in the previous sections, we define an
auxiliary unknown v := − grad ∂−1

0 u and get the following system

(
∂α
0 0
0 ∂0

) (
u
v

)
+

(
0 ˚div

grad 0

) (
u
v

)
=

(∫ (·)
0 σ(u)dW

0

)

as the appropriate formulation for the stochastic super-diffusion equation discussed
above. Recall that the part with the time derivative is given by ∂0M(∂−1

0 ), where here
M is given by

M(z) :=
(

zα−1 0
0 1

)
.

It can be shown that this M satisfies the condition of strict positive definiteness for
all z ∈ B(r, r) for all r > 0 in (3.4), see [30, Lemma 2.1 or Theorem 3.5]. Hence,
Theorem 3.9 is applicable and well-posedness is established.

Remark 4.15 Of course one can think of more complicated equations containing frac-
tional (time) derivatives. For other possible equations containing fractional (time)
derivatives, we refer to [30,41] and the references therein. In order to limit the extend
of this exposition, we postpone a more detailed survey of fractional SPDE to future
work.

4.6 An equation of mixed type

In the following we demonstrate the usefulness of the approach presented by applying
our main theorem to an equation of mixed type. We refer to the textbooks [4,33] as
standard references for equations of mixed type. In these references, the authors also
sketch a link to real world applications such as problems in fluid or gas dynamics.
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Furthermore, we refer to the eddy current approximation in electrodynamics, which
forms amixed type problem changing its type fromhyperbolic to parabolic on different
space–time domains, see [23]. In order to provide a simple example, we discuss the fol-
lowingmodel problem. For this, let D ⊆ R

d be an open set, De, Dp, Dh ⊆ D pairwise
disjoint andmeasurable.Assume that De∪Dp∪Dh = D.On Hν,0(R; L2(λD)⊕L2(P))

consider the equation of mixed type

(
∂0

(
χDh 0
0 χDp + χDh

)
+

(
χDp + χDe 0

0 χDp + χDe

)
−

(
0 div
˚grad 0

)) (
u
q

)
=

(
F
0

)
.

(4.16)

If F = ∫ (·)
0 σ(u)dW for some suitable σ and a Wiener process W , we are in the

position of applying Theorem 3.9. Indeed, note that for all ν > 0 the operator family

M(z) =
(

χDh 0
0 χDp + χDh

)
+ z

(
χDp + χDe 0

0 χDp + χDe

)
(z ∈ B(r, r), r > 1/(2ν))

satisfies the positive definiteness condition of Theorem 3.9. Note that Equation (4.16)
is indeed an equation of mixed type: On Dh the equation admits the form of the
stochastic wave equation as in Sect. 4.2. On Dp, Eq. (4.16) admits the form of the one
in Sect. 4.1, which is the stochastic heat equation (one has to put q = ∂−1

0
˚grad). The

equation under consideration in this section is of elliptic type on the set De.
We note here that it is not needed to implement transmission conditions on the inter-

faces ∂ De∩D, ∂ Dp∩D, and ∂ Dh∩D additionally. In fact, the condition of (u, q) being

in the domain of

(
∂0

(
χDh 0
0 χDp + χDh

)
+

(
χDp + χDe 0

0 χDp + χDe

)
−

(
0 div
˚grad 0

))

is the appropriate realization of transmission conditions, see also the treatment of a
mixed type problem in [43, Remark 3.2].

It remains unclear of how to solve the equation in question with classical methods.
In particular, if one is to use the semi-group approach, it is unclear of how to define
an appropriate semi-group.

5 Conclusion

We presented an attempt for a unified solution theory for a class of SPDEs. The
concept is an adaption of the deterministic solution theory developed in [25] and,
thus, it applies to various physical phenomena. More precisely, we perturbed the
deterministic equation by a stochastic right-hand side. This right-hand side turned
out to be Lipschitz continuous since the solution operator of the deterministic PDE
leaves—thanks to causality—predictable processes invariant.

For particular cases, we demonstrated that the solutions derived coincide with
‘variational solutions’ or ‘mild solutions’. However, we emphasize that—even in the
deterministic setting—the solution concept developed is different to the semi-group
approach. On the one hand, even though the solution theory in Theorem 2.8 may be
extended to closed densely defined operators A satisfying�〈Aφ, φ〉,�〈A∗ψ,ψ〉 � 0
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for all φ ∈ dom(A), ψ ∈ dom(A∗), the solution theory given by Theorem 2.8 does
not extend to all equations which are covered by semi-group-methods as the latter
may be carried over to the Banach space case. Thus, there are equations that may be
solved via the semi-group method, that cannot be solved with the approach presented
here. On the other hand, there are also equations that are not covered by semi-groups,
which nonetheless fall into the class of evolutionary equations, see, for instance, [43]
or [28,29,31,42].

The main application of the present results maybe to derive a solution concept
for (S)PDEs when the semi-group approach fails and the existence of a semi-group
(sufficiently regular fundamental solution) cannot be shown. In particular, if one is
confronted with equations of mixed type, see Sect. 4.6, the present approach may
be advanced. Further applications can be found in differential-algebraic system as in
control theory, see [29,31]. Moreover, the current approach may open the doors for
solution concepts for SPDEs, whilst imposing rather mild (if any) conditions on the
regularity of the coefficients or the boundary of the underlying spatial domain.
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