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Abstract Our goal in this paper is to compute the integral free loop space homology
of (n−1)-connected 2n-manifolds.We do this when n ≥ 2 and n �= 2, 4, 8, though the
techniques here should cover a much wider range of manifolds. We also give partial
information concerning the action of the Batalin–Vilkovisky operator.

Keywords String topology · Free loop space · Highly connected manifolds

Mathematics Subject Classification Primary 55P35 · 57N65; Secondary 55T10

1 Introduction

Let LX = map(S1, X) denote the free loop space on X . This space comes equipped
with an action ν : S1 × LX −→ LX that rotates loops, and an induced degree 1
homomorphism

� : H∗(LX) −→ H∗+1(LX)

known as the BV-operator, defined by setting �(a) = ν∗([S1] ⊗ a). In addition Chas
and Sullivan [9] constructed a pairing
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414 P. Beben, N. Seeliger

Hp(LX) ⊗ Hq(LX) −→ Hp+q−d(LX)

on a closed oriented d-manifold X that (together with the BV-operator) turns the
shifted homology H∗(LX) = H∗+d(LX) into a Batalin–Vilkovisky (BV)-algebra.

Batalin–Vilkovisky algebras have been computed in only a few special cases. One
of the more general results to date (due to Felix and Thomas [12]) states that over
a field F of characteristic zero and 1-connected X , H∗(LX; F) is isomorphic to a
BV-algebra structure defined on the Hochschild cohomology HH∗(C∗(X),C∗(X)).
Unfortunately, this theorem is generally not true for fields with nonzero characteris-
tic [20]. Beyond these results, the BV-algebra over various coefficient rings has been
completely determined for spheres [10,20,25], certain Stiefel manifolds [24], Lie
groups [17], and projective spaces [10,16,22,27,28], using a mixture of techniques
ranging from homotopy theoretic to geometric, as well as the well-known connections
to Hochschild cohomology.

In this paper we focus on the free loop space homology of highly connected 2n-
manifolds, together with the action of the BV-operator. The coefficient ring R for
homology and cohomology is assumed to be either any field, or the integers Z, but we
suppress it from notation most of the time. Fix n ≥ 2, M a (n − 1)-connected, closed,
oriented 2n-manifold with Hn(M) of rank m ≥ 1. Let

C = [ci j = 〈ai ∪ a j , [M]〉]

be the m ×m matrix for the intersection form Hn(M) × Hn(M) −→ Z with respect
to some choice of basis {a1, . . . , am} for Hn(M) (we use the same notation for the
dual basis of Hn(M)). This form is nonsingular, symmetric when n is even, and
skew-symmetric when n is odd.

Denote Hn(M) and H2n(M) ∼= Z by the free graded modules R-modules A =
R{a1, . . . , am} and K = R{[M]}, and the desuspension of A by V = R{u1, . . . , um}
with |ui | = n − 1. Let

T (V ) = R ⊕
⊕

i≥1

V⊗i

be the free tensor algebra generated by V , and I be the two-sided ideal of the tensor
algebra T (V ) generated by the following degree 2n − 2 element

χ =
∑

i< j

ci j [ui , u j ] +
∑

i

cii u
2
i ,

where [x, y] = xy − (−1)|x ||y|yx denotes the graded Lie bracket in T (V ). Take the
quotient algebra

U = T (V )

I
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The free loop space homology of (n − 1)-connected 2n-manifolds 415

and the degree −1 maps of graded R-modules d : A⊗U −→ U and d ′ : K ⊗U −→
A ⊗U , which are given for any y ∈ U by the formulas

d(ai ⊗ y) = [ui , y]
d ′([M] ⊗ y) =

∑

i, j

ci j (a j ⊗ [ui , y]).

If we apply the Jacobi identity to the summands ci j (a j ⊗ [ui , y]) in d ◦ d ′(y) for
i < j (keeping in mind that ci j = (−1)nc ji , [ui , [ui , y]] = [u2i , y], and that products
with χ are identified with zero in U ), we see that Im d ′ ⊆ ker d, so we obtain a chain
complex

0 −→ K ⊗U
d ′−→ A ⊗U

d−→ U −→ 0.

Now take the homology of this chain complex. That is, take the following graded
R-modules:

Q = U

Im d
, W = ker d

Im d ′ , Z = ker d ′.

One can think of W by first taking the R-submodule W ′ of �−1A ⊗ T (V ) ∼= T (V )

generated by elements that are invariant modulo I under graded cyclic permutations,
that is, invariant after projecting to U . Then W is the projection of �W ′ onto (A ⊗
U )/Im d ′.

Our main result is that the homology of this chain complex is the integral free loop
space homology of M under some conditions:

Theorem 1.1 Suppose n ≥ 2, n �= 2, 4, 8, and m ≥ 1. Then there exists an isomor-
phism of graded R-modules

H∗(LM) ∼= Q ⊕ W ⊕ Z.

The restriction away from 2, 4, and 8 traces back to an argument that we use to
determine H∗(�M), which does not apply to situation where there are cup product
squares equal to the fundamental class [M], or −[M]. Failure of a degree placement
argument to compute certain differentials is another reason that we restrict away from
n = 2.

We also determine the action of the BV-operator on H∗(LM;Q), in a sense, up-to-
abelianization of U when n > 3 is odd.

Consider the graded abelianization map T (V )
η−→ S(V ), where S(V ) is the free

graded symmetric algebra generated by V . Since η(χ) = 0, η factors through U
η−→

S(V ). Also, consider the maps A ⊗U
1A⊗η−→ A ⊗ S(V ) and K ⊗U

1K⊗η−→ K ⊗ S(V ).
Since (1A⊗η)◦d ′ = 0 and η◦d = 0, then η and these twomaps induce abelianization
maps
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416 P. Beben, N. Seeliger

Q ηq−→ S(V ),

W ηw−→ A ⊗ S(V ),

Z ηz−→ K ⊗ S(V ).

Theorem 1.2 Let n > 3beodd. TheBVoperator� : H∗(LM;Q) −→ H∗+1(LM;Q)

satisfies �(Q) ⊆ W and �(W) ⊆ Z , and �(Z) = {0}. Moreover, the composite

Q �−→ W ηw−→ A ⊗ S(V ) is given by

ηw ◦ �(1 ⊗ (ui1 . . . uik )) =
k∑

j=1

ai j ⊗ (ui1 . . . ui j−1ui j+1 . . . uik ),

andW �−→ Z ηz−→ K⊗S(V ) is the restriction to ker d of themap (A⊗U )/Im d ′ −→
S(A) ⊗ S(V ) given by

ai ⊗ (ui1 . . . uik ) �→
k∑

j=1

aiai j ⊗ (ui1 . . . ui j−1ui j+1 . . . uik ),

where [M] ∈ K is identified with (
∑

i≤ j ci j ai a j ) ∈ S(A).

Berglund and Borjeson [6] have subsequently computed the free loop space homol-
ogy of highly connected manifolds (including the ones considered in this paper) using
different techniques. They also give a description of the action of the BV-operator
and the Chas–Sullivan loop product. With a bit of effort it is likely that the spectral
sequence methods in this paper can be extended to cover many of the highly connected
manifolds in [6]. For example, the based loop space homology of highly connected
manifolds is largely known [5], and this is one of the main ingredients that we use
here. On the other hand, we do not know whether a complete description of the Chas–
Sullivan loop product and BV-operator is possible using our approach—one difficulty
being extension issues in the Cohen–Jones–Yan spectral sequence [10] when comput-
ing the loop product, together with a seeming incompatibility between theBV-operator
and the Serre spectral sequence of a free loop fibration.

We should mention that there are sources of applications for the above calculations
that go beyond the classical question: are there infinitely many geometrically distinct
periodic geodesics on a Riemannian manifold M? For example, detailed information
about the Betti numbers of LM reflects more detailed information about the number
of geodesics of variable length. See [2,3,6,13] for details.

2 A useful lemma

Take a fibration sequence F
i−→ X

f−→ B with B simply-connected. Recall the
induced homotopy fibration sequence
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The free loop space homology of (n − 1)-connected 2n-manifolds 417

�B
ϑ−→ F

i−→ X (1)

is a principal homotopy fibration. Namely, there is a homotopy associative H -space
structure on the homotopy fiber �B together with a left action

θ : �B × F −→ F

that fits into a homotopy commutative square

�B × �B
1×ϑ ��

mult.
��

�B × F

θ

��
�B

ϑ �� F.

In our case the H -space multiplication mult. on �B is taken as the one defined by
composing loops, and the action θ is defined by applying the homotopy lifting property
to loops in B.

By a result of Moore [21], the homology Serre spectral sequence ξ of a principal
fibration such as (1) has a left H∗(�B)-module induced by the associated action θ .
Namely, there is a left action H∗(�B) ⊗ ξ ri, j −→ ξ ri, j+∗ reducing to the Pontrjagin

multiplication on ξ20,∗ ∼= H∗(�B) and differentials respect this action. Most of the
effort in computing differentials is therefore reduced to determining those emanating
from the degree 0 horizontal line.

Since fibrations are characterized by the homotopy lifting property, one might also
expect θ to have a direct bearing on the homology Serre spectral sequence for our
original fibration f . This was exploited by McCleary [19], where he used a result of
Brown [8] and Shih [23] to give a computation of the free loop space homology of
certain low rank Stiefel manifolds. The following proposition strengthens the result
in [8,23] by doing awaywith an assumption about certain elements being trangressive.
The proof is moreover fairly simple. Let

E = {Er , δr }

denote the homology Serre spectral sequence for f , and

E = {Er , dr }

the homology Serre spectral sequence for the path-loop fibration sequence �B
⊂−→

PB
ev1−→ B.

Proposition 2.1 Suppose H∗(B) and H∗(F) are torsion free. Given z ∈ H∗(B), and∑
i xi ⊗ vi ∈ E2∗,∗ ∼= H∗(B) ⊗ H∗(�B), suppose ds(z ⊗ 1) = ds(

∑
i xi ⊗ vi ) = 0

in Es∗,∗ for 2 ≤ s < r , and

dr (z ⊗ 1) =
∑

i

xi ⊗ vi .
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418 P. Beben, N. Seeliger

Then given z ⊗ y ∈ E2∗,∗ ∼= H∗(B) ⊗ H∗(F) for any y ∈ H∗(F), for each 2 ≤ s < r
we have

δs(z ⊗ y) = δs

(
∑

i

xi ⊗ θ∗(vi ⊗ y)

)
= 0

and

δr (z ⊗ y) =
∑

i

xi ⊗ θ∗(vi ⊗ y).

Proof First recall the following well-known property (which is essentially the homo-
topy lifting property in disguise). Let Pev0, f ⊆ map([0, 1], B)× X be the pullback of

X
f−→ B and the evaluation map map([0, 1], B)

ev0−→ B, where evt (ω) = ω(t). Now
consider the map f̄ : map([0, 1], X) −→ Pev0, f defined by f̄ (ω) = ( f ◦ ω,ω(0)).
Then a surjection f is a fibration if and only if there exists a map g : Pev0, f −→
map([0, 1], X) such that f̄ ◦ g = 1 : Pev0, f −→ Pev0, f .

Take the inclusion φ : PB × F −→ Pev0, f given by φ(ω, a) = (ω, a), and take
the the composite

θ̄ : (PB × F)
φ−→ Pev0, f g−→ map([0, 1], X)

ev1−→ X.

Let the fibration sequence

�B × F
⊂×1−→ PB × F

ev1×∗−→ B × ∗ (2)

be the product of the path-loop fibration sequence �B
⊂−→ PB

ev1−→ B and the trivial

fibration sequence F
1−→ F

∗−→ ∗. Let E = {Es, ds} and E̊ = {E̊s, d̊s} be the
homology Serre spectral sequences for the path-loop and trivial fibration respectively,
and Ê = {Ês, d̂s} be the homology spectral sequence for their product (2). Define a
differentialds⊗ : Es⊗E̊s −→ Es⊗E̊s by d̂s(a⊗b) = (ds(a)⊗b)+(−1)|a|(a⊗d̊s(b)).
Since H∗(F) is torsion-free, Ês = Es ⊗ E̊s and d̂s = ds⊗ (see [7,14]). In our case
d̊ = 0, so we have

d̂s(a ⊗ b) = ds(a) ⊗ b

for any a ∈ Es and b ∈ E̊s . One can easily check that the following diagram of
fibration sequences commutes

�B × F
⊂×1 ��

θ

��

PB × F
ev1×∗ ��

θ̄

��

B × ∗

F
i �� X

f �� B,

(3)
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The free loop space homology of (n − 1)-connected 2n-manifolds 419

with our action θ being in fact the restriction of θ̄ to the subspace �B × F . Let

ζ : Ê = E ⊗ E̊ −→ E

be the morphism of spectral sequences induced by this diagram.
Since ds(z ⊗ 1) = 0 ∈ Es∗,∗ for 2 ≤ s < r and dr (z ⊗ 1) = ∑

i xi ⊗ vi , then for

any b ∈ E̊s

d̂s((z ⊗ 1) ⊗ b) = ds(z ⊗ 1) ⊗ b = 0

d̂r ((z ⊗ 1) ⊗ b) = dr (z ⊗ 1) ⊗ b =
∑

i

(xi ⊗ vi ) ⊗ b,

which we use to obtain

δr (z ⊗ y) = δr ( ζ r ((z ⊗ 1) ⊗ (1 ⊗ y)) )

= ζ r ( d̂r ((z ⊗ 1) ⊗ (1 ⊗ y)) )

= ζ r

(
∑

i

(xi ⊗ vi ) ⊗ (1 ⊗ y)

)

=
∑

i

xi ⊗ θ∗(vi ⊗ y),

and similarly, δs(z ⊗ y) = 0 for 2 ≤ s < r .
In a similarly manner, we see d̂s((

∑
i xi ⊗ vi ) ⊗ b) = 0 for 2 ≤ s < r and (in

turn) δs(
∑

i xi ⊗ θ∗(vi ⊗ y)) = 0 using the fact that ds(
∑

i xi ⊗vi ) = 0 (so the above
equations make sense). ��

We now turn our attention towards the free loop space fibration sequence

�B
ϑ−→ LB

ev1−→ B. (4)

The map ϑ is the canonical inclusion �B ⊆ LB, and ev1 is the evaluation map
ev1(ω) = ω(1). The homology Serre spectral sequence for this fibration sequence
will be denoted by

E = {Er , δr },

and as before E = {Er , dr } is the homology Serre spectral sequence for the path-loop
fibration of B. The path-loop fibration is principal, so E has a left H∗(�B)-module
as described before which the differentials d respect.

Some basic properties of the free loop space fibration are as follows. The map

LB
ev1−→ B has a section B

s−→ LB defined by mapping a point b ∈ B to the constant
loop at b, which implies the connecting map � for the induced principal homotopy

fibration �B
�−→ �B

ϑ−→ LB is null homotopic. The associated left action
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420 P. Beben, N. Seeliger

θ : �B × �B −→ �B

is given by

θ(ω, λ) = ω · λ · ω−1

for any ω, λ ∈ �B. If v ∈ H∗(�B) is primitive, then for any y ∈ H∗(�B) one has
the formula

θ∗(v ⊗ y) = (−1)|v||y|yv − vy = −[v, y],

where the multiplication on H∗(�B) is the Pontrjagin multiplication induced by loop
composition on �B. The proof of these can be found in [19] for example. Combining
these propertieswith Proposition 2.1 gives the following description of the differentials
in the spectral sequence E .
Proposition 2.2 Suppose H∗(B) and H∗(�B) are torsion free, and B is 1-connected.
Given z ∈ H∗(B), and

∑
i xi ⊗ vi ∈ E2∗,∗ with vi primitive in H∗(�B), suppose that

ds(z ⊗ 1) = 0 and ds(
∑

i xi ⊗ vi ) = 0 in Es∗,∗ for 2 ≤ s < r , and

dr (z ⊗ 1) =
∑

i

xi ⊗ vi .

Then given z ⊗ y ∈ E2∗,∗ for any y ∈ H∗(�B), for each 2 ≤ s < r we have

δs(z ⊗ y) = δs

(
∑

i

xi ⊗ [vi , y]
)

= 0

and

δr (z ⊗ y) = −
∑

i

xi ⊗ [vi , y].

��
There are instances where this formula fails to give us enough information to deter-

mine some of the higher differentials. For example, if we found ourselves in the
situation where δs(z⊗ y) = 0 for s ≤ r and dr (z⊗ y) �= 0, then z⊗ y ∈ Er∗,∗ survives
to the Er+1 page, while z⊗ y is not an element in Er+1∗,∗ . In such case δs(z⊗ y) remains
mysterious when s > r . An example where this situation happens in practice is the
case of 4-manifolds omitted from Theorem 1.1.

3 Based loop space homology

Returning to our 2n-manifold M in the introduction, we consider the Hopf algebra
H∗(�M). This is the last piece in the puzzle required to prove Theorem 1.1. By
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The free loop space homology of (n − 1)-connected 2n-manifolds 421

Poincaré duality the only nonzero reduced homology groups of M are in degrees n
and 2n. This implies M has a cell decomposition given by attaching an n-cell to an
m-fold wedge of n-spheres

∨
m Sn � M − ∗.

Generally, if a space Y is formed by attaching a k-cell to a space X via an attaching
map Sk−1 α−→ X , and α′ is its adjoint, the composite with the looped inclusion

Sk−2 α′−→ �X
�i−→ �Y is nullhomotopic, so one obtains a factorization of Hopf

algebras through Hopf algebra maps

H∗(�X; R)/I

θ

��
H∗(�X; R)

(�i)∗ ��

��������������
H∗(�Y ; R),

(5)

where I is the two-sided ideal generated by α′([Sk−2]) ∈ Hk−2(�X; R). The problem
of determining the conditions under which θ is a Hopf algebra isomorphism is part
of what is known as the cell-attachment problem. One of these conditions—the inert
condition—states somewhat suprisingly that θ is a Hopf algebra isomorphism when
R is a field if and only if (�i)∗ is a surjection [11,15,18]. Here we select k = 2n,
Y � M , and X � M − ∗, and use the inert condition to prove the following:

Proposition 3.1 Suppose n ≥ 2, n �= 2, 4, 8, and m ≥ 1.

(i) There is an isomorphism of Hopf algebras (free as R-modules)

H∗(�M) ∼= T (V )

I

where V = R{u1, . . . , um}, |ui | = n − 1.
(ii) The element α′∗([S2n−2]) generating the two-sided ideal I is given by

α′∗([S2n−2]) =
∑

i< j

ci j [u j , ui ] +
∑

i

cii u
2
i .

Proof of part (i) In [4], �M is shown to be a homotopy retract of �(M − ∗) when
n �= 2, 4, 8. Therefore (�i)∗ is a split epimorphism, so we obtain H∗(�M; F) ∼=
H∗(�(M − ∗); F)/I for any field F . Moreover, since M − ∗ is homotopy equiva-
lent to

∨
m Sn , the Z-module H∗(�(M − ∗);Z) ∼= T (V ) is torsion-free. Therefore

H∗(�M;Z) is torsion-free, and the Hopf algebra isomorphism holds for R = Z as
well. ��
Proof of part (ii) We will write u j = (�i)∗(u j ) ∈ Hn−1(�M), and take u j to be the
transgression of a j ∈ Hn(M).

Since the elements u1, . . . , um in Hn−1(�(M − ∗)) are primitive, and there are no
monomials of length greater than 2 in degree 2n − 2, the elements u2i and [u j , ui ]
form a basis for the primitives in H2n−2(�(M − ∗)). Now α′∗([S2n−2]) is primitive
since [S2n−2] is primitive, so we can set
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422 P. Beben, N. Seeliger

(α′)∗([S2n−2]) =
∑

i< j

c′′
i j [ui , u j ] +

∑

i

c′′
i i u

2
i

for some integers c′′
i j .

Consider the homology Serre spectral sequence E = (Er , dr ) for the (principal)
path-loop fibration sequence M , with

E2∗,∗ = H∗(M) ⊗ H∗(�M).

On the dual cohomology spectral sequence we have the formula

dn(a j ⊗ ui ) = dn(a j ⊗ 1)(1 ⊗ ui ) + (−1)n(a j ⊗ 1)dn(1 ⊗ ui )

= (−1)n(a j ⊗ 1)(ai ⊗ 1) = ci j ([M]∗ ⊗ 1),

so dualizing back to the homology spectral sequence gives us

dn([M] ⊗ 1) =
∑

i, j

ci j (a j ⊗ ui ). (6)

Take Ē = (Ēr , d̄r ) to be the homology Serre spectral sequence for the path-loop
fibration of M − ∗. The inclusion (M − ∗) −→ M induces an inclusion of the
corresponding path-loop fibrations of (M − ∗) and M , and in turn a morphism of
spectral sequences γ : Ē −→ E . On the second page of spectral sequences γ2 maps

1 ⊗ ui to 1 ⊗ ui and ai ⊗ 1 to ai ⊗ 1, and Ēr
n,n−1

γr−→ Er
n,n−1 is an isomorphism for

2 ≤ r ≤ n.
By part (i) of the theorem (and preceeding discussion), (α′)∗([S2n−2]) generates the

kernel of (�i)∗ : H2n−2(�(M−∗)) −→ H2n−2(�M), so 1⊗(α)∗([S2n−2]) generates
the kernel of γ2 : E2

0,2n−2 −→ E2
0,2n−2. Since γr : Ēr

i, j −→ Er
i, j is an isomorphism

for i < n, j < 2n − 2, and all r , then in fact 1 ⊗ (α′)∗([S2n−2]) generates the kernel
of the map Ēr

0,2n−2
γr−→ Er

0,2n−2 for 2 ≤ r ≤ n.
Take the element

ζ ′′ =
∑

i≤ j

c′′
i j (a j ⊗ ui − ai ⊗ u j )

in Ēr
n,n−1, for 2 ≤ r ≤ n. Then

γn(ζ
′′) =

∑

i≤ j

c′′
i j (a j ⊗ ui − ai ⊗ u j ), (7)

and in Ēn
0,2n−2 we have

1 ⊗ (α′)∗([S2n−2]) =
∑

i≤ j

c′′
i j (1 ⊗ [ui , u j ]) = d̄n(ζ ′′).
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The free loop space homology of (n − 1)-connected 2n-manifolds 423

Since Ēr
i, j = {0} for i > n and Ē∞∗,∗ = {0}, the differential Ēn

n,n−1
d̄n−→ Ēn

0,2n−2 is an

isomorphism, and since Ēn
n,n−1

γn−→ En
n,n−1 is an isomorphism and 1⊗(α′)∗([S2n−2])

generates the kernel of Ēn
0,2n−2

γn−→ En
0,2n−2, by naturality we see that the kernel of

the differential En
n,n−1

dn−→ En
0,2n−2 is generated by γn(ζ

′′). In particular, we may
project γn(ζ ′′) down to E∞∗,∗.

Let

I = Im dn : En
2n,0 −→ En

n,n−1

K = ker dn : En
n,n−1 −→ En

0,2n−2.

As we saw above, I is generated by dn([M] ⊗ 1), and γn(ζ
′′) generates K. But the

short exact sequence

0 −→ En
2n,0

dn−→ En
n,n−1

dn−→ En
0,n−2 −→ 0

implies I ⊆ K. Therefore dn([M] ⊗ 1) = ±γn(ζ
′′). Now comparing coefficients in

Eqs. (6) and (7), the result follows. ��

4 Proof of Theorem 1.1

We now have everything required to prove Theorem 1.1 via a routine Serre spetral
sequence argument. Let E = {Er , δr } be the homology Serre spectral sequence for the
free loop space fibration sequence

�M
ϑ−→ LM

ev1−→ M.

By Proposition 3.1 we have an isomorphism H∗(�M) ∼= U = T (V )/I of Hopf
algebras, which are free as R-modules. So we start with an isomorphism of free R-
modules

E2∗,∗ ∼= R{1, a1, . . . , am, [M]} ⊗U.

By Proposition 2.2

δn(ai ⊗ y) = −1 ⊗ [ui , y]

where ui is the transgression of ai , and using (6),

δn([M] ⊗ y) = −
∑

i, j

ci j (a j ⊗ [ui , y]).

Therefore E2n
0,∗ ∼= Q, E∞

n,∗ ∼= E2n
n,∗ ∼= W , and E2n

2n,∗ ∼= Z , while all other entries
in the spectral sequence are zero. Here, the only possible nonzero differentials are
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424 P. Beben, N. Seeliger

δ2n : E2n
2n,∗ −→ E2n

0,∗+2n−1. But since the nonzero elements inZ andQ are concentrated
in total degrees 2n+k(n−1) and k(n−1) respectively, one can check the differentials
δ2n are zero for degree placement reasons whenever n > 2. Thus these isomorphisms
carry over to the infinity page, that is,

E∞∗,∗ ∼= E∞
0,∗ ⊕ E∞

n,∗ ⊕ E∞
2n,∗ ∼= Q ⊕ W ⊕ Z.

Generally, one has torsion here when R = Z (or at least inQ, and possiblyW), so
we must consider a potential extension problem. Once again placement reasons allow
us to skirt around the issue.

From the construction of the homology Serre spectral sequence there are increasing
filtrations Fi, j = Fi H j (LM) ⊆ Hj (LM) such that Fk,k = Hk(LM), Fi, j = 0 for
i < 0, and

E∞
i, j

∼= Fi,i+ j

Fi−1,i+ j
.

Since the nonzero elements inQ,W , andZ are in degrees k(n−1), n+ k(n−1), and
2n + k(n − 1),Q,W , and Z pairwise have no nonzero elements in the same degrees
when n > 3. Since Fn−1,∗ = F0,∗ = Q, we have Fn−1,n+k(n−1) = {0}, and we see
that Fn,∗ ∼= F0,∗ ⊕ E∞

n,∗ ∼= Q ⊕ W . Then F2n−1,2n+k(n−1) = Fn,2n+k(n−1) = {0}, so
F2n,∗ ∼= Fn,∗ ⊕ E∞

2n,∗, and we have

E∞
2n,∗ ∼= F2n,∗ = H∗(LM)

whenever n > 3.
When n = 3, the common nonzero degrees shared between any pair of these three

modules are of the form 2(k + 3), and these are only between Q and Z . But since Z
is torsion-free and Q = F0,∗ is at the bottom of the filtration, there are no extension
issues here either.

5 Eilenberg–Maclane spaces and the BV-operator

We will need some information about the action of the BV-operator on products of
Eilenberg–Maclane spaces before getting into the proof Theorem 1.2. The approach
we take here is similar to the one taken by Hepworth in [17] to compute the BV-
operator for Lie groups. We begin this section by recalling it. Fix R to be a principal
ideal domain, and X (homotopy type of aCW -complex) a path-connected topological

group with multiplication X × X
μ−→ X . This makes LX into topological group

with multiplication LX ×LX
Lμ−→ LX defined by point-wise multiplication of loops

(ω · γ )(t) = ω(t) · γ (t). There is a well-known homeomorphism

h : X × �X −→ LX

h(x, ω) = x · ω
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with inverse h−1 : LX −→ X × �X given by h−1(ω) = (ω(0), ω(0)−1 · ω), where
x ·ω is the loop defined at each point by (x ·ω)(t) = x ·ω(t). These homeomorphisms
are equivariant with respect to our action S1 × LX

ν−→ LX , and the action

ν̄ : S1 × X × �X −→ X × �X

defined by the formula

ν̄(t, x, ω) = h−1 ◦ ν(t, x · ω) = (x · ωt (0), (x · ωt (0))
−1 · x · ωt )

= (x · ωt (0), ωt (0)
−1 · ωt )

where ωt (s) = ν(t, ω)(s) = ω(s + t). On homology we have a commutative square

H∗(X × �X; R)

�̄

��

h∗
∼=

�� H∗(LX; R)

�

��
H∗+1(X × �X; R)

h∗

∼= �� H∗+1(LX; R)

where �̄(e) = ν̄∗([S1] ⊗ e). Clearly, after transposing X and S1, ν̄ is the composite

X×(S1×�X)
1X×�−→ X×(S1×�X)×(S1×�X)

1X×ev×φ−→ (X×X)×�X
μ×1−→ X×�X,

with ev : S1 ×�X −→ X the evaluation map ev(t, ω) = ω(t) = ωt (0), and φ : S1 ×
�X −→ �X defined by φ(t, ω) = ωt (0)−1 · ωt . Thus, if H∗(�X; R) is a free

R-module, so that (for simplicity) the cross product H∗(X; R) ⊗ H∗(�X; R)
×−→

H∗(X×�X; R) is an isomorphism, and the coproduct on an element b ∈ H∗(�X; R)

has the form �∗ (b) = ∑
i di ⊗ ei , then �̄ satisfies

(−1)|a|�̄(a ⊗ b) =
∑

i

(−1)|di |(a(ev∗(1 ⊗ di )) ⊗ φ∗([S1] ⊗ ei ))

+
∑

i

(a(ev∗([S1] ⊗ di )) ⊗ φ∗(1 ⊗ ei ))

=
∑

i

(−1)|di |(aε(di ) ⊗ φ∗([S1] ⊗ ei ))

+
∑

i

(a(ev∗([S1] ⊗ di )) ⊗ ei ) (8)

where ε : H∗(�X; R) −→ R is the augmentation. To complete this formula one needs
to determine the maps φ∗ and ev∗. This latter map defines the homology suspension
σ : H∗(�X; R) −→ H∗+1(X; R), σ(a) = ev∗([S1]⊗ a), which satisfies the formula

σ(ab) = σ(a)ε(b) + ε(a)σ (b) (9)
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for any product ab ∈ H∗(�X; R) induced by the loop composition multiplication on
�X . In particular, σ is zero on decomposable elements. If X is an H -space, one can
derive this formula by observing that the following diagram commutes

(S1 × S1) × (�X × �X)
1×T×1�� (S1 × �X) × (S1 × �X)

ev×ev �� X × X

μ

��
S1 × (�X × �X)

1×�μ ��

�×1×1

��

S1 × �X
ev �� X,

and that point-wise multiplication of based loops �μ on �X is homotopy com-
mutative and homotopic to the loop composition multiplication on �X (this is a
mapping space analogue of Theorem 5.21, Chapter III in [26]). Alternatively, it is
a consequence of the homology suspension theorem [26, Chapter VIII]. The map
κ(a) = φ∗([S1] ⊗ a) is a bit more mysterious. At the very least, when μ is commuta-
tive one obtains an analogous commutative diagram for φ together with a derivation
formula κ(ab) = κ(a)b + aκ(b), while for the case of compact Lie groups, κ is triv-
ial since H∗(�X) is concentrated even degrees. We consider the case where X is an
Eilenberg–Maclane space K (R, n). These can be taken to be commutative topological
groups, and wemaywrite K (G, n−1) = �K (G, n)with commutative multiplication
induced by the one on K (R, n), which by theway is homotopic to the loop composition
multiplication.

Proposition 5.1 Let J be the image of the cross product H∗(K (R, n − 1); R) ⊗
H∗(K (R, n); R)

×−→ H∗(K (R, n − 1) × K (R, n); R) (which is injective by the
Künneth formula). Suppose the coproduct on a ∈ H∗(K (R, n− 1); R) is in the image
of the cross product, that is, it is of the form �∗ (b) = ∑

i di × ei . Then with respect
to the isomorphism h∗, the BV-operator is given on a × b ∈ J ⊆ H∗(LK (R, n); R)

by the formula

�(a × b) = (−1)|a| ∑

i

(a(ρ∗([S1] ⊗ di )) × ei ),

where �K (R, n − 1)
ρ−→ K (R, n) is a classifying map for [S1] ⊗ ιn−1 ∈

H∗(�K (R, n − 1); R) ∼= H̄∗(S1; R) ⊗ H̄∗(K (R, n − 1); R), and ιn−1 ∈
H̄n−1(K (R, n − 1); R) is the fundamental class.

Proof Since our map S1 × K (R, n − 1)
φ−→ K (R, n − 1) restricts to the identity

on the right factor, φ∗(ιn−1) = 1 ⊗ ιn−1, or in other words, φ is a classifying map of
the cohomology class 1 ⊗ ιn−1 ∈ H̄n−1(S1 × K (R, n − 1); R). The projection map

onto the right factor S1 × K (R, n − 1)
∗×1−→ K (R, n − 1) is also a classifying map

for 1 ⊗ ιn−1. Since cohomology classes are in one-to-one correspondance with the
homotopy classes of the classifying maps representing them, φ must be homotopic to
∗ × 1. Therefore φ∗([S1] ⊗ d) = 0 for any d.
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Next, recall the suspension isomorphism Hn−1(K (R, n − 1); R)
∼=−→ Hn(�K (R,

n − 1); R), sending a �→ [S1] ⊗ a, factors as the composite

Hn−1(K (R, n − 1); R)
∼=−→ [K (R, n − 1), K (R, n − 1)]
∼=−→[�K (R, n − 1), K (R, n)]

where the lastmap is the adjoint isomorphism. Since the evaluationmap S1×K (R, n−
1)

ev−→ K (R, n) restricts to the constantmap on both the left and right factors, it factors
as the composite

ev : S1 × K (R, n − 1)
quotient−→ �K (R, n − 1)

ev′−→ K (R, n),

where the last map ev′ (also known as the evaluation map in the literature) is the

adjoint of the identity map K (R, n − 1)
1−→ K (R, n − 1). Since the identity is a

classifying map of ιn−1, by the above factorization of the suspension, its adjoint ev′
is a classifying map of [S1] ⊗ ιn−1. The proposition now follows using Eq. (8). ��

The BV-operator has a very clean form on decomposable elements when we take
our multiplication on H∗(LX) to be the one induced by point-wise multiplication
of loops Lμ (instead of the multiplication (�μ × μ) ◦ (1 × T × 1) based on each
coordinate of �X × X ∼= LX ). Tamanoi [24] gave a derivation formula with respect
to this product

�(ab) = �(a)b + (−1)|a|a�(b),

which is a straightforward consequence of the following commutative diagram

(S1 × S1) × (LX × LX)
1×T×1�� (S1 × LX) × (S1 × LX)

ν×ν �� LX × LX

Lμ

��
S1 × (LX × LX)

1×Lμ ��

�×1×1

��

S1 × LX
ν �� LX.

Both multiplications on LX are equal when the multiplication on X is commutative.
Since this is the case for K (R, n), our formula in Proposition 5.1 satisfies

(−1)|b||c|�(ac × bd) = �((a × b)(c × d))

= �(a × b)(c × d) + (−1)|a|+|b|(a × b)�(c × d). (10)

The derivation formula can also be used to determine how the BV-operator interacts
with the cross-product, as we see in the following:
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Proposition 5.2 Let X = X1 ×· · ·× Xk be a product of topological groups (Xi , μi ).
Then the BV-operator for LX ∼= LX1 × · · · × LXk satisfies

�(a1 × · · · × ak) =
∑

i

(−1)ki (a1 × · · · × �(ai ) × · · · × ak)

for ai ∈ H∗(LXi ), where ki = ∑i−1
j=1 |a j | and k1 = 0.

Proof It suffices to prove the statement for length-2 products X = X1 × X2. One
can then iterate to obtain the general formula. Since the inclusion of the left factor

LX1
1×∗−→ LX1 × LX2 induces the map on homology sending a �→ a × 1 for any a,

by naturality of the BV-operator we have�(a1 ×1) = (1×∗)∗(�(a1)) = �(a1)×1.
Similarly, �(1×a2) = 1×�(a2). Since X is a topological group with multiplication

μ defined by the composite X × X
1×T×1−→ (X1 × X1) × (X2 × X2)

μ1×μ2−→ X , the
point-wise loop multiplication Lμ is the composite

LX×LX
∼=−→ (LX1×LX2)×(LX1×LX2)

1×T×1−→ (LX1×LX1)×(LX2 × LX2)

Lμ1×Lμ2−→ LX .

Therefore (a1 × 1)(1 × a2) = a1 × a2 with respect to this induced product, and by
the derivation formula we have

�(a1 × a2) = �(a1 × 1)(1 × a2) + (−1)|a1|(a1 × 1)�(a2 × 1)

= �(a1) × a2 + (−1)|a1|a1 × �(a2).

��
We have, for the sake of simplicity, been restricting X to be a topological group.

Some of the material above however extends (up-to-homotopy) to where X is a homo-
topy associative H -space. In this scenario h is a homotopy equivalence since it defines
is a weak equivalence between the free loop fibration and the trivial fibration. If X
has an inverse −1 : X −→ X , x �→ x−1, the null homotopy H : X × X × I −→ X ,
with H0 = ∗ and H1 = 1× −1, allows us to define the homotopy inverse h−1 just as
before, except this time composing the loop ω(0)−1 · ω with the based path given by
Ht (ω(0)−1, ω(0)), and the action ν̄ will have a similar form.

In the case of rational coefficients, a simply connected H -space X has a rational
decomposition XQ � ∏

i K (Q, ni ), and the classifying maps �K (Q, ni − 1) −→
K (Q, ni ) can be identified with the Freudenthal suspension Sni

Q
−→ ��Sni

Q
in the ni

even case, and evaluation ��Sni
Q

−→ Sni
Q

in the odd case. We see then that the action
of � on H∗(LX;Q) with respect to the algebra structure induced by the group mul-
tiplication on

∏
i K (Q, ni ) can be determined by applying Propositions 5.1 and 5.2.

This technique can still be used to obtain some useful information for more gen-
eral coefficients. Suppose H∗(X; R) is free as an R-module, and a ∈ Hn(X; R) is an
indecomposable element in the Hopf algebra H∗(X; R). Then the cohomology dual
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â ∈ Hn(X; R) of a is a primitive element in the dual Hopf algebra H∗(X; R), the clas-
sifying map X

c−→ K (R, n) of â is an H -map, and moreover it is natural with respect
to the homeomorphism h. That is, the following squares commute up to homotopy

X × X
c×c ��

μ

��

K (R, n) × K (R, n)

mult.
��

X × �X
c×�c ��

h ∼=
��

K (R, n) × �K (R, n)

h∼=
��

X
c �� K (R, n) LX

Lc �� LK (R, n).

(11)
The proof of commutativity is as follows. For degree reasons, the fundamental class
ιn satisfies (mult.)∗(ιn) = (ιn × 1 + 1 × ιn), so we have (c × c)∗ ◦ (mult.)∗(ιn) =
â⊗1+1⊗â. Likewise, since â is primitive,μ∗◦c∗(ιn) = μ∗(â) = â⊗1+1⊗â. Thus
both the composites in thefirst square are classifyingmapsof â⊗1+1⊗â,meaning they
are homotopic. This gives the first square. To obtain the second square, let H : (X ×
X) × I −→ K (R, n) be a choice of homotopy between the composites in the first
square. Define the homotopyG : (X×�X)× I −→ LK (R, n) byG(x, ω, t) = ωx,t ,
where ωx,t : S1 −→ X is the loop given by ωx,t (s) = H(x, ω(s), t). Then G defines
a homotopy between the two composites in the second square. As a consequence of
these diagrams, Lc∗ is an algebra map with respect to the algebra structure induced
by the isomorphisms h∗, given by (Lc)∗(v ⊗ b) = c∗(v) × (�c)∗(b) .

Now suppose n is odd, a is trangressive, and τ(a) ∈ Hn−1(�X; R) is its trangres-
sion. Since c∗ maps a to the homology dual ι̂n of ιn , and ι̂n is trangressive onto τ(ι̂n) =
ι̂n−1, the homology dual of the fundamental class of �K (R, n) = K (R, n − 1), we
have (�c)∗(τ (a)) = ι̂n−1. Then (Lc)∗(�(v ⊗ τ(a))) = �((Lc)∗(v ⊗ τ(a))) =
�(c∗(v) × ι̂n−1) = (−1)|v|(c∗(v)ι̂n) × 1 by Proposition 5.1, and applying the deriva-
tion formula (10) inductively,

(Lc)∗(�(v ⊗ τ(a)k)) = �(c∗(v) ⊗ ι̂kn−1) = k(−1)|v|((c∗(v)ι̂n) × ι̂k−1
n−1).

Since (Lc)∗(va ⊗ τ(a)k−1) = (c∗(v)ι̂n) × ι̂k−1
n−1, if we assume τ(a)k−1 generates

H(k−1)(n−1)(�X; R), and va generates Hn+|v|(X; R), then

�(v ⊗ τ(a)k) = k(−1)|v|(va ⊗ τ(a)k−1).

For example, if we take R = Zp for p an odd prime, X = Sn(p) as a p-localized sphere
(which is an H -space for n odd [1]), and a = [Sn], then this formula completely deter-
mines the action of � on H(LSn;Zp) ∼= H(LX;Zp). This is a somewhat different
approach for spheres than the one taken by Westerland [25], and Menichi [20].

6 Proof of Theorem 1.2

For degree placement reasons, it is clear that �(Q) ⊆ W , �(W) ⊆ Z , and �(Z) =
{0} when n > 3. Consider the composite
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f : M �−→
m∏

i=1

M
∏

i fi−→
m∏

i=1

K (Q, n) = P,

where fi is the classifying map of the generator ai ∈ Hn(M;Q). Let ιi ∈
Hn(K (Q, n);Q) denote the homology dual of the fundamental class for the i th

factor, and ῑi ∈ Hn−1(K (Q, n − 1);Q) the corresponding trangression. Let W =
Q{ι1, . . . , ιm} and W̄ = Q{ῑ1, . . . , ῑm}.

Since n is odd, H∗(K (Q, n);Q) ∼= �Q[ιi ], H∗(K (Q, n − 1);Q) ∼= Q[ῑi ], f
induces the injection H∗(M;Q) ∼= V ⊕ K −→ �Q[W ], mapping ai �→ ιi and

[M] �→ β = ∑
i< j (ci j ιi ι j ), and � f induces the algebra mapQ ηq−→ Q[W̄ ] ∼= S(V ),

mapping ui �→ ῑi .

Consider the morphism of rational homology Serre spectral sequences E φ−→ E
induced by the map of free loop space fibrations

�M ��

� f
��

LM
ev1 ��

L f
��

M

f
��

�P �� LP
ev1 �� P.

The spectral sequence E for the bottom fibration collapses since the total space is a
topological group with section. On the infinity page

H∗(LP;Q) ∼= H∗(P;Q) ⊗ H∗(�P;Q) ∼=
m⊕

i=0

E∞
ni,∗,

and φ∞ restricts to the mapsQ ηq−→ Q[W̄ ] ∼= E∞
0,∗,W

ηw−→ W ⊗ Q[W̄ ] ∼= E∞
n,∗, and

Z ηz−→ Q{β} ⊗ Q[W̄ ] ⊆ E∞
2n,∗ [note W ∼= V , Q{β} ∼= K , and Q[W̄ ] ∼= S(V ) in the

introduction].
Let F be thefiltrationof H∗(LP;Q) associatedwith the spectral sequence E .Notice

E∞
n,∗ ∼= Fn,n+∗/Q[W̄ ], and Q[W̄ ] is concentrated in degrees k(n − 1), while W is

concentrated in degrees n+k(n−1), which are never equal when n > 3, so they do not
share any nonzero elements in the same degree. Similarly, E∞

2n,∗ ∼= F2n,2n+∗/Fn,2n+∗,
Fn,∗ ∼= Q[W̄ ] ⊕ (W ⊗ Q[W̄ ]) is concentrated in degrees k(n − 1) and n + k(n − 1),
and Z is concentrated in degrees 2n + k(n − 1), which are never equal when n > 3.
Therefore, with respect to our isomorphism H∗(LM;Q) ∼= Q ⊕ W ⊕ Z , (L f )∗
restricts to the maps ηq , ηw, and ηz on each summand.

The action of � on H∗(LK (Q, n − 1);Q) is given by �(1 ⊗ ῑki ) = k(ιi ⊗ ῑk−1
i )

and �(a ⊗ ῑi ) = 0 when |a| > 0. This follows from Proposition 5.1, and iterating
formula (10). Alternatively, it follows from [20,25]. Now by Proposition 5.2,

�(a ⊗ ῑ
k1
1 . . . ῑkmm ) =

m∑

i=1

ki (aιi ⊗ ῑ
k1
i . . . ῑ

ki−1
i . . . ῑkmm ) ⊆ W ⊗ Q[W̄ ] ∼= A ⊗ S(V )
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for any integers ki ≥ 0. Since for any q ∈ Q, we have �(q) ∈ W ,

� ◦ ηq(q) = � ◦ (L f )∗(q) = (L f )∗ ◦ �(q) = ηw ◦ �(q),

we obtain the formula for the composite Q �−→ W ηw−→ A ⊗ S(V ). Similarly we

obtain the formula for the composite W �−→ Z ηz−→ K ⊗ S(V ).
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