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Abstract There is a natural inclusion of SL2(Z) into SL2(Z[i]), but it does not induce
an injection of commutator factor groups (Abelianizations). In order to see where and
how the 3-torsion of the Abelianization of SL2(Z) disappears,we study a double cover
of the amalgamated product decomposition SL2(Z) ∼= (Z/4Z) ∗(Z/2Z) (Z/6Z) inside
SL2(Z[i]); and then compute the homology of the covering amalgam.
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1 Introduction

Recall the classical decomposition of SL2(Z) as an amalgamated product C4 ∗C2 C6,
where Cn denotes the cyclic group with n elements, along the modular tree [7]. When
we take SL2(Z)modulo its center {±1}, which is at the same time the kernel of its action
on the modular tree, then we obtain the decomposition PSL2(Z) ∼= C2 ∗{1} C3. Here,
we easily see how the subgroup {±1} is divided out in each factor of the amalgamated
product. In this article, we want to go in the other direction : Instead of collapsing
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the center of the action, we want to extend it. Then the extended group � is going to
admit an amalgamated decomposition, the quotient of which is the decomposition of
SL2(Z).

To see this, we are going to reflect the modular tree on the real axis, and then
identify the reflected copy with the original by passing to the quotient modulo complex
conjugation. Then our extended group � acts also by Möbius transformations, but, as
we allow the matrices in � to have complex entries, they can send the upper half-plane
to the lower half-plane. We therefore need to choose � small enough and suitable
such that in the quotient modulo complex conjugation, it preserves the image of the
modular tree.

Let� := SL2(Z) ∪ {i B|B ∈ GL2(Z)and det B = −1},

where i := √−1. Note that � is a group and contains SL2 (Z) as a subgroup of index
2. Our main result is the following amalgamated decomposition.

Theorem 1 There is an isomorphism � ∼= Q8 ∗C4 (C3 �C4), where Q8 is the quater-
nion group of order 8 and Cm is the cyclic group of order m.

Conclusion Computing the homology of �, which we do in a corollary to this The-
orem, we can see precisely where the element of order 3 in the Abelianization of

SL2(Z), given by the conjugacy class of the matrix
(

0 −1
1 1

)
, vanishes when mapping

to the Abelianization of of the Picard modular group SL2(Z[i]); the latter Abelian-
ization containing no 3–torsion, whilst it contains the 2-torsion of H1(SL2(Z); Z)

[6], [5]. Namely, this vanishing occurs when extending the Abelian subgroup C6 in
SL2(Z) to the non-Abelian subgroup (C3 � C4) in SL2(Z[i]).

2 Decomposing the extended group

For the proof of Theorem 1, we define an action of � on the quotient of the union of
upper half-plane and lower half-plane modulo complex conjugation, by linear frac-
tional transformations:

(
a b
c d

)
· {z, z̄} :=

{
az + b

cz + d
,

(
az + b

cz + d

)}
.

The orbit of the points P := {− 1
2 ±

√
3

2 i} and Q := {±i} under the action of the
subgroup SL2 (Z) can be made in an obvious fashion the vertex set of a tree X which
is canonically isomorphic to the well-known tree that can be found in [7]. We will
now proceed in six steps and show that

1. We have � · X = X , so � acts on the tree X .
2. Let T be the oriented segment from P to Q. Then T is a fundamental domain for

this action.
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3. The isotropy group �P is generated by

ρ :=
(

0 −1
1 1

)
and τ :=

(
0 i
i 0

)
.

4. The isotropy group �Q is generated by

σ :=
(

0 1
−1 0

)
and τ.

5. The isotropy group �T is the cyclic group generated by τ , so we have canonical
inclusions into �P and �Q .

6. The matrix τ generates C4; the matrices τ and σ generate Q8;
τ and ρ generate (C3 � C4).

Having arrived at this stage, applying the following classical theorem of Bass–Serre
theory implies Theorem 1.

Theorem 2 ([7],Theorem 4.6) Let G be a group acting on a graph X , and let T be
an oriented segment of X , with vertices P and Q. Suppose that T is a fundamental
domain of X mod G. Let G P , G Q and GT be the isotropy groups of their indexing
objects. Then the following properties are equivalent:

• X is a tree.
• The homomorphism G P ∗GT G Q → G induced by the inclusions G P → G and

G Q → G is an isomorphism.

Proof of Theorem 1
Step 1. We need to consider the imaginary elements γ ∈ �. They are of the form

γ =
(−ia −ib

ic id

)
with a, b, c, d in Z and ad − bc = −1. The image under γ of a

point {z, z̄} is

(−ia −ib
ic id

)
· {z, z̄} =

{
−

(
az + b

cz + d

)
,−

(
az̄ + b

cz̄ + d

)}
.

So, the action of � is the action of SL2(Z) twisted by the reflecting on the imaginary
axis (which is not carried out by SL2(Z), as the latter preserves orientation); and the
modular tree is preserved under this action because it admits this reflection symmetry
axis.

Step 2. Follows from the analogous property of the original modular tree.

Step 3. Consider an imaginary element γ =
(−ia −ib

ic id

)
with a, b, c, d in Z,

ad − bc = −1 and γ · P containing − 1
2 +

√
3

2 i ∈ P . Then we obtain the fixed point
equation

−a

(
−1

2
±
√

3

2
i

)
− b =

(
c

(
−1

2
±
√

3

2
i

)
+ d

) (
−1

2
+
√

3

2
i

)
,
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which we decompose into real and imaginary part. Then we can solve to
b = ( 1

2 ∓ 1
2 )a ± c and d = ∓a + ( 1

2 ± 1
2 )c. Using ad − bc = −1, we deduce

the equation ±1 = a2 + c2 − ac, which admits six integer solutions. We obtain
exactly one matrix of determinant 1 for each of these solutions. Namely,

±
(

0 i
i 0

)
, ±

(−i −i
0 i

)
±

(−i 0
i i

)
.

Together with the isotropy matrices from SL2(Z),

±
(−1 −1

1 0

)
, ±

(
0 −1
1 1

)
, ±

(
1 0
0 1

)
,

we obtain the stabilizer of P in � as a set. Now step 3 is completed by checking that
the group generated by τ and ρ under matrix multiplication consists exactly of these
twelve matrices.

Step 4. We proceed analogously to step 3 and obtain the stabilizing matrices

±
(

0 i
i 0

)
, ±

(
0 1
−1 0

)
, ±

(−i 0
0 i

)
, ±

(
1 0
0 1

)
.

Checking that the group generated by matrix multiplication of τ and σ consists exactly
of these eight matrices completes this step.

Step 5. As we have defined T to be the oriented segment with vertices P and Q,
its isotropy group consists of the elements of � fixing both P and Q (which gives us
the canonical inclusions into �P and �Q):

�T = �P ∩ �Q =
{
±

(
0 i
i 0

)
,±

(
1 0
0 1

)}
.

It is easy to check that this group is generated by the matrix τ .
Step 6. This is straightforward by establishing the respective multiplication tables.
Applying Theorem 2 now completes the proof of Theorem 1. 
�

Corollary of Theorem 1 The homology of � with trivial Z-coefficients is

Hq(�) ∼= Hq(Q8 ∗C4 (C3 � C4)) ∼=

⎧⎪⎪⎨
⎪⎪⎩

Z/8⊕ Z/3, q ≡ 3 mod 4,

0, q ≡ 0 mod 2,

(Z/2)2, q ≡ 1 mod 4,

Z, q = 0.

Proof From Theorem 1, we know that we can use the equivariant spectral sequence
associated to the action of the amalgamated product Q8 ∗C4 (C3 � C4) on its tree. This
spectral sequence is concentrated in the first two columns (p = 0 and p = 1);
and its even rows (q non-zero and even) vanish. To compute the differentials of
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degree 1,

Z/8⊕ (Z/4⊕ Z/3)← Z/4

in the rows q ≡ 3 mod 4 and

(Z/2)2 ⊕ Z/4← Z/4

in the rows q ≡ 1 mod 4, we use the following resolutions.

• A resolution for the eight-elements quaternion group Q8 that we construct from
the action of Q8 on the unit quaternions H

∗ by left multiplication in the quaternion
field H. The unit quaternions H

∗ are homeomorphic to the 3-sphere, and we put
a Q8-equivariant cell structure on them. Alternatively, we can use the resolutions
for Q8 provided in the literature by Cartan and Eilenberg [3], Brown [2], Adem
and Milgram [1].
• The resolution for C3 � C4 given by C.T.C. Wall [8] (we are in the case r = 3,

s = 4, t = 2. Beware of the typographical misprint on page 254 of [8], which has
turned the symbol

∑s−1
j=0 into

∑s−1
j=1).

Wall also examines the Lyndon–Hochschild–Serre spectral sequence converging to

Hn(C3 � C4) ∼=
⊕

p+q=n

Hp(C4;Hq(C3)),

and concentrated in the edges where either p or q is zero. This gives a natural inclusion

Hq(C3 � C4)←↩ Hq(C4)

in all degrees q, so we obtain the claimed result. 
�
One can check this corollary on the computer with Homological Algebra Program-

ming (HAP) [4].
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