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Abstract We prove uniqueness for continuity equations in Hilbert spaces H . The cor-
responding drift F is assumed to be in a first order Sobolev space with respect to some
Gaussian measure. As in previous work on the subject, the proof is based on commu-
tator estimates which are infinite dimensional analogues to the classical ones due to
DiPerna–Lions. Our general approach is, however, quite different since, instead of con-
sidering renormalized solutions, we prove a dense range condition implying unique-
ness. In addition, compared to known results by Ambrosio–Figalli and Fang–Luo,
we use a different approximation procedure, based on a more regularizing Ornstein–
Uhlenbeck semigroup and consider Sobolev spaces of vector fields taking values in H
rather than the Cameron–Martin space of the Gaussian measure. This leads to differ-
ent conditions on the derivative of F , which are incompatible with previous work on
the subject. Furthermore, we can drop the usual exponential integrability conditions
on the Gaussian divergence of F , thus improving known uniqueness results in this
respect.
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1 Introduction

Let H be a separable real Hilbert space with inner product 〈·, ·〉 and norm | · |. Let
F : [0,∞)× H → H be Borel measurable. In this paper we want to give a new proof
for uniqueness of solutions to the corresponding continuity equations informally given
as

d

dt
μt + div (F(t, ·)μt ) = 0, μ0 = ζ, (1.1)

where ζ is a given initial datum in P(H), i.e. a probability measure on the Borel
σ -algebra B(H) of H , and the solution t �→ μt a curve in P(H). The divergence
in (1.1) is meant in the sense of distributions, more precisely one uses the duality
between P(H) and a space of test functions on [0,∞) × H which we denote by DT

and which will be specified below. Then one can give (1.1) a rigorous meaning by
a weak formulation. More precisely, we fix an orthonormal basis {en : n ∈ N} of
H, T > 0, and set HT := [0, T ] × H . Then we define DT to be the linear space of
all functions u : HT → R such that there exists N ∈ N such that

u(t, x) = uN (t, 〈e1, x〉, . . . , 〈en, x〉), x ∈ H,

for some uN ∈ C1
b([0, T ]×R

N ) such that uN (T ) = 0. By C1
b([0, T ]×R

N ) we mean
the set of all mappings [0, T ] × R

N → R which are continuous and bounded. Then
(1.1) can be rigorously written as

T∫

0

∫

H

KF u(s, x) μs(dx) ds = −
∫

H

u(0, x) ζ(dx), ∀ u ∈ DT , (1.2)

where for (t, x) ∈ HT ,KF is a (degenerate) Kolmogorov operator defined by

KF u(t, x) = ∂

∂t
u(t, x) + 〈F(t, x), Du(t, x)〉 (1.3)

and Du(t, x) ∈ H is defined through

〈Du(t, x), y〉 = u′(t, x)(y), y ∈ H,

where u′(t, x)(·) means first Fréchet derivative of u(t, ·) with respect to x ∈ H . We
note that DT depends on the chosen orthonormal basis. But this is irrelevant because
what is important about the chosen test functions spaces in regard to uniqueness, is that
(1.2) makes sense and that it is as small as possible (to make the uniqueness result as
strong as possible). A minimal requirement is that it should separate the points of H ,
which obviously holds for DT defined above by the Hahn–Banach theorem, which in
turn by a monotone class argument implies that DT is dense in every L p(HT , ν), p ∈
[1,∞), for any finite (nonnegative) measure ν in HT .

The main aim of this paper is to find conditions on F such that (1.2) has at most
one solution for a given initial condition ζ ∈ P(H).
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In contrast to the Fokker–Planck equation where KF in (1.2) and (1.3) has a second
order part (in x), and uniqueness is known even for just measurable F (satisfying some
integrability assumption), provided the second order part is non degenerate (cf. [5]
and the preprint [6]), for the continuity equation at least weak differentiability of F (or
being of bounded variation) is required to hope to have uniqueness of solutions, even
in finite dimensions (see [1,9]). However, in order to define weak differentiability of
a function one needs a reference measure, and if H = R

n , e.g. the Lebesgue measure
is a natural choice. If H is infinite dimensional, Lebesgue measure does not exist and
we have to choose a reference measure on H . There is really no canonical choice,
but a “good” choice is to take a non degenerate centered Gaussian measure μ on
H , because the concept of weak differentiability (with respect to such a μ) has been
extensively developed in the past in the framework of the Malliavin calculus [3,13,14].
This choice of a reference measure was proposed in [2] and they proved existence and
uniqueness of solutions to (1.2) under certain conditions on the weak derivative and
exponential μ-integrability conditions on its μ-divergence. (see [2, Theorem 3.1], see
also [11] for improvements of the results on the corresponding transport equation
in [2]).

In this paper, also taking a Gaussian measure μ as a reference measure, we prove
uniqueness for (1.2) by a completely different method. On the other hand, our assump-
tion on the weak derivative of F is different and, in fact incompatible with that in [2],
since we use H instead of the Cameron–Martin space as tangent space when defining
Sobolev spaces (see Remark 2.6 below). As a consequence, in contrast to [2] we do not
need to assume any exponential μ-integrability conditions on the Gaussian divergence
of F . The idea of proof is inspired by the uniqueness proof for Fokker–Planck equa-
tions in Hilbert spaces from [4,5]. More precisely, we prove a suitable rank condition
for the Kolmogorov operator in (1.3). But to implement this idea we have to regularize
with a much more smoothing Ornstein–Uhlenbeck semi-group than the one in [2,11]
(see Sect. 2 below). Crucial is again the commutator estimate, which as turns out, can
be proved also for this regularization (see Sect. 3).

Let us remark that here we use the commutator estimate to prove a range condi-
tion, opposite to the classical works where the commutator estimate is used to prove
renormalization of weak solutions. It is at this point that, in [2] and [11], exponential
integrability is necessary; for our range condition we do not need it. Concerning the
problem of proving a range condition itself, this is usually done by means of gradient
estimates on solutions, which is a difficult problem; here we have the gradient estimate
for free, see (2.8), because it holds for the Pε-regularized solution.

Choosing a reference measure as in [2,11] we also have to restrict to a sub-class of
solutions μt , t ∈ [0,∞), to (1.2), namely those satisfying

μt (dx)dt = ρ(t, x)μ(dx)dt, (1.4)

for some functions ρ ∈ L p(HT , dt ⊗ μ), p > 1, and prove uniqueness in this class.
It is the subject of our further study to relax this condition (1.4), e.g. by considering

more general reference measures than Gaussian measures. First steps in this direction
have recently be done in [12], where the Gaussian measure μ is replaced by a measure ν

which is differentiable in the sense of Fomin (see [3]). In particular, one can take certain
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Gibbs measures for ν. However, the techniques in that paper are entirely different from
our approach here.

This paper exclusively deals with uniqueness results. For existence we refer to the
above mentioned papers [12] and [2], [11]. Concerning the latter two, however, we
would like to point out that the overlap of the conditions there and ours is quite small
(see Remark 2.6 below for details). The existence of solutions to (1.1) will be analyzed
in detail in forthcoming work.

We end this section recalling some results about the Ornstein–Uhlenbeck semi-
group Pt needed in what follows. First we choose and fix an arbitrary centered, non
degenerate, Gaussian measure μ on H. Let Q be its covariance operator. So, Q is
symmetric, nonnegative definite with kernel = {0} and Tr Q < ∞. We also use the
notation μ = NQ . Then Pt is, for ϕ ∈ Bb(H), defined as

Ptϕ(x) =
∫

H

ϕ(y)NTt x,Qt (dy), x ∈ H, (1.5)

where
Tt := e− t

2 Q−1
, Qt = QS2

t , St := (1 − T 2
t )1/2. (1.6)

NTt x,Qt denotes the Gaussian measure on H with covariance operator Qt and mean
Tt x and Bb(H) is the space of all real and bounded Borel funcions on H . We note for
further use that

T 2
t + S2

t = 1. (1.7)

Consequently the matrix on H × H

R :=
(

Tt St

−St Tt

)
, (1.8)

is orthogonal, so that the measure μ × μ on H × H is invariant for R.
Since NTt x,Qt << NQ , we can write

Ptϕ(x) =
∫

H

ϕ(y)ρ(t, x, y)μ(dy), (1.9)

where

ρ(t, x, y) = K (t) exp

{
−1

2
〈Q−1

t Tt x, Tt x〉 + 〈Q−1
t Tt x, y〉 − 1

2
(〈Q−1

t Tt y, Tt y〉
}
,

(1.10)

where K (t) = [det(1 − T 2
t )]−1/2.

We notice, for further use, the following identities.

Dxρ(t, x, y) = Q−1
t Tt (y − Tt x)ρ(t, x, y) (1.11)

Dyρ(t, x, y) = Q−1
t Tt (x − Tt y)ρ(t, x, y) (1.12)
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We finally recall the Mehler formula

Ptϕ(x) =
∫

H

ϕ(Tt x + St y)μ(dy). (1.13)

2 The main result and scheme of the proof

Definition 2.1 A family (μt )t∈[0,T ] is called a solution of the (heuristic) continuity
equation (1.1) if μt ∈ P(H) for every t ∈ [0, T ], t �→ μt (A) is B(H)-measurable
for all A ∈ B(H), F ∈ L1(HT , μt dt) and (1.2) holds.

As mentioned in the introduction we need a reference measure on H . So let μ = NQ

be the centred, non degenerate, Gaussian measure on H from the Introduction with
covariance operator Q. Let {ek : k ∈ N} be the eigenbasis of Q and λk ∈ (0,∞) the
corresponding eigenvalues (i.e. Qek = λkek, k ∈ N) numbered in decreasing order.
Let the test function space DT be defined as in the introduction with respect to this
orthonormal basis {ek : k ∈ N}.

Define the following subclass MF,ζ,p of solutions to (1.1) for fixed initial condition
ζ ∈ P(H) and fixed p ∈ [1,∞].MF,ζ,p is defined to be the set of all measures
μ(dt, dx) = μt (dx)dt such that (μt )t∈[0,T ] is a solution to (1.1) in the sense of
Definition 2.1 which satisfy

μt (dx)dt = ρ(t, x)μ(dx)dt, for some ρ ∈ L p(HT , dt ⊗ μ). (2.1)

Clearly, MF,ζ,p is a convex set.
The following result is inspired by [4,5]

Proposition 2.2 Suppose the following rank condition holds:

KF (DT ) is dense in L p′
(HT , dt ⊗ μ), (R)

where p ∈ [1,∞] and p′ = p
p−1 . Then MF,ζ,p contains at most one element.

Proof Let μ
(i)
t (dx)dt = ρ(i)(t, x)μ(dx)dt, i = 1, 2 be two elements in MF,ζ,p.

Then by (1.2)

T∫

0

∫

H

KF u(t, x)(ρ(2)(t, x) − ρ(1)(t, x))μ(dx)dt = 0, ∀ u ∈ DT .

Hence (R) implies ρ(1) = ρ(2). ��
Let us briefly recall the notion of (some) Sobolev spaces of functions on H with respect
to μ.
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Let FC1
b (“finitely based C1

b functions”) denote the linear space of all functions
ϕ : H → R such that for some N ∈ N

ϕ(x) = ϕN (〈e1, x〉, . . . , 〈eN , x〉), x ∈ H,

for some ϕN ∈ C1
b(RN ). For p ∈ [1,∞) equip FC1

b with the norm

‖ϕ‖1,p :=
⎛
⎝

∫

H

(|Dϕ(x)|p + |ϕ(x)|p)μ(dx)

⎞
⎠

1/p

,

where Dϕ(x) is the unique element in H such that

〈Dϕ(x), y〉H = ϕ′(x)(y) = ∂ϕ

∂y
(x), y ∈ H, (2.2)

where ∂ϕ
∂y means partial derivative in the direction y and ϕ′ denotes the Fréchet deriv-

ative of ϕ. Then it is well-known (see e.g. [8]) that ‖ϕ‖1,p is closable over L p(H, μ)

so that

W 1,p(H, μ) = FC1
b

‖·‖1,p
(= completion of FC1

b with respect to ‖ · ‖1,p)

is a subspace of L p(H, μ). Likewise as this Sobolev space of functions one defines
Sobolev spaces of vector fields F : H → H and even of time dependent vector fields
F : HT → H as follows: let VFC1

b,T (“finitely based C1
b vector fields”) denote the

linear space of all maps F : HT → H such that for some N ∈ N

F(t, x) =
N∑

i=1

gi (t, x)ei , (t, x) ∈ HT ,

for some gi : HT → R of type

gi (t, x) = gi,N (t, 〈e1, x〉, . . . , 〈eN , x〉), x ∈ H,

with gi,N ∈ C1
b([0, T ] × R

N ). For p ∈ [1,∞) we equip VFC1
b,T with the norm

‖F‖1,p,T :=
⎛
⎝

T∫

0

∫

H

(‖DF(t, x)‖p
L2(H)

+ |F(t, x)|p
H )μ(dx)dt

⎞
⎠

1/p

where L2(H) denotes the linear space of all Hilbert–Schmidt operators on H with
corresponding norm ‖ · ‖L2(H) and

DF(t, x) :=
N∑

i=1

〈Dgi (t, x), ·〉ei ∈ L2(H).
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Again, it is well known that this norm is closable in L p(HT ;L2(H), μ)). Hence we
can define the Sobolev space of time dependent vector fields by

L p([0, T ]; W 1,p(H ; H, μ)) = completion of VFC1
b,T with respect to ‖ · ‖1,p,T ,

which by closability is a subspace in L p(HT ; H, μ).
Now we can formulate our main result.

Theorem 2.3 Let p ∈ (2,∞) and suppose that, for some s > p′ = p
p−1 , we have

F ∈ Ls([0, T ]; W 1,s(H ; H, μ)) and that, in addition,

F(HT ) ⊂ Q1/2(H), and

T∫

0

∫

H

|Q−1/2 F(t, x)|sμ(dx)dt < ∞. (2.3)

Then the rank condition (R) holds, hence by Proposition 2.2 MF,ζ,p contains at most
one element.

The rest of this section is devoted reducing the proof of (R) and hence of The-
orem 2.3 to Proposition 2.4 below, which is a commutator estimate for a suitable
regularization through the Mehler type semigroup Pt , t ≥ 0, of integral opera-
tors on Bb(H) defined in (1.5) (see also (1.13)) Let us define the commutator for
u ∈ DT , F ∈ V FC1

b,T , (t, x) ∈ HT

Bε(u, F)(t, x) := 〈F(t, x), D Pε(u(t, ·))(x)〉 − Pε(〈F(t, ·), Du(t, ·)〉)(x). (2.4)

Proposition 2.4 Let p ∈ (2,∞) and r ∈ (1,∞), s ∈ (1, 2] such that 1
p′ = 1

r + 1
s .

Then:

(i) There exists C ∈ (0,∞) (independent of ε) such that

⎛
⎝

T∫

0

∫

H

|Bε(u, F)|p′
dμ dt

⎞
⎠

1/p′

≤ C‖u‖Lr (HT ,dt⊗μ)

(
‖F‖1,s,T + ‖Q−1/2 F‖Ls (HT ,dt⊗μ)

)
,

for all u ∈ DT , F ∈ V FC1
b,T . In particular, Bε extends to a continuous bilinear

map (denoted by the same symbol)

Bε : Lr (HT , dt ⊗ μ) × Ls([0, T ]; W 1,s(H ; H, μ)

∩ Ls(H ; Q1/2 H ;μ)) → L p′
(HT , dt ⊗ μ).

(ii) Bε(u, F) → 0 in L p′
(HT , dt ⊗ μ) as ε → 0, for all

(u, F) ∈ Lr (HT , dt ⊗ μ) × Ls([0, T ]; W 1,s(H ; H, μ) ∩ Ls(H ; Q1/2 H, μ)).
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The proof of Proposition 2.4-(i) is carried out in Sect. 3 below. Assertion (ii) obvi-
ously holds for all u ∈ DT , F ∈ V FC1

b,T . But by (i), Bε, ε ∈ [0, 1], are equicontin-
uous on

Lr (HT , dt ⊗ μ) × Ls([0, T ]; W 1,s(H ; H, μ) ∩ Ls(H ; Q1/2 H, μ)),

which contains DT × V FC1
b,T as a dense set. Hence (ii) follows.

Let us now show that Proposition 2.4 implies Theorem 2.3.

Claim 2.5 Proposition 2.4 implies (R).

Proof Let f ∈ DT and r, s ∈ [1,∞) be as in Proposition 2.4 such that s ∈ (p′, 2].
By definition of Ls([0, T ]; W 1,s(H ; H, μ)) there exists Fn ∈ VFC1

b,T , n ∈ N, con-
verging to F w.r.t. ‖ · ‖1,s,T and in the sense of Lemma 4.1 of Appendix 1. Since Fn

is smooth and finitely based, there exists a solution un ∈ DT of

{
∂un

∂t
+ 〈Fn, Dun〉 = f,

un(T, ·) = 0
(2.5)

We namely set

un(t, x) = −
T∫

t

f (s, ξn(s, t, x))ds (2.6)

where the characteristics ξn(s, t, x) are, as well known, the solution to

∂

∂s
ξn(s, t, x) = Fn(s, ξn(s, t, x)), ξn(t, t, x) = x .

Applying Pε for ε > 0 to (2.5) we obtain

∂ Pεun

∂t
+ 〈F, D Pεun〉 = Pε f + 〈F − Fn, D Pεun〉 + Bε(Fn, un), (2.7)

note that Pεun ∈ DT .
By (2.6) we have

‖un‖∞ ≤ ‖ f ‖∞, ∀ n ∈ N,

and by well known smoothing properties of Pε (see e. g. [7]) we know that for some
C ∈ (0,∞)

‖D Pεun‖∞ ≤ Cε−1/2‖un‖∞ ≤ Cε−1/2‖ f ‖∞, ∀ n ∈ N. (2.8)

Hence, passing to a subsequence if necessary, we may assume that un → u in
Lr (HT , dt ⊗ μ) weakly. But for every v ∈ L p(HT , dt ⊗ μ) by Proposition 2.4
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∣∣∣∣∣∣
T∫

0

∫

H

v(Bε(un, Fn) − Bε(u, F))dμ dt

∣∣∣∣∣∣

=
∣∣∣∣∣∣

T∫

0

∫

H

vBε(un, Fn − F)dμ dt +
T∫

0

∫

H

vBε(un − u, F)dμ dt

∣∣∣∣∣∣
≤ C‖v‖L p(HT ,dt⊗μ) ‖u‖Lr (HT ,dt⊗μ)

×
[
‖Fn − F‖1,s,T + ‖Q−1/2(Fn − F)‖Ls (HT ,dt⊗μ)

]

+
T∫

0

∫

H

Bε(·, F)∗v (un − u) dμ dt

→ 0 as n → ∞,

where Bε(·, F)∗ ∈ L(L p(HT , dt ⊗ μ), Lr ′
(HT , dt ⊗ μ)), r ′ = r

r−1 , is the adjoint of

the linear bounded operator in L(Lr (HT , dt ⊗ μ), L p′
(HT , dt ⊗ μ)) given by

u �→ Bε(u, F).

Here we have used Lemma 4.1. Hence

Bε(un, Fn) → Bε(u, F) weakly in L p′
(HT , dt ⊗ μ)

By Proposition 2.4(ii), Bε(u, F) → 0 in L p′
(HT , dt ⊗ μ) as ε → 0, hence also with

respect to the weak topology on L p′
(HT , dt ⊗ μ). Since the latter is metrizable on

norm balls in L p′
(HT , dt ⊗ μ) and since s ≥ p′, we see that the right hand side of

(2.7), weakly converges to f in L p′
(HT , dt ⊗ μ) when we let first n → ∞ and then

ε → 0. But obviously the left hand side of (2.7) is in KF (DT ). Therefore, we obtain
that KF (DT ) is weakly dense in L p′

(HT , dt ⊗ μ), since it contains DT as a dense
subset. Hence (R) follows, since KF (DT ) is convex (even linear). ��

Remark 2.6 Let us compare our main result Theorem 2.3 with the corresponding result
about uniqueness in [2] (i.e. the uniqueness part of [2, Theorem 3.1]).

We shall in fact see that they are incompatible. First of all, since we work on a
separable Hilbert space H and the authors of the above paper work on a separable
Banach space E , to compare we have to assume that E is a separable Hilbert space.
They consider also another Hilbert space which is contained in E = H and which can
easily be seen to be identical to Q1/2 H =: H with norm | · |H = |Q−1/2 · |H .H is
considered in [2] as a tangent space at every point in H , while in our framework the
tangent space to H is H itself.

While condition (2.3) is also assumed in [2], instead of our condition

F ∈ Ls([0, T ]; W 1,s(H ; H, μ)), (2.9)
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the authors assume that

F ∈ Ls([0, T ]; W 1,s(H ;H , μ)), (2.10)

which in turn is defined to be the completion of V FC1
b,T with respect to the norm

⎛
⎝

T∫

0

∫

H

(
‖DH F(t, x)‖s

L2(H ,H )
+ |F(t, x)|sH

)
μ(dx) dt

⎞
⎠

1/s

,

where L2(H ,H ) is the space of Hilbert–Schmidt operators from H to H and
analogously to (2.2) for ϕ ∈ FC1

b , x ∈ H, DH ϕ(x) is the unique element in H
such that 〈DH ϕ(x), y〉H = ϕ′(x)(y) = ∂ϕ

∂y
(x), y ∈ H . (2.11)

Correspondingly, for F = ∑N
i=1 gi ei ∈ V FC1

b,T , (t, x) ∈ HT

DH F(t, x) :=
N∑

i=1

〈DH gi (t, x), ·〉H ei (∈ L2(H ,H )).

Note that clearly ẽ j := λ
1/2
j e j , j ∈ N, is an orthonormal basis in H , hence

‖DH F(t, x)‖2
L2(H ,H ) =

∞∑
j=1

|DH F(t, x)(ẽ j )|2H

=
∞∑
j=1

N∑
i=1

λ j 〈DH gi (t, x), e j 〉2
H 〈ei , ei 〉H

(2.11)=
N∑

i, j=1

λ j

λi

(
∂gi

∂e j
(t, x)

)2

,

whereas similarly

‖DF(t, x)‖2
L2(H,H)

=
N∑

i, j=1

(
∂gi

∂e j
(t, x)

)2

.

Therefore, in general, neither of the function spaces in (2.9),(2.10) respectively con-
tains the other, hence conditions (2.9), (2.10) are incompatible. A further difference
to [2] is that unlike in (the uniqueness part of) [2, Theorem 3.1] we do not have to
assume any exponential μ ⊗ dt-integrability of the Gaussian divergence of F , i.e. of
the negative part of (−D∗

H F) where D∗ is the adjoint of

D : W 1,2
H (H, μ) ⊂ L2(H, μ) → L2(H ;H , μ).

It is easy to construct examples where this exponential integrability does not hold for
F , while F satisfies all other assumptions in Theorem 2.3.
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3 Proof of Proposition 2.4(i)

3.1 A representation formula for the commutator

We shall use the notation

divQ F(t, x) := Tr [DF(t, x)] − 〈x, Q−1 F(t, x)〉. (3.1)

Note that Tr [DF(t, x)] = div [F(t, x)].
Proposition 3.1 We have

Bε(u, F)(t, x) =
∫

H

divQ F(t, Tεx + Sε y) u(t, Tεx + Sε y)μ(dy)

−
∫

H

[gε(t, Tεx + Sε y,−Sεx + Tε y) − gε(t, x, y)] u(t, Tεx + Sε y)μ(dy)

=: B1
ε (u, F)(t, x) − B2

ε (u, F)(t, x), (3.2)

where

gε(t, x, y) := 〈 Q−1Tε

Sε

F(t, x), y〉. (3.3)

Proof Concerning the second addendum of the commutator (2.4), we have by (1.9),
using a well known integration by parts formula for Gaussian measures,

(
Pε(〈F(t, ·), Dx u(t, ·)〉)(x) =

∫

H

〈F(t, y), Dyu(t, y)〉 ρ(ε, x, y)μ(dy)

= −
∫

H

div F(t, y) u(t, y) ρ(ε, x, y)μ(dy)

−
∫

H

〈F(t, y), Dyρ(ε, x, y)〉 u(t, y)μ(dy)

+
∫

H

〈Q−1 y, F(t, y)〉 u(t, y) ρ(ε, x, y)μ(dy).

Taking into account (1.12), yields

(Pε(〈F(t, ·), Dx u(t, ·)〉)(x)

= −
∫

H

divQ F(t, y) u(t, y) ρ(ε, x, y)μ(dy)

−
∫

H

〈F(t, y), Q−1
ε Tε(x − Tε y)〉 u(t, y) ρ(ε, x, y) μ(dy). (3.4)
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Concerning the first addendum of the commutator, we have, taking into account (1.11),

〈F(t, x), Dx Pεu(t, x)〉 =
∫

H

〈F(t, x), Dxρ(ε, x, y)〉 u(t, y) μ(dy)

=
∫

H

〈F(t, x), Q−1
ε Tε(y − Tεx)〉 u(t, y) ρ(ε, x, y) μ(dy).

So, we obtain

Bε(u, F)(t, x) =
∫

H

divQ F(t, y) u(t, y) ρ(ε, x, y)μ(dy)

+
∫

H

〈F(t, x), Q−1
ε Tε(y − Tεx)〉 u(t, y) ρ(ε, x, y) μ(dy)

+
∫

H

〈F(t, y), Q−1
ε Tε(x − Tε y)〉u(t, y) ρ(ε, x, y) μ(dy).

(3.5)

Since ρ(ε, x, y) μ(dy) = NTε x,Qε (dy) we can write (3.5) as

Bε(u, F)(t, x) =
∫

H

divQ F(t, Tεx + y) u(t, Tεx + y) NQε (dy)

+
∫

H

〈F(t, x), Q−1
ε Tε y〉 u(t, Tεx + y) NQε (dy)

+
∫

H

〈F(t, Tεx + y), Q−1
ε Tε(x − Tε(y + Tεx))〉 u(t, Tεx + y) NQε (dy).

Since x − Tε(y + Tεx) = x − T 2
ε x − Tε y = S2

ε x − Tε y, using the Mehler formula
(1.13) we have

Bε(u, F)(t, x) =
∫

H

divQ F(t, Tεx + Sε y) u(t, Tεx + Sε y) NQ(dy)

+
∫

H

〈F(t, x), Q−1
ε Tε Sε y〉 u(t, Tεx + Sε y) NQ(dy)

+
∫

H

〈F(t, Tεx + Sε y), Q−1
ε Tε Sε(Sεx − Tε y)〉 u(t, Tεx + Sε y) NQ(dy),

which coincides with (3.2). ��

We write now B2
ε (u, F)(t, x) in a more suitable form.
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Proposition 3.2 We have

B2
ε (u, F)(t, x) = ε

2

∫

H

1∫

0

[〈
Q−1Tε

Sε

DF(t, xξ )

(
Q−1 Tεξ

Sεξ

yξ

)
, yξ

〉
− div G(t, xξ )

]

× u(t, x1) dξ μ(dy) − ε

2

∫

H

1∫

0

divQ G(t, xξ )u(t, x1) dξ μ(dy)

=: B2,1
ε (u, F)(t, x) + B2,2

ε (u, F)(t, x), (3.6)

where

G(t, x) = Q−1 Tε

Sε

Tεξ

Sεξ

F(t, x), (3.7)

and
xξ = Tεξ x + Sεξ y, yξ = −Sεξ x + Tεξ y, ξ ∈ [0, 1]. (3.8)

Proof We start from the expression of B2
ε (u, F)(t, x) given by (3.2). By (3.8) and

(1.7) it follows that

x = Tεξ xξ − Sεξ yξ , y = Sεξ xξ + Tεξ yξ .

Moreover, from (3.8)

Tεξ x − T 2
εξ

Sεξ
y = − Tεξ

Sεξ
yξ , Tεξ y + T 2

εξ

Sεξ
x = Tεξ

Sεξ
xξ .

Therefore we can write

B2
ε (u, F)(t, x) =

∫

H

[gε(t, x1, y1) − gε(t, x, y)] u(t, x1)μ(dy) (3.9)

and, taking into account that

Dξ xξ = −1

2
Q−1ε

(
Tεξ x − T 2

εξ

Sεξ

y

)
, Dξ yξ = 1

2
Q−1ε

(
−T 2

εξ

Sεξ

x − Tεξ y

)
,

(3.10)
we have

gε(t, x1, y1) − gε(t, x, y) =
1∫

0

Dξ gε(t, xξ , yξ )dξ

=
1∫

0

[Dx gε(t, xξ , yξ )Dξ xξ + Dy gε(t, xξ , yξ )Dξ yξ ] dξ
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=
1∫

0

Dx gε(t, xξ , yξ )

(
−1

2
Q−1ε

(
Tεξ x − T 2

εξ

Sεξ

y

))
dξ

+
1∫

0

Dy gε(t, xξ , yξ )

(
1

2
Q−1ε

(
−T 2

εξ

Sεξ

x − Tεξ y

))
dξ

(3.11)

Therefore

B2
ε (u, F)(t, x)

=
∫

H

1∫

0

Dx gε(t, xξ , yξ )

(
−1

2
Q−1ε

(
Tεξ x − T 2

εξ

Sεξ

y

))
u(t, x1) dξ μ(dy)

+
∫

H

1∫

0

Dy gε(t, xξ , yξ )

(
1

2
Q−1ε

(
−T 2

εξ

Sεξ

x − Tεξ y

))
u(t, x1) dξ μ(dy) (3.12)

But

Dx gε(t, xξ , yξ )z =
〈

Q−1Tε

Sε

DF(t, xξ )z, yξ

〉
,

Dy gε(t, xξ , yξ )z =
〈

Q−1Tε

Sε

F(t, xξ ), z

〉
.

Therefore from (3.12) we get

B2
ε (F, u)(t, x)

= ε

2

∫

H

1∫

0

〈
Q−1Tε

Sε

DF(t, xξ )

(
−Q−1

(
Tεξ x − T 2

εξ

Sεξ

y

))
, yξ

〉
u(t, x1) dξ μ(dy)

+ ε

2

∫

H

1∫

0

〈
Q−1Tε

Sε

F(t, xξ ), Q−1(−T 2
εξ

Sεξ

x − Tεξ y)

〉
u(t, x1) dξ μ(dy). (3.13)

Equivalently

B2
ε (u, F)(t, x) = ε

2

∫

H

1∫

0

〈
Q−1Tε

Sε

DF(t, xξ )

(
Q−1 Tεξ

Sεξ

yξ

)
, yξ

〉
u(t, x1) dξ μ(dy)

+ ε

2

∫

H

1∫

0

〈
Q−1Tε

Sε

F(t, xξ ), Q−1 Tεξ

Sεξ

xξ

〉
u(t, x1) dξ μ(dy), (3.14)
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Now the conclusion follows by completing the Q-divergence introducing G(t, x)

defined by (3.7), and writing

〈
Q−1Tε

Sε

F(t, xξ ), Q−1 Tεξ

Sεξ

xξ )

〉
= −divQ G(t, xξ ) + div G(t, xξ ).

��

3.2 Bound of the commutator

Let us first estimate ‖|B2,1
ε (u, F)‖L p′

(HT ,dt⊗μ)
; then we shall estimate B1

ε (u, F) and

B2,2
ε (u, F) that are analogous.

Proposition 3.3 Let p > 2, p′ = p
p−1 , s > p′, 1

p′ = 1
r + 1

s . Then we have

‖B2,1
ε (u, F)‖L p′

(HT ,dt⊗μ)

≤ C ′‖u‖Lr (HT ,dt⊗μ)

⎛
⎝

T∫

0

∫

H

‖(DF(t, x))‖s
L1(H)

dt μ(dx)

⎞
⎠

1
s

. (3.15)

Proof We recall that

B2,1
ε (u, F)(t, x) = ε

2

∫

H

1∫

0

[〈
Q−1Tε

Sε

DF(t, xξ )

(
Q−1 Tεξ

Sεξ

yξ

)
, yξ

〉
+ div G(t, xξ )

]

×u(t, x1) dξ μ(dy)

=:
∫

H

1∫

0

H(t, xξ , yξ )u(t, x1) dξ μ(dy).

Let now v ∈ L p(HT , dt ⊗ μ). Then

∣∣∣∣∣∣
T∫

0

∫

H

B2,1
ε (u, F)(t, x) v(t, x)dt μ(dx)

∣∣∣∣∣∣

≤
T∫

0

1∫

0

∫

H

∫

H

|H(t, xξ , yξ )u(t, x1)v(t, x)|dξ μ(dx) dt μ(dy)

≤
1∫

0

dξ

⎛
⎝

T∫

0

∫

H

∫

H

|H(t, xξ , yξ )u(t, x1)|p′
dt μ(dx) μ(dy)

⎞
⎠

1/p′

‖v‖L p(HT ,dt⊗μ).
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By the arbitrariness of v it follows that

‖B2,1
ε (u, F)‖L p′

(HT ,dt⊗μ)
≤

1∫

0

dξ

⎛
⎝

T∫

0

∫

H

∫

H

|H(t, xξ , yξ )u(t, x1)|p′
dt

× μ(dx) μ(dy))1/p′
.

Making the change of variables (3.8) and recalling that it is invariant for μ×μ so that
μ(dx)μ(dy) = μ(dxξ )μ(dyξ ), we get

‖B2,1
ε (u, F)‖L p′

(HT ,dt⊗μ)

≤
1∫

0

dξ

⎛
⎝

T∫

0

∫

H

∫

H

|H(t, x, y)|s μ(dx) μ(dy)

⎞
⎠

1
s

‖u‖Lr (HT ,dt⊗μ), (3.16)

equivalently

‖B2,1
ε (u, F)‖L p′

(HT ,dt⊗μ)
≤ ε

2
‖u‖Lr (HT ,dt⊗μ)

×
1∫

0

dξ

⎛
⎝

T∫

0

∫

H

∫

H

∣∣∣∣
〈

DF(t, x)

(
Q−1 Tεξ

Sεξ

y

)
, Q−1 Tε

Sε

y

〉

− div G(t, x)|s dt μ(dx) μ(dy)

) 1
s

. (3.17)

Now we estimate the integral

J1(t, x) :=
∫

H

∣∣∣∣
〈

DF(t, x)

(
Q−1 Tεξ

Sε

y

)
, Q−1 Tε

Sε

y

〉
− div G(t, x)

∣∣∣∣
s

μ(dy), (3.18)

applying Proposition 5.2 from Appendix 2. Setting

L = Sεξ

Tεξ
DF(t, x)Q−1 Tεξ

Sεξ
,

M = Q1/2L Q1/2 = Q−1/2 Tε

Sε
DF(t, x)

Tεξ

Sεξ
Q−1/2

and, taking into account (5.5), we obtain for s ≥ 1

J1(t, x) ≤ Cs ‖(Q−1/2 Tε

Sε

DF(t, x)
Tεξ

Sεξ

Q−1/2)‖s
L2(H)

≤ Cs‖Q−1/2 Tε

Sε

‖s ‖Q−1/2 Tεξ

Sεξ

‖s ‖DF(t, x)‖s
L2(H)

, (3.19)

having used [10, Lemma 9(d), page 1093].
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Now we estimate ‖Q−1/2 Tε

Sε
‖ and ‖Q−1/2 Tεξ

Sεξ
‖.

Since

Q−1/2 Tε

Sε

ek = √
2αk

e−αkε

√
1 − e−2αkε

ek

Q−1/2 Tεξ

Sεξ
ek = √

2αk
e−αkεξ

√
1 − e−2αkεξ

ek,

(here αk stands for 1
2 λ−1

k ) we find

‖Q−1/2 Tε

Sε

‖ ≤ C

ε1/2 , ‖Q−1/2 Tεξ

Sεξ

‖ ≤ C

ε1/2 ξ1/2 (3.20)

So

J1(t, x) ≤ C ′
m

C

(ε ξ1/2)s
‖DF(t, x)‖s

L2(H)

Now by (3.17) we obtain

‖B2,1
ε (u, F)‖L p′

(HT ,dt⊗μ)

≤ C ′ 1

2
‖u‖Lr (HT ,dt⊗μ)

1∫

0

ξ1/2dξ

⎛
⎝

T∫

0

∫

H

‖DF(t, x)‖s
L2(H)

dt μ(dx)

⎞
⎠

1
s

= C ′‖u‖Lr (HT ,dt⊗μ)

⎛
⎝

T∫

0

∫

H

‖DF(t, x)‖s
L2(H)

dt μ(dx)

⎞
⎠

1
s

. (3.21)

��
Proposition 3.4 We have

‖B1
ε (u, F)‖L p′

(HT ,dt⊗μ)
+ ‖B2,2

ε (u, F)‖L p′
(HT ,dt⊗μ)

≤ C‖u‖Lr (HT ,dt⊗μ)

⎛
⎝

T∫

0

∫

H

(|DF(t, x)|sL2(H)
+ |Q−1/2 F(t, x)|s) dt μ(dx)

⎞
⎠

1
s

.

(3.22)

Proof Let us first deal with B2,2
ε (u, F) which is more difficult. Recall that

B2,2
ε (u, F)(t, x) = ε

2

∫

H

1∫

0

divQ

[
Q−1 Tε

Sε

Tεξ

Sεξ

F(t, xξ )

]
u(t, x1) dξμ(dy).
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Proceeding as in the proof of (3.17) and using again the change of variables (3.8), we
find

‖B2,2
ε (u, F)‖L p′

(HT ,dt⊗μ)
≤ ε

2
‖u‖Lr (HT ,dt⊗μ)

×
1∫

0

dξ

⎛
⎝

T∫

0

∫

H

∫

H

|divQ

[
Q−1 Tε

Sε

Tεξ

Sεξ

F(t, x)

]
|s dt μ(dx) μ(dy)

⎞
⎠

1
s

. (3.23)

Now, taking into account Lemma 5.3 of Appendix 2, we find

‖B2,2
ε (u, F)‖L p′

(HT ,dt⊗μ)
≤ ε

2
Cs‖u‖Lr (HT ,dt⊗μ)

×
1∫

0

dξ

( T∫

0

∫

H

∫

H

(
|Q−1 Tε

Sε

Tεξ

Sεξ

DF(t, x)|sL2(H)

+ |Q−1/2 Q−1 Tε

Sε

Tεξ

Sεξ

F(t, x)|s
)

dt μ(dx) μ(dy)

) 1
s

.

(3.24)

Now by (3.20) we obtain (3.22) for ‖B2,2
ε (u, F)‖L p′

(HT ,dt⊗μ)
. Similarly, from the

definition of B1
ε (u, F),

‖B1
ε (u, F)‖L p′

(HT ,dt⊗μ)

≤ C‖u‖Lr (HT ,dt⊗μ)

⎛
⎝

T∫

0

∫

H

(|divQ F(t, x)|sL2(H)
dt μ(dx)

⎞
⎠

1
s

.

��

4 Appendix 1

Let p > 1 be given. Denote by W 1,p
Q the space of (μ-equivalence classes of) Borel

measurable vector fields G : H → D
(
Q−1/2

)
, having Fréchet differential DG (x) ∈

L2 (H, H) for μ-a.e. x ∈ H , such that

‖G‖p

W 1,p
Q

:=
∫

H

(∣∣∣Q−1/2G (x)

∣∣∣p + ‖DG (x)‖p
L2(H,H)

)
μ (dx) < ∞.

The space W 1,p
Q is a separable Banach space with the norm ‖G‖

W 1,p
Q

. Consider the

space L p
(

0, T ; W 1,p
Q

)
with the norm ‖F‖

L p(W 1,p
Q )

defined as
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‖F‖p

L p(W 1,p
Q )

=
T∫

0

‖F (t, ·)‖p

W 1,p
Q

dt

=
T∫

0

∫

H

(∣∣∣Q−1/2 F (t, x)

∣∣∣p + ‖DF (t, x)‖p
L2(H,H)

)
μ (dx) dt.

Lemma 4.1 Denote by Vp the family of all functions Fn ∈ L p
(

0, T ; W 1,p
Q

)
of the

form

Fn (t, x) =
n∑

i=1

ϕn
i (t, 〈x, e1〉 , . . . , 〈x, en〉) ei

with ϕn
i ∈ C1

0 ([0, T ] × R
n, R). Then Vp is dense in L p

(
0, T ; W 1,p

Q

)
.

Proof We proceed by a sequence of reductions of the problem: from general elements

F of L p
(

0, T ; W 1,p
Q

)
to piece-wise constant (in time) functions; then finitely based;

then also with values in finite dimensional spaces; and finally smooth.
Step 1 Let V 1

p be the family of all piece-wise constant functions F : [0, T ] → W 1,p
Q ,

namely of the form

F (t, ·) =
k−1∑
i=1

Fi 1[ti ,ti+1] (t)

where 0 ≤ t1 ≤ · · · ≤ tk ≤ T , and Fi ∈ W 1,p
Q . It is a known fact that V 1

p is

dense in L p
(

0, T ; W 1,p
Q

)
. Thus, to prove the lemma, it is sufficient to prove that any

element F ∈ V 1
p can be approximated by a sequence {Fn} ⊂ Vp, in the sense of

limn→∞ ‖Fn − F‖p

L p
(

W 1,p
Q

) = 0.

Step 2 Any G ∈ W 1,p
Q is the limit in ‖·‖

W 1,p
Q

of a sequence {Gn} ⊂ W 1,p
Q having

the following property: Gn (x) = Gn (πn x) (namely they are finitely based), where
πn x = ∑n

i=1 〈x, ei 〉 ei . Indeed, define

Gn (x) :=
∫

H

G (πn x + (1 − πn) y) μ (dy)

Hn (x) := Q−1/2Gn (x) =
∫

H

Q−1/2G (πn x + (1 − πn) y) μ (dy)

In [3, Corollary 3.5.2] it is proved that Hn → Q−1/2G in L2 (H, μ), which is the first
part of the property ‖Gn − G‖

W 1,p
Q

→ 0. The second one is proved in [3, Proposition

5.4.5].
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Step 3 Any G ∈ W 1,p
Q is the limit in ‖·‖

W 1,p
Q

of a sequence {Gn} ⊂ W 1,p
Q having the

following property: Gn (x) = πnGn (πn x) (namely they are finitely based and have
values in a finite dimensional space). The proof (using Step 2) is elementary.

From these facts it follows that any element F ∈ V 1
p , F (t, ·)=∑k−1

i=1 Fi 1[ti ,ti+1] (t),

can be approximated in L p
(

W 1,p
Q

)
-norm by Fn ∈ V 1

p of the form

Fn (t, ·) =
k−1∑
i=1

Fn
i 1[ti ,ti+1] (t)

where each Fn
i has the property Fn

i (x) = πn Fn
i (πn x) and Fn

i converges to Fi in

W 1,p
Q .

In other words, we have proved that any F ∈ V 1
p is the limit in L p

(
[0, T ]; W 1,p

Q

)
-

norm of a sequence Fn of the form

Fn (t, x) =
n∑

i=1

ϕn
i (t, 〈x, e1〉 , . . . , 〈x, en〉) ei

where ϕn
i are piece-wise constant in t and of class W 1,p (Rn, γn) in space, where γn

is the centered symmetric Gaussian measure on R
n (γn is equivalent to the Gaussian

measure on R
n corresponding to the projection of μ by πn , and the spaces W 1,p

coincide).
Step 4 Any element ϕn

i of class L p
(
0, T ; W 1,p (Rn, γn)

)
is limit, in such topology,

of C1
0 ([0, T ] × R

n, R)-functions. The proof is complete. ��

5 Appendix 2

5.1 Computation of some integrals

Let μ = NQ and assume that the sequence (λk) of eigenvalues of Q be nonincreasing.
For any L ∈ L (H) we denote by Lσ the symmetric part of L , namely Lσ = 1

2 (L +
L∗). Notice that 〈Lx, x〉 = 〈Lσ x, x〉 for all x ∈ H .

Lemma 5.1 Assume that L ∈ L(H) is compact. Then there is ε0 > 0 such that

∫

H

e−ε〈Lx,x〉NQ(dx) =
∫

H

e−ε〈Lσ x,x〉NQ(dx)

= [det(1 + 2εQ1/2Lσ Q1/2)]−1/2, if ε〈ε0. (5.1)

(ε0 is determined by the condition 1 + 2ε0μ > 0 where μ are eigenvalues of
Q1/2Lσ Q1/2))
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Proof Set M = Q1/2Lσ Q1/2, M is obviously compact. Let ( fk) be an orthonormal
basis of eigenvectors of M and (βk) the corresponding sequence of eigenvalues. Then
we have

〈Lσ x, x〉 = 〈M Q−1/2x, Q−1/2x〉 =
∞∑

k=1

βk |〈Q−1/2x, fk〉|2, (5.2)

so that

∫

H

e−ε〈Lσ x,x〉NQ(dx) =
∫

H

e−ε
∑∞

k=1 βk |〈Q−1/2x, fk 〉|2 NQ(dx)

Since ( fk) is an orthogonal system, the sequence of real random variables x →
〈Q−1/2x, fk〉, k ∈ N (whose law is N1) are independent (We have set 〈Q−1/2x, fk〉 =∑∞

j=1 λ
−1/2
j 〈x, e j 〉〈 fk, e j 〉. One checks easily that the series is convergent in L2(�)).

Consequently

∫

H

e−ε〈Lσ x,x〉NQ(dx) =
∞∏

k=1

∫

H

e−εβk |〈Q−1/2x, fk 〉|2 NQ(dx)

=
∞∏

k=1

(1 + 2εβk)
−1/2

= [det(1 + 2εQ1/2Lσ Q1/2)]−1/2

,

which proves (5.1). ��
Set now

S(ε) =
∫

H

e−ε(〈Lσ x,x〉−Tr [Q1/2 Lσ Q1/2]NQ(dx)

= [det(1 + 2εQ1/2Lσ Q1/2)]−1/2eεTr

[
Q1/2 Lσ Q1/2

]
. (5.3)

Notice that S(0) = 1. Then for any m ∈ N we have

∫

H

(〈Lσ x, x〉 − Tr [Q1/2Lσ Q1/2])m NQ(dx) = (−1)m S(m)(0). (5.4)

Proposition 5.2 For any s ≥ 1 there is Cs > 0 such that.

∫

H

|〈Lx, x〉 − Tr [Q1/2L Q1/2]|s NQ(dx) ≤ Cs‖Q1/2L Q1/2‖s
L2(H)

. (5.5)
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Proof We first show that

∫

H

|〈Lσ x, x〉 − Tr [Q1/2Lσ Q1/2]|s NQ(dx) ≤ Cs‖Q1/2Lσ Q1/2‖s
L2(H)

. (5.6)

It is enough to prove (5.6) for s ∈ N, then the general case will follow from the Riez–
Thorin interpolation theorem. In the following we take for simplicity s = m even (If
n is odd we use Hölder’s inequality and reduce the integral in (5.6) to an integral with
2n replacing n).

Setting M = Q1/2Lσ Q1/2 and taking into account that

d

dε
det(1 + 2εM) = 2 det(1 + 2εM)Tr [M(1 + 2εM)−1],

we have

S′(ε) = Tr [M − M(1 + 2εM)−1]S(ε) = 2εTr [M2(1 + 2εM)−1]S(ε). (5.7)

In particular, S′(0) = 0. Now set

F(ε) = log S(ε).

Then

F ′(ε) = 2εTr [M2(1 + 2εM)−1]

and

F (n)(ε) = (−1)n+12n−1(n − 1)! Tr [Mn(1 + 2εM)−n], n ≥ 2.

Therefore

F ′(0) = 0, F (n)(0) = (−1)n+12n−1(n − 1)! Tr [Mn] =: kn Tr [Mn], n ≥ 2.

Now S(ε) = eF(ε). We claim that there exists Cn > 0 such that

S(n)(0) ≤ Cn‖M‖n
L2(H)

.

The claim follows by recurrence noting that, given k ∈ N, we have 1

|Tr [Mk]| ≤ ‖Mk‖L1(H) ≤ 2k−1‖M‖k
L2(H)

, (5.8)

1 L1(H) denotes the Banach space of all trace-class operators on H .
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where the first inequality follows by [10, Corollary 8,page 1093] and the second one
by a generalization of [10, Lemma 9(c),page 1093]. More precisely, by [10, Lemma
9(c),page 1093] it follows that

‖M2‖L1(H) ≤ 2‖M‖2
L2(H)

and also

‖M3‖L1(H) ≤ 2‖M‖L2(H)‖M2‖L2(H) ≤ 2‖M‖L2(H)‖M2‖L1(H) ≤ 4‖M‖3
L2(H).

Iterating this argument, (5.8) follows.
Now from the claim we obtain (5.6). To conclude the proof it is enough to note that

〈Lσ x, x〉 = 〈Lx, x〉, ∀ x ∈ H,

Tr [Q1/2Lσ Q1/2] = Tr [Q1/2L Q1/2]

and

‖Q1/2Lσ Q1/2‖L2(H) ≤ 1

2

(
‖Q1/2L Q1/2‖L2(H) + ‖Q1/2L∗Q1/2‖L2(H)

)

≤ ‖Q1/2 L Q1/2‖L2(H).

��

5.2 An estimate for Gaussian divergences

In the next lemma, G is a vector field of the form

G (x) =
n∑

i=1

ϕi (〈x, e1〉 , . . . , 〈x, en〉) ei

with ϕi ∈ C1
0 (Rn, R), where {ei } is a c.o.s. of H of eigenvectors of Q (By C1

0 (Rn, R)

we mean the set all mappings R
n × R → R which are of compactly supported

and which are continuous together their first derivatives). For them we may define
divQ G (y) = Tr (DG (y)) − 〈

y, Q−1G (y)
〉
.

Lemma 5.3 For every p > 1 there is a constant C p > 0 such that

∫

H

∣∣divQ G (y)
∣∣p

μ (dy) ≤ C p

∫

H

(
‖DG (y)‖p

L2(H)
+

∣∣∣Q−1/2G (y)

∣∣∣p)
μ (dy)

for every vector field G as above.
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Proof The following result is classical in Malliavin calculus (see for instance [3,
Proposition 5.8.8]): for every p > 1 there is a constant C p > 0 such that for every
n ∈ N, if γn denotes the symmetric centered Gaussian measure in R

n , then∫

Rn

|Tr (DF (̃x)) − 〈̃x, F (̃x)〉|p γn (dx̃)

≤ C p

∫

Rn

(
‖DF (̃x)‖p

L2(Rn)
+ |F (̃x)|p

Rn

)
γn (dx̃)

for all smooth compact support vector fields F : R
n → R

n .
Set Hn = πn (H) , πn x = ∑n

i=1 〈x, ei 〉 ei and let J : Hn → R
n be the natural

isomorphism. The operators Q, Q1/2, Q−1/2 work as operators on Hn , hence they
define corresponding operators Qn, Q1/2

n , Q−1/2
n in R

n .
Given G as above, consider the vector field F : R

n → R
n defined as

F (̃x) := Q−1/2
n J G

(
J−1 Q1/2

n x̃
)

.

With little abuse of notations, it is simply the map F (x) := Q−1/2G
(
Q1/2x

)
. We

have

DF (̃x) = J (DG)
(

J−1 Q1/2
n x̃

)

Tr (DF (̃x)) − 〈̃x, F (̃x)〉 = Tr
(

J (DG)
(

J−1 Q1/2
n x̃

))

−
〈̃
x, Q−1/2

n J G
(

J−1 Q1/2
n x̃

)〉

= divQ G (y) |
y=J−1 Q1/2

n x̃

hence we have∫

Rn

∣∣∣divQ G (y) |
y=J−1 Q1/2

n x̃

∣∣∣p
γn (dx̃)

≤ C p

∫

Rn

(∥∥∥J (DG)
(

J−1 Q1/2
n x̃

)∥∥∥p

L2(Rn)
+

∣∣∣Q−1/2
n J G

(
J−1 Q1/2

n x̃
)∣∣∣p

Rn

)
γn (dx̃).

If we denote by μn the image measure, on Hn , of γn under the transformation x̃ �→
y = J−1 Q1/2

n x̃ , we have proved∫

H

∣∣divQ G (y)
∣∣p

μn (dy)

≤ C p

∫

H

(
‖J (DG) (y)‖p

L2(Rn)
+

∣∣∣Q−1/2
n J G (y)

∣∣∣p

Rn

)
μn (dy) .

It is now easy to realize that this is the claim of the lemma, taking into account the
special form of G. The proof is complete. ��
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