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Abstract In this paper, we are interested in the stochastic forcing of a nonlinear
singular/degenerated parabolic problem of p(t, x)-Laplace type. Since the Lebesgue
and Sobolev spaces with variable exponents of variables t and x are Orlicz type spaces
and do not fit into the classical framework of Bochner spaces, we have to adapt to this
framework classical methods based on monotonicity arguments.
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1 Introduction

In this paper we are interested in the following formal stochastic partial differential
problem:
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(P) :

⎧
⎪⎨

⎪⎩

du − �p(·)u dt = h(·, u)dw in � × (0, T ) × D

u = 0 on � × (0, T ) × ∂D

u(0, ·) = u0 in � × D

with differentiation in the sense of distributions, the equation is equivalent to

∂t

⎛

⎝u −
t∫

0

h(·, u)dw

⎞

⎠ − �p(·)u = 0.

In the sequel, we assume that:

• T is a positive number, D ⊂ R
d is a bounded domain with a Lipschitz boundary,

QT = (0, T ) × D and w = {wt ,Ft ; 0 ≤ t ≤ T } denotes a standard adapted
one-dimensional continuous Brownian motion, defined on the classical Wiener
space (�,F , P);

• h is a Carathéodory function in the sense that:
for any λ ∈ R, h(·, λ) ∈ N 2

W (0, T, L2(D)), the space of predictable processes
with values in L2(D) (see G. Da Prato et al. [4] for example),
and, P ⊗ Ld+1-a.e., λ ∈ R → h(t, x, ω, λ) ∈ R is continuous. Moreover, h is
a Lipschitz-continuous function of the variable λ, uniformly with respect to the
other variables;

• the variable exponent is a measurable function p : QT → (1,∞) satisfying
1 < p− = ess inf(s,y)∈QT p(s, y) ≤ p(t, x) ≤ p+ = ess sup(s,y)∈QT

p(s, y) <

∞, and �p(·)u denotes the formal differential operator div
[|∇u|p(t,x)−2∇u

]
;

• the initial condition u0 ∈ L2(D) and homogeneous Dirichlet boundary conditions
are required.

We first explain briefly a physical motivation for such a mathematical study. Con-
cerning the theory of filtration of an elastic fluid in an heterogeneous porous medium
(see Barenblatt [2, Sect. 3.2.1]), if one denotes by m the porosity of the medium, ρ

the density of the fluid and v the velocity of filtration, the mass conservation equation
of the fluid has the form

∂t (mρ) + Divρv = 0.

The well-known linear Darcy law expresses that the velocity of filtration is propor-
tional to the pressure gradient. In the presence of a non-homogeneous medium or
turbulence regime (cf. Diaz et al. [5]), a nonlinear version of the Darcy law may be
more appropriate. If moreover the characteristics of the medium may vary in depen-
dence on the spacial zones and evolve during time, the velocity of filtration is then
given by the relation vi = −k|∇ P|λ−2∇ P where λ is a function of (t, x), k is related
to the resistance of the porous medium to the fluid leaking through it and P is the
pressure of the fluid.

Following in addition some other physical characteristics in the model [2] and
discarding higher-order terms, we find

∂t P − κ�p(·) P = 0, where κ = k

m0β f + βr
(1)

denotes the coefficient of piezoconductivity.
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Then, following Geiger et al. [9], the interpretation of the stochastic integral in the
Itô sense

∫ t
0 h(· · · )dw comes from the fact that the pore-scale process acts on a time

scale that is faster than the macroscopic time scales.
When p is a fixed exponent, Problem (P) is a classical one and we refer to E. Pardoux

[14] or to classical books on stochastic partial differential equations, see e.g. Da Prato
et al. [4], Grecksch et al. [11] or C. Prévôt et al. [15]. In that case, the solution u belongs
a.s. to the Bochner space L p(0, T, W 1,p

0 (D)) and N 2
W (0, T, L2(D)) where W 1,p

0 (D)

denotes the classical Sobolev space and ∂t (u −∫ t
0 h(·, u)dw) to L p′

(0, T, W −1,p′
(D))

where p′ = p
p−1 and W −1,p′

(D) denotes the dual space of W 1,p
0 (D).

In these books, the method is based on a monotonicity argument and Minty’s trick
comes from the possibility to write an Itô formula in this functional setting.

This formula can be proved, on the one hand, by a time-discretization method as
in the above cited references or in N. Krylov et al. [13], or, on the other hand, using a
regularization with respect to the space variable as in Krylov [12], or Fellah et al. [8].

When p is a variable exponent of the only variable x , let us quote the paper of Ren
et al. [16], where the authors consider a problem with values in an Orlicz space. The
method is the same, u belongs a.s. to L p−

(0, T, W 1,p(·)
0 (D)) where W 1,p(·)

0 (D) will be

presented in the next section, and ∂t (u − ∫ t
0 h(·, u)dw) to L(p+)′(0, T, W −1,p′(·)(D)).

Here, p− and (p+)′ are not conjugate exponents, but since the spaces are Bochner
spaces, the same method applies.

In the present paper the exponent p is a function of the variables (t, x). Then, if
u is a solution, u(t, ·) ∈ W 1,p(t,·)

0 (D), while u(s, ·) ∈ W 1,p(s,·)
0 (D) which are not

comparable spaces, and the proof of an Itô formula by a time discretization is out of
range. Moreover, since the Lebesgue space

L p(·)(QT ) :=

⎧
⎪⎨

⎪⎩
u : QT → R, measurable,

∫

QT

|u(t, x)|p(t,x)dxdt < +∞

⎫
⎪⎬

⎪⎭

is not stable by partial convolution in only the variable x , the second method to prove
the Itô formula fails as well; even if each term of the formula (see below) exists and it
can be conjectured that u is a.s. continuous with values in L2(D) and, for any s < t ,

E‖u(t)‖2
L2(D)

− E‖u(s)‖2
L2(D)

+ 2E

t∫

s

∫

D

|∇u|p(t,x)dxdσ = E

t∫

s

∫

D

|h(u)|2dxdσ.

For this reason we had to revisit the method proposed by Pardoux [14].
In the spirit of Bauzet and Vallet [3], where similar questions have been considered

for a Barenblatt equation, we first prove the existence of a solution in the additive-
noise case by taking advantage of the remark that this type of problem [here (6)]
can be reduced to a random one [here (7)]; then we extend the result to a family of
multiplicative problems by using Banach fixed-point theorem.

Our steps are the following ones : first, we consider a singular perturbation of
Problem (P) with a “nice” function h independent of u and we obtain a stability result
of the solution with respect to h; passing to the limit with respect to the singular
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perturbation, we prove that Problem (P) is well posed for an additive noise if h is a
“nice” function, then we prove it for any h in N 2

W (0, T, L2(D)) by a density argument;
in the last step, we solve Problem (P) for a multiplicative noise by a fixed-point
argument.

This will be the organization of the paper, just after the following section, devoted
to some notations and the presentation of the main result.

2 Preliminaries

For T > 0 and QT := (0, T ) × D, the variable exponent is a measurable function
p : QT → (1,∞). We will assume that the variable exponent satisfies the following
conditions:

• 1 < p− = ess inf(s,y)∈QT p(s, y) ≤ p(t, x) ≤ p+ = ess sup(s,y)∈QT
p(s, y) <

∞,
• p is globally log-Hölder continuous, i.e. there exists a constant clog > 0 such that

|p(t, x) − p(s, y)| ≤ clog

ln
(

e + 1
|(t,x)−(s,y)|

)

is satisfied for all (t, x), (s, y) ∈ QT .

Definition 1 ([6]) For variable exponents we define the variable exponent Lebesgue
spaces:

L p(·)(QT ) :=

⎧
⎪⎨

⎪⎩
f : QT → R measurable |

∫

QT

| f (t, x)|p(t,x)dxdt < ∞

⎫
⎪⎬

⎪⎭

L p(t,·)(D) :=
⎧
⎨

⎩
f : D → R measurable |

∫

D

| f (x)|p(t,x)dx < ∞
⎫
⎬

⎭
.

L p(·)(QT ) endowed with the Luxemburg norm

‖ f ‖L p(·)(QT ) := inf

⎧
⎪⎨

⎪⎩
λ > 0 |

∫

QT

|λ−1 f (t, x)|p(t,x)dxdt ≤ 1

⎫
⎪⎬

⎪⎭

is a uniformly convex and separable Banach space.
Following the ideas of [7], for t ∈ (0, T ) we introduce the following function

spaces:

Vt (D) :=
{

u ∈ L2(D) ∩ W 1,1
0 (D) | ∇u ∈ L p(t,·)(D, R

d)
}

.

According to [7, Lemma 4.2], Vt (D) endowed with the norm
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‖u‖Vt (D) := ‖u‖L2(D) + ‖∇u‖L p(t,·)(D,Rd )

is a separable and reflexive Banach space.

X (QT ) :=
{

u ∈ L2(QT ) | ∇u ∈ L p(·)(QT , R
d), u(t, ·) ∈ Vt (D) a.e. t ∈ (0, T )

}

endowed with the norm

‖u‖X (QT ) := ‖u‖L2(QT ) + ‖∇u‖L p(·)(QT ,Rd )

is a separable, reflexive Banach space which is continuously embedded into the

Bochner space Ls(0, T, L2(D) ∩ W 1,p−
0 (D)), where s := min{2, p−}. Thanks to

the log-Hölder continuity condition on the bounded exponent we get that D(QT ) is
dense in X (QT ) (see [7, Theorem 4.7]). The dual space of X (QT ) can be identified
with

X ′(QT ) :=
{

T ∈ D′(QT ) | T = g − div G, g ∈ L2(QT ), G ∈ L p′(·)(QT , R
d)

}
.

We have the continuous embedding

X ′(QT ) ↪→ Lr (0, T, L2(D) + W −1,(p′)−(D))

where r := min{2, (p′)−} (see [7, Theorem 5.6. and Remark 5.7]). Since the dual
space of Vt (D) can be identified with the space

V ′
t (D) :=

{
T ∈ D′(D) | T = g̃ − div G̃, g̃ ∈ L2(D), G̃ ∈ L p′(t,·)(D, R

d)
}

,

the duality pairing 〈·, ·〉X (QT ) can be written as

〈T, ϕ〉X (QT ) =
∫

QT

gϕdxdt +
∫

QT

G · ∇ϕdxdt

=
T∫

0

〈g(t), ϕ(t)〉L2(D)dt +
T∫

0

〈G(t),∇ϕ(t)〉L p(t,·)(D)dt

=
T∫

0

〈g(t), ϕ(t)〉Vt (D)dt

for any T = g − div G ∈ X ′(QT ) and any ϕ ∈ X (QT ). Finally, let us introduce the
space

W (QT ) := {
u ∈ X (QT ) | ut ∈ X ′(QT )

}
,

where ut is the distributional derivative of u. Endowed with the norm
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‖u‖W (QT ) := ‖u‖X (QT ) + ‖ut‖X ′(QT )

it is a Banach space and the set C∞([0, T ],D(D)) is dense in W (QT ) (see [7, Theorem
6.6]). Moreover, we have the continuous embedding

W (QT ) ↪→ C([0, T ], L2(D))

and for all u, v ∈ W (QT ) and s, t ∈ [0, T ] the following rule of integration by parts
holds (see [7, Theorem 7.1]):

〈ut , χ[s,t]v〉X (QT ) = 〈u(t), v(t)〉L2(D) − 〈u(s), v(s)〉L2(D) − 〈vt , χ[s,t]u〉X (QT ). (2)

Concerning the stochastic framework, we denote by N 2
W (0, T, L2(D)) the space of

the predictable L2(D)-valued processes (cf. [4, p. 94] for example). This space is the
space L2(]0, T [×�, L2(D)) for the product measure dt ⊗ d P on PT , the predictable
σ -field, for the norm of L2(QT × �).

Remark 1 Note that for the proofs of all the previous results the log-Hölder continuity
of the variable exponent is crucial.

In this paper, we are interested in solutions to the problem (P):

⎧
⎪⎨

⎪⎩

du − �p(·)u dt = h(·, u)dw in � × (0, T ) × D

u = 0 on � × (0, T ) × ∂D

u(0, ·) = u0 in � × D.

Definition 2 A solution to Problem (P) is any u ∈ L2[�, C([0, T ], L2(D))]
1∩N 2

W (0, T, L2(D)), a.s. u(ω, ·) ∈ X (QT ), such that u(0, ·) = u0 with ∇u ∈
L p(·)(� × QT )2 satisfying for all s, t ∈ [0, T ], almost surely in �, a.e. in D,

u(t) − u(s) −
t∫

s

�p(σ,·)udσ =
t∫

s

h(·, u)dw(σ)

or, equivalently, a.s. in X ′(QT )

∂t

⎡

⎣u −
t∫

0

h(·, u)dw

⎤

⎦ − �p(·)u = 0.

Then, the main result of the paper is

1 in particular u ∈ C([0, T ], L2(� × D)).
2 in particular u ∈ Lτ (0, T, L2(D) ∩ W 1,p−

0 (D)) where τ := min{2, p−}.
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Theorem 1 There exists a unique solution to Problem (P) in the sense of Definition
2. Moreover, there exists a constant C such that if h1 and h2 are two different forces,

E‖u1 − u2‖2
C([0,T ],L2(D))

+ E

T∫

0

∫

D

[|∇u1|p(t,x)−2∇u1

−|∇u2|p(t,x)−2∇u2]∇[u1 − u2]dxdt

≤ C‖h1(·, u1) − h2(·, u2)‖2
L2(�×QT )

.

3 Proof of the main result

The proof of the main result is based on the remark that u is a solution of

∂t

⎡

⎣u −
t∫

0

h(·, u)dw

⎤

⎦ − �p(·)u = 0

if and only if u is a fixed-point of the application

T : N 2
W (0, T, L2(D)) → N 2

W (0, T, L2(D)), S �→ uS

where uS is the solution to

∂t

⎡

⎣u −
t∫

0

h(·, S)dw

⎤

⎦ − �p(·)u = 0.

Assume for the moment that Theorem 1 holds if h is independent of u. Then, the
application T is well-defined. Moreover, if S1 and S2 are given in N 2

W (0, T, L2(D))

and uS1 , uS2 are the solutions of ((P), h(·, S1)), ((P), h(·, S2)) respectively, then for
all t ∈ (0, T )

E‖(uS1 − uS2)(t)‖2
L2(D)

≤ C E

t∫

0

‖h(·, S1) − h(·, S2)‖2
L2(D)

ds

≤ C L

t∫

0

E‖S1 − S2‖2
L2(D)

ds, (3)

where L is the Lipschitz constant of h. We fix α > 0. Multiplying (3) by e−αt and
integrating over (0, T ) we find

T∫

0

E‖(uS1 − uS2)(t)‖2
L2(D)

e−αt dt

≤ C L

T∫

0

d

dt

(

− 1

α
e−αt

) t∫

0

E‖S1 − S2‖2
L2(D)

ds dt (4)
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Using integration by parts on the right-hand side of (4) we obtain

T∫

0

E‖(uS1 −uS2)(t)‖2
L2(D)

e−αt dt ≤ C L

α

(
1−e−αT )

T∫

0

E‖S1 − S2‖2
L2(D)

e−αt dt (5)

Choosing α > 0 such that C L
α

< 1 the Banach fixed point theorem and the equivalence
of the weighted norm with the L2-Norm yields the proof of the theorem.

In the next subsections we will prove the theorem when h is not a function of u.

3.1 The additive case for a “nice” h

Consider in this section a function h ∈ N 2
W (0, T, H1

0 (D)) such that, for any i =
1, . . . , d, ∂xi h ∈ L∞(� × QT ). For example assume that h ∈ S2

W (0, T, Hk
0 (D)),

the set of simple predictable processes with values in Hk
0 (D) for a sufficiently large

value of k of the form h = ∑M
i=1 hi

∑Ni
j=1 1�i

j
1]t i

j ,t
i
j+1] where hi ∈ Hk

0 (D) and
∑Ni

j=1 1�i
j
1]t i

j ,t
i
j+1] is a real-valued elementary process (see for example [4,15]).

Thus, since ∂xi is a continuous linear operator from H1
0 (D) to L2(D), ∇h ∈

N 2
W (0, T, L2(D)d) and ∇ ∫ t

0 hdw = ∫ t
0 ∇hdw a.s.

Moreover, using the Burkholder–Davis–Gundy inequality, for any r ≥ 1, we arrive
at

E

⎛

⎝

∣
∣
∣
∣
∣
∣
∇

t∫

0

h(s, x, ω)dw(s)

∣
∣
∣
∣
∣
∣

r⎞

⎠ ≤ C E

⎡

⎢
⎣

⎛

⎝

T∫

0

|∇h(s, x, ω)|2 ds

⎞

⎠

r/2⎤

⎥
⎦

≤ C‖∇h‖r
L∞(�×QT )

for any t , x a.e., and thus
∫ ·

0 hdw ∈ Lr (� × (0, T ), W 1,r
0 (D)) for any r .

For such function h, thanks to Pardoux [14], for any positive ε and any real number
q ≥ max(2, p+), there exists a unique solution uε to the problem

du − ε�qudt − �p(·)udt = hdw (6)

in Lq(�, Lq(0, T, W 1,q
0 (D)) ∩ N 2

W (0, T, L2(D)) with uε(t = 0) = u0.
For convenience, let us systematically denote v(t) = u(t) − ∫ t

0 hdw and remark
that uε is a solution of the above problem, if and only if vε is a solution of the problem

∂tv − ε�q

⎡

⎣v +
t∫

0

hdw

⎤

⎦ dt − �p(·)

⎡

⎣v +
t∫

0

hdw

⎤

⎦ dt = 0 (7)

in the same spaces with the same initial condition.
One deduces first that ∂tv

ε ∈ Lq ′
(�, Lq ′

(0, T, W −1,q ′
(D)); then by the special

choice of h in S2
W (0, T, Hk

0 (D)), one has
∫ t

0 hdw ∈ Lq(�, Lq(0, T, W 1,q
0 (D)),
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therefore also vε ∈ Lq(�, Lq(0, T, W 1,q
0 (D)) and the pivot-space L2(D) yields

vε ∈ L2(�, C([0, T ], L2(D))) (and uε as well).
Let us derive now some a priori estimates.
By using Itô’s formula to the norm of uε , one gets, for any t and P a.s.,

‖uε(t)‖2
L2(D)

− ‖u0‖2
L2(D)

+ 2ε

t∫

0

∫

D

|∇uε |qdxds + 2

t∫

0

∫

D

|∇uε |p(s,x)dxds

= 2

t∫

0

∫

D

huεdxdw +
t∫

0

∫

D

h2dxds.

Using Burkholder–Davis–Gundy inequality, one has

E

⎡

⎣sup
t

∣
∣
∣
∣
∣
∣

t∫

0

∫

D

huεdxdw

∣
∣
∣
∣
∣
∣

⎤

⎦ ≤ C E

⎡

⎢
⎣

√
√
√
√
√

T∫

0

⎛

⎝

∫

D

huεdx

⎞

⎠

2

ds

⎤

⎥
⎦

≤ C E

⎡

⎢
⎣

√
√
√
√
√

T∫

0

∫

D

h2dx
∫

D

(uε)2dxds

⎤

⎥
⎦

≤ C E

⎡

⎢
⎣

√
√
√
√
√sup

t
‖uε(t)‖2

L2(D)

T∫

0

‖h‖2
L2(D)

ds

⎤

⎥
⎦=C E

[

sup
t

‖uε(t)‖L2(D)‖h‖L2(QT )

]

≤ 1

4
E

[

sup
t

‖uε(t)‖2
L2(D)

]

+ C‖h‖2
L2(�×QT )

,

which yields

E

[

sup
t

‖uε(t)‖2
L2(D)

]

+ 4εE

⎡

⎢
⎣

∫

QT

|∇uε |qdxds

⎤

⎥
⎦ + 4E

⎡

⎢
⎣

∫

QT

|∇uε |p(s,x)dxds

⎤

⎥
⎦

≤ C‖h‖2
L2(�×QT )

+ 2‖u0‖2
L2(D)

.

Therefore, (uε) is bounded in L∞(0, T, L2(� × D)), ∇uε is bounded in L p(·)(� ×
QT )3 and εE[∫QT

|∇uε |qdxds] is bounded as well.

3 We recall that ‖u‖L p(·)(�×QT )
= inf{λ > 0, E[∫QT

λ−1|u(ω, t, x)|p(t,x)dxdt] ≤ 1} and that

a sequence un is bounded in L p(·)(� × QT ) if and only if the sequence of modular ρp(un) =
E[∫QT

|un |p(t,x)dxdt] is bounded.
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Back on vε , there exists a full-measure set �̃ in �, determined by h, such that for
any ω ∈ �̃,

1

2

d

dt
‖vε‖2

L2(D)
+ ε

∫

D

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
t∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

q−2

∇
⎛

⎝vε +
t∫

0

hdw

⎞

⎠ · ∇vεdx

+
∫

D

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
t∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(t,x)−2

∇
⎛

⎝vε +
t∫

0

hdw

⎞

⎠ · ∇vεdx = 0.

i.e.

1

2

d

dt
‖vε‖2

L2(D)
+ ε

∫

D

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
t∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

q

dx+
∫

D

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
t∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(t,x)

dx

= ε

∫

D

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
t∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

q−2

∇
⎛

⎝vε +
t∫

0

hdw

⎞

⎠ · ∇
t∫

0

hdwdx

+
∫

D

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
t∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(t,x)−2

∇
⎛

⎝vε +
t∫

0

hdw

⎞

⎠ · ∇
t∫

0

hdwdx

≤ ε

∫

D

1

q ′

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
t∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

q

dx + ε

∫

D

1

q

∣
∣
∣
∣
∣
∣
∇

t∫

0

hdw

∣
∣
∣
∣
∣
∣

q

dx

+
∫

D

1

p′(t, x)

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
t∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(t,x)

dx +
∫

D

1

p(t, x)

∣
∣
∣
∣
∣
∣
∇

t∫

0

hdw

∣
∣
∣
∣
∣
∣

p(t,x)

dx .

Therefore

1

2

d

dt
‖vε‖2

L2(D)
+ ε

∫

D

1

q

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
t∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

q

dx

+
∫

D

1

p(t, x)

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
t∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(t,x)

dx

≤ ε

∫

D

1

q

∣
∣
∣
∣
∣
∣
∇

t∫

0

hdw

∣
∣
∣
∣
∣
∣

q

dx +
∫

D

1

p(t, x)

∣
∣
∣
∣
∣
∣
∇

t∫

0

hdw

∣
∣
∣
∣
∣
∣

p(t,x)

dx, (8)
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so that vε is bounded in C([0, T ], L2(D)) and in X (QT ), and ε
∫

QT
|∇(vε +

∫ t
0 hdw)|qdxdt < Cte.

By extracting a subsequence, still denoted vε , there exists v ∈ X (QT ) ∩
L∞(0, T, L2(D)), weak limit of vε in X (QT ) and weak-* in L∞(0, T, L2(D)).

Denote by A any limit point, for the weak convergence in L p′(·)(QT ) of |∇(vε +∫ t
0 hdw)|p(·)−2∇(vε + ∫ t

0 hdw) and χ a weak limit in L2(D) of vε(T ) (up to a sub-
sequence, denoted in the same way if it is needed).

Therefore, integrating (8) and passing to the limit, by weak lower semicontinuity
of the modular,

1

2
‖χ‖2

L2(D)
+

∫

QT

1

p(t, x)

∣
∣
∣
∣
∣
∣
∇(v +

t∫

0

hdw)

∣
∣
∣
∣
∣
∣

p(t,x)

dxdt ≤ 1

2
‖u0‖2

L2(D)

+
∫

QT

1

p(t, x)

∣
∣
∣
∣
∣
∣
∇

t∫

0

hdw

∣
∣
∣
∣
∣
∣

p(t,x)

dxdt.

By definition of vε , for any ϕ ∈ D([0, T ] × D),

∫

D

vε(T, x)ϕ(T, x)dx −
∫

QT

vε(t, x)∂tϕ(t, x)dxdt

+ε

∫

QT

∣
∣
∣
∣
∣
∣
∇(vε +

t∫

0

hdw)

∣
∣
∣
∣
∣
∣

q−2

∇
⎛

⎝vε +
t∫

0

hdw

⎞

⎠ · ∇ϕdxdt

+
∫

QT

∣
∣
∣
∣
∣
∣
∇(vε +

t∫

0

hdw)

∣
∣
∣
∣
∣
∣

p(t,x)−2

∇
⎛

⎝vε +
t∫

0

hdw

⎞

⎠ · ∇ϕdxdt =
∫

D

u0(x)ϕ(0, x)dx .

Then, passing to the limit yields

∫

D

χϕ(T, x)dx −
∫

QT

v(t, x)∂tϕ(t, x)dxdt +
∫

QT

A · ∇ϕdxdt =
∫

D

u0(x)ϕ(0, x)dx

and ∂tv − divA = 0 in the sense of distributions and ∂tv ∈ X ′(QT ).
Since C∞([0, T ],D(D)) is dense in W (QT ) (see [7, Theorem 6.6]), it follows that

for all ϕ ∈ W (QT ),

∫

D

χ(x)ϕ(T, x)dx − 〈∂tϕ, v〉 +
∫

QT

A · ∇ϕdxdt =
∫

D

u0(x)ϕ(0, x)dx .
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Since ∂tv ∈ X ′(QT ) and v ∈ X (QT ), v is an element of W (QT ) and, the formula of
integration by parts in time ([7]) leads for any ϕ ∈ W (QT ),

∫

D

[χ(x) − v(T, x)]ϕ(T, x)dx + 〈∂tv, ϕ〉 +
∫

QT

A · ∇ϕdxdt

=
∫

D

[u0(x) − v(0, x)]ϕ(0, x)dx,

or

∫

D

[χ(x) − v(T, x)]ϕ(T, x)dx + 〈∂tv − divA, ϕ〉 =
∫

D

[u0(x) − v(0, x)]ϕ(0, x)dx .

Therefore

∫

D

[χ(x) − v(T, x)]ϕ(T, x)dx =
∫

D

[u0(x) − v(0, x)]ϕ(0, x)dx

and one gets that v(T ) = χ and v(0) = u0. Note that in our reasoning T is arbitrary,
so that it is possible to conclude, for any t , that vε(t) converges weakly to v(t) in
L2(D).

Let us also mention the additional information: since v ∈ W (QT ) one has that
v ∈ C([0, T ], L2(D)) and, for any fixed t in the sequel, the following energy equality
holds

1

2
‖v(t)‖2

L2(D)
+

∫

Qt

A · ∇vdxds = 1

2
‖u0‖2

L2(D)
. (9)

Moreover, since

1

2

d

dt
‖vε‖2

L2(D)
+ ε

∫

D

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
t∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

q

dx +
∫

D

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
t∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(t,x)

dx

= ε

∫

D

∣
∣
∣
∣
∣
∣
∇(vε +

t∫

0

hdw)

∣
∣
∣
∣
∣
∣

q−2

∇
⎛

⎝vε +
t∫

0

hdw

⎞

⎠ · ∇
t∫

0

hdwdx

+
∫

D

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
t∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(t,x)−2

∇
⎛

⎝vε +
t∫

0

hdw

⎞

⎠ · ∇
t∫

0

hdwdx,
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the following estimate holds

1

2
‖vε(t)‖2

L2(D)
+

∫

Qt

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
s∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(s,x)

dxds (10)

≤ ε

∫

Qt

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
s∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

q−2

∇
⎛

⎝vε +
s∫

0

hdw

⎞

⎠ · ∇
s∫

0

hdwdxds

+
∫

Qt

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
s∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(s,x)−2

∇
⎛

⎝vε +
s∫

0

hdw

⎞

⎠ · ∇
s∫

0

hdwdxds

+1

2
‖u0‖2

L2(D)
,

and, at the limit with respect to ε, one gets

1

2
‖v(t)‖2

L2(D)
+ lim sup

ε

∫

Qt

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
s∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(s,x)

dxds

≤
∫

Qt

A · ∇
s∫

0

hdwdxds + 1

2
‖u0‖2

L2(D)
.

Using (9), one has

lim sup
ε

∫

Qt

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
s∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(s,x)

dxds ≤
∫

Qt

A · ∇
⎛

⎝v +
s∫

0

hdw

⎞

⎠ dxds

and, since |∇(vε + ∫ s
0 hdw)|p(s,x)−2∇(vε + ∫ s

0 hdw) converges weakly to A in

L p′(·)(QT ) and ∇vε converges weakly to ∇v in L p(·)(QT )d , one concludes that

lim sup
ε

∫

Qt

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε+
s∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(s,x)−2

∇
⎛

⎝vε +
s∫

0

hdw

⎞

⎠ − A

⎤

⎥
⎦ · ∇(vε − v)dxds

= lim sup
ε

∫

Qt

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣
∇(vε +

s∫

0

hdw)

∣
∣
∣
∣
∣
∣

p(s,x)−2

∇
⎛

⎝vε +
s∫

0

hdw

⎞

⎠

⎤

⎥
⎦ .
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∇
⎛

⎝vε +
s∫

0

hdw − v −
s∫

0

hdw

⎞

⎠ dxds

= lim sup
ε

∫

Qt

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
s∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(s,x)

dxds −
∫

Qt

A · ∇
⎛

⎝v +
s∫

0

hdw

⎞

⎠ dxds ≤ 0.

Let us denote by J : X (QT ) → R, u �→ ∫

QT

1

p(t, x)
|∇u(t, x)|p(t,x)dxdt . J is a

proper convex function; moreover, it is continuous and Gâteaux-differentiable. Thus,
its Gâteaux-derivative is a single-valued maximal monotone operator from X (QT ) to
its dual space.

By construction, D J = −�p(·) and, for any (u, v) in X (QT ), one has:

〈D J (u), v〉X (QT ) =
∫

QT

|∇u|p(t,x)−2∇u∇vdxdt.

In terms of D J the preceding estimate reads as

lim sup
ε

〈

D J

⎛

⎝vε +
s∫

0

hdw

⎞

⎠ + divA, vε − v

〉

X (QT )

≤ 0

and the properties of maximal monotone operators in reflexive Banach spaces (cf.
e.g. Barbu [1]) ensure that D J (v + ∫ t

0 hdw) = −divA and then that 〈D J (vε +
∫ s

0 hdw), vε+∫ s
0 hdw〉X (QT ) → 〈D J (v+∫ s

0 hdw), v+∫ s
0 hdw〉X (QT ). Therefore, the

remark saying that in L p(·)(QT ) weak convergence of a sequence plus the convergence
of the modular implies the strong convergence (Giacomoni et al. [10, Appendix]) leads
to the convergence, on the one hand of ∇(vε + ∫ t

0 hdw) to ∇(v + ∫ t
0 hdw), then, on

the other hand of ∇vε to ∇v, in L p(·)(QT ).
Using that A = |∇(v + ∫ t

0 hdw)|p(t,x)−2∇(v + ∫ t
0 hdw), the limit superior in (10)

yields

1

2
lim sup

ε
‖vε(t)‖2

L2(D)
+

∫

Qt

∣
∣
∣
∣
∣
∣
∇

⎛

⎝v +
s∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(s,x)

dxds

≤
∫

Qt

∣
∣
∣
∣
∣
∣
∇

⎛

⎝v+
s∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(s,x)−2

∇
⎛

⎝v+
s∫

0

hdw

⎞

⎠ · ∇
s∫

0

hdwdxds+ 1

2
‖u0‖2

L2(D)
.

Then, since replacing A by its value in (9) gives
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1

2
‖v(t)‖2

L2(D)
+

∫

Qt

∣
∣
∣
∣
∣
∣
∇(v +

s∫

0

hdw)

∣
∣
∣
∣
∣
∣

p(s,x)−2

∇
⎛

⎝v +
s∫

0

hdw

⎞

⎠ · ∇vdxds

= 1

2
‖u0‖2

L2(D)
, (11)

one gets that

lim sup
ε

‖vε(t)‖2
L2(D)

≤ ‖v(t)‖2
L2(D)

,

and since we had previously a weak convergence in L2(D) of the sequence, one
concludes, for any t , that vε(t) converges to v(t) in L2(D), and then of vε to v in
L2(QT ), thus, in particular the convergence of vε to v in X (QT ).

Finally, since v is a solution of a problem that admits a unique solution, the above
convergence result is available for the whole sequence vε and not for a subsequence
as previously claimed.

Now, we want to show the convergence of vε to v in L2(� × QT ) and of ∇vε to
∇v in L p(·)(� × QT ).

We have already shown that vε(ω) → v(ω) in L2(QT ) almost surely in � when
ε ↓ 0.

From (8) it follows that for all t ∈ [0, T ] a.s. in �

‖vε(t)‖2
L2(D)

+ 2ε

q

∫

Qt

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
σ∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

q

dxdσ

+ 2

p+

∫

Qt

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε +
σ∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(σ,x)

dxdσ

≤ 2ε

∫

QT

1

q

∣
∣
∣
∣
∣
∣
∇

σ∫

0

hdw

∣
∣
∣
∣
∣
∣

q

dxdσ + 2

p−

∫

QT

∣
∣
∣
∣
∣
∣
∇

σ∫

0

hdw

∣
∣
∣
∣
∣
∣

p(σ,x)

dxdσ + ‖u0‖2
L2(D)

, (12)

and that a.s. in � we have

∫

QT

∣
∣
∣
∣
∣
∣
∇

σ∫

0

hdw

∣
∣
∣
∣
∣
∣

p(σ,x)

dxdσ ≤ C(|QT |) +
∫

QT

∣
∣
∣
∣
∣
∣
∇

σ∫

0

hdw

∣
∣
∣
∣
∣
∣

p+

dxdσ,

with C(|QT |) > 0 not depending on ω, hence vε converges to v in L2(�× QT ) using
the regularity of h and the Lebesgue’s dominated convergence theorem.

For the convergence of ∇vε to ∇v in L p(t,x)(� × QT ), we need to show that
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∫

�

∫

QT

|∇(vε − v)|p(t,x)dxdtd P(ω) → 0 for ε → 0.

We already know that, almost surely in �

∫

QT

|∇(vε(ω) − v(ω))|p(t,x)dxdt → 0 for ε → 0,

and that, from Young’s inequality, (11) and (12), there exists a positive constant
C(p+, p−), such that
∫

QT

|∇(vε(ω) − v(ω))|p(t,x)dxdt

≤ 2p+

⎡

⎢
⎣

∫

QT

∣
∣
∣
∣
∣
∣
∇

⎛

⎝vε(ω)+
t∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(t,x)

dxdt+
∫

QT

∣
∣
∣
∣
∣
∣
∇

⎛

⎝v(ω)+
t∫

0

hdw

⎞

⎠

∣
∣
∣
∣
∣
∣

p(t,x)

dxdt

⎤

⎥
⎦

≤ C(p+, p−)

⎛

⎜
⎝

∫

QT

∣
∣
∣
∣
∣
∣
∇

σ∫

0

hdw

∣
∣
∣
∣
∣
∣

q

dxdσ +
∫

QT

∣
∣
∣
∣
∣
∣
∇

σ∫

0

hdw

∣
∣
∣
∣
∣
∣

p(σ,x)

dxdσ +‖u0‖2
L2(D)

⎞

⎟
⎠

for all 0 < ε < 1 and the assertion follows using the regularity of h and Lebesgue’s
dominated convergence theorem.

Since the same convergences hold for uε to u = v − ∫ t
0 hdw and since uε is a

predictable process with values in L2(D), this is the same for u.

3.2 The additive case for a general h

Applying Itô’s formula to uε , we get, for any t ,

‖uε(t)‖2
L2(D)

− ‖u0‖2
L2(D)

+ 2ε

t∫

0

∫

D

|∇uε |qdxds + 2

t∫

0

∫

D

|∇uε |p(s,x)dxds

= 2

t∫

0

∫

D

huεdxdw +
t∫

0

∫

D

h2dxds,

and, passing to the limit,

‖u(t)‖2
L2(D)

− ‖u0‖2
L2(D)

+ 2
∫

Qt

|∇u|p(s,x)dxds (13)

≤ 2
∫

Qt

hudxdw +
∫

Qt

h2dxds.
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Moreover, if hi , i = 1, 2, are two elements associated to uε
i and to ui , one gets

‖(uε
1 − uε

2)(t)‖2
L2(D)

+ 2ε

t∫

0

∫

D

[|∇uε
1|q−2∇uε

1 − |∇uε
2|q−2∇uε

2]∇[uε
1 − uε

2]dxds

+2

t∫

0

∫

D

[|∇uε
1|p(s,x)−2∇uε

1 − |∇uε
2|p(s,x)−2∇uε

2]∇[uε
1 − uε

2]dxds

= 2

t∫

0

∫

D

[h1 − h2][uε
1 − uε

2]dxdw +
t∫

0

∫

D

[h1 − h2]2dxds,

and, passing to the limit

‖(u1 − u2)(t)‖2
L2(D)

+ 2

t∫

0

∫

D

[|∇u1|p(s,x)−2∇u1

−|∇u2|p(s,x)−2∇u2]∇[u1 − u2]dxds

≤ 2

t∫

0

∫

D

[h1 − h2][u1 − u2]dxdw +
t∫

0

∫

D

[h1 − h2]2dxds, (14)

A consequence is the Lipschitz continuity of the application

T : S2
W (0, T, Hk

0 (D)) → N 2
W (0, T, L2(D)), h �→ u.

Then, the density of S2
W (0, T, Hk

0 (D)) in the Hilbert space N 2
W (0, T, L2(D)) ensures

the existence and uniqueness of the extension T̄ of T from N 2
W (0, T, L2(D)) into

itself. This gives a result of existence and uniqueness of an element called a mild
solution when h belongs to N 2

W (0, T, L2(D)).
Denote by u a mild solution associated with h, (hm) ⊂ S2

W (0, T, Hk
0 (D)) a sequence

converging to h in N 2
W (0, T, L2(D)) and (um) the sequence of the corresponding

solutions.
Using (14) and Burkholder–Davis–Gundy inequality, we deduce

E

T∫

0

∫

D

[|∇un|p(t,x)−2∇un − |∇um |p(t,x)−2∇um]∇[un − um]dxdt

+E‖un − um‖2
C([0,T ],L2(D))

≤ C‖hn − hm‖2
L2(�×QT )

,

which implies that

E

T∫

0

∫

D

[|∇un|p(t,x)−2∇un − |∇um |p(t,x)−2∇um]∇[un − um]dxdt
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tends to 0 when m and n tend to infinity, and that um is a Cauchy sequence in
L2(�, C([0, T ], L2(D))).

This allows us to conclude that the mild solution u is a continuous process with
values in L2(D).

It remains to prove that u is a solution in the sense of Definition 2. To this end denote
by J the proper convex, continuous and Gâteaux differentiable mapping, defined on
E := {u ∈ N 2

W (0, T, L2(D)), ∇u ∈ L p(·)(� × QT )} endowed with the norm ‖u‖ =
‖u‖N 2

W (0,T,L2(D)) +‖∇u‖L p(·)(�×QT ), by J (u) = E
∫

QT
[u2

2
+ 1

p(t,x)
|∇u|p(t,x)]dxdt .

As previously mentioned in a similar case its Gâteaux-derivative DJ (u) satisfies,
for any v ∈ E , 〈DJ (u), v〉 = E

∫

QT
uv+|∇u|p(t,x)−2∇u ·∇vdxdt , is a single-valued

maximal monotone operator and the above estimate ensures that

lim
n,m→∞〈DJ (un) − DJ (um), un − um〉 = 0.

From (13), the sequence (un) is bounded in the reflexive Banach space E , so that a
subsequence (unl ) converges weakly in E to the only possible limit u, and DJ (un)

converges weakly in the dual space.
The classical results of the theory of maximal monotone operators in reflexive

spaces implies that the weak limit has to be DJ (u) and that 〈DJ (un), un〉 tends to
〈DJ (u), u〉.

Again, weak convergence plus convergence of the modular in L p(·)(�× QT ) yields
the strong convergence of unl to u in E .

Finally, the uniqueness of the possible limit ensures that the convergence holds for
the whole sequence (un). It is therefore possible to pass to the limit in all the terms of
the equation satisfied by un and conclude that the mild solution u is also a solution in
the sense of Definition 2.

Moreover, if u1 and u2 are two given solutions, for the same initial condition u0,
then, a.s.

∂t [u1 − u2] − [�p(·)u1 − �p(·)u2] = 0,

and, by testing this problem with the test-function u1 − u2, one gets that

‖u1(t) − u2(t)‖2
L2(D)

+
∫

Qt

[
|∇u1|p(s,x)−2∇u1 − |∇u2|p(s,x)−2∇u2

]
·

∇(u1 − u2)dxds = 0,

and the weak solution is unique.
Now, coming back to the introduction of Sect. 3, one is able to conclude that

Theorem 1 is proved.
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