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Predicting special care during the COVID-19 
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Abstract 

More than ever, COVID-19 is putting pressure on health systems worldwide, especially in Brazil. In this study, we 
propose a method based on statistics and machine learning that uses blood lab exam data from patients to predict 
whether patients will require special care (hospitalization in regular or special-care units). We also predict the num-
ber of days the patients will stay under such care. The two-step procedure developed uses Bayesian Optimisation to 
select the best model among several candidates. This leads us to final models that achieve 0.94 area under ROC curve 
performance for the first target and 1.87 root mean squared error for the second target (which is a 77% improvement 
over the mean baseline)—making our model ready to be deployed as a decision system that could be available for 
everyone interested. The analytical approach can be used in other diseases and can help to plan hospital resources in 
other contexts.
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Introduction
The COVID-19 pandemic is a considerable challenge 
for Brazil and many other countries around the world. 
The disease is putting tremendous pressure on health 
care services and there is no strong consensus on what 
measures are the most effective in terms of dealing with 
it. There are various independent reports that indicate a 
high occupancy rate in intensive care units with facilities 
to support patients who have severe respiratory tract fail-
ure and related conditions, thus creating a unique oppor-
tunity to solve this problem with scientific rigor helping 
to improve this difficult situation. The disease is spread-
ing quickly, and social distancing measures are being 
phased out in several countries despite recommendations 
on the contrary issued by the World Health Organization 
(WHO) and the Centers for Disease Control and Preven-
tion (CDC) [45].

As pointed out by [43], the massive amount of data 
acquired from several sources should be put into fair use 
for intensive training of machine learning algorithms to 

better understand the disease, the patients, and possible 
prognosis, enabling informed decision-making. Our main 
motivation is to unify subjects, such as Machine Learn-
ing, Optimization, Hospital Planning and applied AI to 
serve the purpose of using hospital resources responsibly 
and improve the quality of care provided to patients. We 
propose an analytical approach that leverages the most 
recent discoveries in each one of these areas and uses lab-
oratory blood test data to estimate the probability of one 
given patient to require special-care treatment, also esti-
mating the number of days the same patient will be under 
such care. Our aim is to create the basis of a decision 
system that can be used by anyone interested in replicat-
ing and estimating such outcomes, with the capability to 
expand the proposed method to deal with other diseases 
when needed.

We used data available in [14], which joins laboratory 
test data from the Sírio Libanês Hospital, Albert Einstein 
Israeli Hospital, and Fleury Laboratories (all located in 
the city of São Paulo, Brazil). These data comprise several 
different laboratory tests performed on patients (mostly 
blood tests). This preference for blood tests is not coin-
cidental: most of them are well-standardized and usually 
inexpensive to perform, accessible in most situations, 
even for developing countries.
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This article is organized as follows. In “Literature 
review” section , we examine some of the most relevant 
literature present in machine learning with a healthcare 
perspective. In “Method” section, we present our analyti-
cal approach used to create ML models to predict special 
care probability and extend the same techniques to pre-
dict how many days any given patient will spend under 
such care—focusing on the overall applicability and 
explainability of the models trained. The overall numeri-
cal results are then presented for both targets in “ Com-
putational results” section, considering the candidate 
models and the final selected optimized ones. Finally, we 
present our conclusions, limitations and possible exten-
sions that should follow for other diseases and situations 
where our approach could be useful.

Literature review
This literature review will focus on shedding light on 
recent efforts using ML and decision systems from a 
healthcare perspective. Some specific references con-
cerning COVID-19 will be analyzed. Moreover, we will 
also focus on new, interesting and emerging applications 
for other diseases and situations to clarify research in the 
subject and compare this article with others in the same 
field.

Using statistical methods in healthcare for a large num-
ber of individuals comprising a great number of data 
points dates back to the 1950s. The Framingham Heart 
Study was established, showing correlations between 
doctors’ health measurements (including some labora-
tory test results) and heart diseases, diabetes, and obesity. 
See [35] for a historical perspective and [4] for a statisti-
cal point of view. This study is considered one of the fin-
est and earliest examples of how statistics and decision 
systems could be implemented to help governments and 
policymakers make well-informed decisions that have a 
huge impact on a specific individual’s quality of life and 
overall survival rate.

After the 1950s, with the advent of faster comput-
ers that have high-level programming languages and 
frameworks, several studies arose under the ML and 
decision systems umbrella. From medicine to econom-
ics and social sciences, these studies helped people and 
governments to make more scientifically informed deci-
sions with really huge and diverse data coming from dif-
ferent sources. From now on, we will focus on recent 
developments.

Recent examples of ML being used to detect and diag-
nose different types of diseases using test data appear in 
other contexts. In [19], classifiers can be observed that 
are applied to detect hematological disorders and are 
sometimes better than hematologists themselves. They 

are frontiers that algorithms, in general, are reaching 
leading to substantial implications.

In [1], the authors use laboratory data on patients also 
to detect blood diseases. In their approach, they select 
several candidate models within minimal pre-treatment 
of data to understand which algorithm behaves better. In 
the present study, we expand our reach by proposing a 
second optimization procedure on the selected algorithm 
type to improve the specificity-sensitivity characteristics 
of the final optimized model. Please see the scheme in 
Fig. 1 for more details.

Blood test data are also being used to detect more com-
plex types of diseases. There is a particular interest in 
several areas, in which [32] is an excellent example. They 
aim to detect more than 50 types of different cancers by 
analyzing different DNA signatures, showing a 99.3% 
specificity rate. This article can be seen as an improve-
ment in the field of ”liquid biopsies,” reducing the need 
for patients to undergo complicated procedures to be 
given a diagnosis.

There are other diseases where ML algorithms-aided 
diagnosis could play a significant role. For example, 
[51] applies random forests for the final selected model 
to predict fatty liver disease and create an indicator to 
separate high-risk patients from low-risk ones, effec-
tively allowing customization in treatments and improv-
ing overall outcomes. Considering other perspectives, 
there is also a substantial number of studies using algo-
rithms that do not rely on laboratory data to predict out-
comes (for example, deep learning to learn from medical 
images). A useful review on this topic is provided by [15], 
where heart disease applications, dengue fever, hepatitis, 
and diabetes are explored.

Analyzing the interface in decision systems, we can 
cite [3] as an application of ML-backed classifiers to 
understand the potential of bacterial infection in a given 
patient in a hospital setting. Special attention is given to 
prioritizing hospital resources and early detection of bac-
teremia, an infectious disease caused by microorganisms 
that propagate much like COVID-19. On the same topic, 
we can also cite [11], an article showing the creation of 
a decision system given to hospitals to predict the out-
comes of Ebola in West African patients (Ebola is a highly 
contagious virus that demands special care of patients, 
resembling COVID-19).

There is also a wide range of books on these topics. In 
[25], various ML applications can be observed in differ-
ent areas spanning disease diagnostics with laboratory 
data, image recognition methods, unsupervised learning 
and the Internet of Things.

Interest in these topics is becoming more substantial as 
time passes and technology advances. Conferences and 
meetings are being held in several places. One notable 
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example is the Machine Learning for Healthcare [37] 
conference, which took place virtually in 2020 due to the 
COVID-19 pandemic.

Specifically linked to COVID-19, there are several 
reports on the use of ML to detect the disease using lab-
oratory data. In [8], the authors trained classifiers that 
attained an 82%-86% accuracy while keeping high levels 
of specificity and sensitivity, therefore increasing the gen-
eral applicability of the method selected. There is also an 
example in [12] of deep learning-based methods used to 
estimate the overall epidemiological parameters for the 
disease considering stacked Long Short-term Memory 
(LSTM) models and polynomial neural networks.

Some novel and fresh approaches are emerging from 
the need to diagnose patients using any data available. In 
[13], a novel feature generation approach can be observed 
in X-ray images combined with optimization techniques 
and high-performance computing used to create a classi-
fier for patients with 96-98% accuracy. On an even more 
unusual front, text data is being used to diagnose patients 
in [27].

Considering that COVID-19 is itself a relatively novel 
subject, extensive reviews for articles relating it with ML 
algorithms are only beginning to emerge. One of the first 
examples is addressed in [29].

There are two main differences between this article 
and the ones cited earlier. The first one is the target itself: 
instead of predicting the presence/absence of COVID-19 
in one give patient, we attempt to explore the probability 
of this patient requiring special care at hospital (and the 
number of days required under special care). The second 
main difference is the number of algorithms: instead of 
focusing on one or two algorithms, we firstly considered 
several, and then we select the best algorithm class over-
all to perform the Bayesian Optimisation. Table  1 sum-
marizes the findings in this section and positions our 
study among them.

Method
This section addresses all the groundwork used in this 
study. Firstly, we present some medical basis, showing 
some results and references linking blood test results and 
their respective impacts on COVID-19 patients. We also 
offer the algorithmic reasoning behind all the techniques 
involved and why we selected them.

Medical basis
As COVID-19 is a virus, it is coherent to assume that it 
causes changes in patients’ blood tests. The article [31] 
brings a structured review on the parameters that show 
abnormalities in blood tests to a given patient when con-
tracting COVID-19. Table  2 contains an excerpt of the 

main tests that show significant changes in laboratory 
test results for the patients analyzed in this study.

There are also consistent abnormalities described in 
[16], mainly dealing with white-blood cells, platelets, 
C-reactive protein, AST, ALT, GGT, and LDH param-
eters. This study concludes that some cutoffs for these 
tests could be applied as an alternative to RT-PCR tests 
when necessary and pave the way for automated tests 
using ML when more patient data becomes available.

In [53], the patients were separated using the overall 
gravity of the infection, which could be used as a proxy 

Table 1 Review of machine learning for disease prediction

References Algorithm Key results

[4] Logistic Regression, Random Forests 0.72 AUC 

[11] Model Ensembles 0.80 AUC 

[51] Random Forests 0.92 AUC 

[3] Random Forests 0.82 AUC 

[1] Several 0.69–0.97 AUC 

[19] Random Forests 59–80% Precision

[32] Several 99.3% specificity

[8] Random Forests, SVM and others 92–95% sensitivity

[12] LSTM 62–87% accuracy

[13] DNNs 96–98% accuracy

[27] Naïve Bayes 96.20% accuracy

[25] Several –

[29] Several –

[15] Several –

This article xgBoost + Bayesian Optimization 0.94 AUC 

Table 2 Main abnormalities found in COVID-19 patients, 
according to [31]

Lab exam COVID-19 effects

Albumin Decrease

Reactive C-Protein – PCR Increase

Eritrocytes Increase

Haemoglobin Decrease

Leukocytes Increase

Neutrofils Increase

Lymphocytes Decrease

TGP-ALT Increase

TGO-AST Increase

Lactate Desidrogenase-LDH Increase

D Dimer Increase

Bilirrubin Increase

Creatinin Increase

Troponin I Increase

Procalcitonin-PCT Increase

Protrombin Increase
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for special-care treatment. This study’s main results point 
out significant changes comparing the patients with 
established reference values and within different infec-
tion gravity groups. The most relevant values obtained 
were for the white-blood-cell count, LDH, C-reactive 
protein and others. Moreover, the article concludes by 
stating that the virus could be related to a state of hyper-
coagulation in critically-ill patients, exposing a possible 
interaction between COVID-19 and laboratory blood test 
results. Knowing these facts, we propose an extension 
to use the same test data jointly with hospital outcomes 
to predict whether the same given patient will also need 
special care—effectively anticipating the use of valuable 
medical time and resources. We also model the number 
of days each patient will be in special care using the same 
data.

Machine learning procedure
Even without analyzing the available data, it is expected 
from the domain of science data that three things should 
be present: sparsity, as some laboratory tests are not per-
formed for all patients, revealing many gaps (NAs) in 
the dataset. Moreover, one should expect unbalancing, 
as not all patients will require special care (only a small 
number of them will need it). The last thing expected is 
non-linearity and interaction. As every patient will have a 
different set of variables, the final combination and com-
position will express the outcome distinguished for each 
patient.

We will focus primarily on Sirio Libanês Hospital data, 
which includes patient outcomes and dates of admission 
and discharge, making it possible to analyze the num-
ber of days each patient stays in special care and associ-
ate it with laboratory test data. All data is taken for each 
patient, and a pre-processing step is carried out to relate 
the first test ever recorded for the patient, therefore we 
preserve the time dependency relevant to the problem. 
Later test should not constitute reliable data as they 
introduce temporal leaks.

To model the situation correctly, we propose (for both 
targets) a two-part procedure that addresses all issues 
cited above. The first part comprises an initial exploration 
of data to understand its particular shape and properties, 
focusing on age and blood white-cell components, as dis-
cussed earlier. After that, we explore the usage of off-the-
shelf algorithms with little to no customization to better 
understand which candidate suits best - considering the 
baselines for each model (a coin for the classifier and the 
average training value for the target number of days in 
special care), as well the overall capacity to accept differ-
ent hyperparameters to increase the fitness of the model. 
We also consider the training time and complexity trade-
offs of all algorithms as a secondary but important factor.

Once the selected class of model is chosen, we follow 
the procedure outlined in Fig. 1, composed of data impu-
tation, re-balancing, and estimation steps. The follow-
ing subsections will deal with practicalities and possible 
choices showing the pros and cons for each one of the 
steps to pave the way to establish a precise method that 
can be used in other similar situations.

Imputation strategies
To process the data sparsity, we have three options with 
different assumptions, and each one implies model 
dynamics that are discussed in the next paragraphs. A 
sparsity treatment similar to ours can be found in [36], a 
seminal article in the field.

The first one retains the sparsity, i.e., not applying any 
technique to deal with the completion of variables. There 
are two disadvantages to this—the first one is that most 
models do not handle sparsity very well. Some of them 
even fail altogether during the training phase as they 
depend on a dense matrix for parameter estimation (a 
significant part of the ”classical statistical” models fall in 
this category). The second major issue is that models, in 
general, need some variance to ”learn” the most relevant 
variables in a dataset. When a dataset is substantially 
sparse, some variables lose their ”protagonism” and may 
become irrelevant even whether they are essential con-
sidering the application domain. The main advantage of 
using this approach is that data can be used as it is, with-
out resorting to pre-processing and cleaning.

The second major option relies on model-based vari-
able completion, such as the ones presented in [28, 
50]. Most of these procedures consist of Singular Value 
Decomposition variants, commonly used in biological 
and medical applications. These model-assisted matrix 
completion algorithms introduce interaction terms that 
can be very useful whether the number of patients is high 

3.2.1 - Imputation (Median/Model Based)

3.2.2 - Target Re-balancing - SMOTE

3.2.3 - Model Selection (Optimisation)

Model Inference

Final Results

Fig. 1 Steps in second part for our targets. Black continuous arrows 
are for training phase and dash one for prediction phase. Dashed step 
is not applied in number of days target
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enough in the dataset. This technique’s main disadvan-
tage is the care needed to find the optimal values for each 
of the hyperparameters in each of the algorithms, in turn 
consuming more time and computation resources. This is 
a barrier to implementing it for a huge dataset. However, 
there are some developments in running the algorithms 
more efficiently and parallelly distributed.

The third and more straightforward way is by inputting 
some known statistics of the sample as the default value 
for each variable. The most common values used for this 
are the mean and median (using the points with obser-
vations). Overall justification for this procedure relies 
on the fact that assuming that there are more healthy 
patients than unhealthy ones (or more patients that do 
not require special care), the mean and median for a 
sample describes a healthy population as the number 
of samples increase, helping models to identify abnor-
mal values. The main disadvantage remains that some 
tests can be prescribed more for unhealthy (or healthy) 
patients, therefore, skewing the mean to be used as input, 
generating some sample bias.

In this study, we choose the second and third options 
interchangeably in different parts of the analysis—with a 
particular preference to use the third one, simplifying the 
calculations.

Data re‑balancing
We should expect from the data that not all patients 
require special care. Moreover, it is likely that only a few 
of them will. In machine learning, this type of problem is 
known as unbalancing between classes. By having only a 
few samples of one specified occurrence, the model can-
not generalize well, considering the few examples giv-
ing a low specificity/sensitivity model. Here accuracy is 
not essential because a model that responds to the pre-
dominant class will generally present a good value for 
accuracy. The Receiver Operating Characteristics (ROC) 
statistics can also be affected by this situation to a minor 
extent.

Some studies have attempted to understand the overall 
effect of unbalancing on classifiers of different types. For 
example, [40] tries to understand the widespread impact 
in several publicly available datasets and even proposes 
changes in calculating performance metrics that are 
more adequate to these situations. This is undoubtedly 
an improvement to the original problem, but we will use 
another alternative that is more automated and depends 
less on human interaction.

Manual techniques such as undersampling of the 
majority class or oversampling of the minority class 
through bootstrapping were usually considered in the 
past for some studies and practical applications, with 
mixed results and poor reproducibility when new data 

arrives for model updates. To avoid this, here we will 
use the Synthetic Minority Oversampling Technique as 
described by [39], a technique to combine the minor-
ity class oversampling and synthetic example generation 
with majority class undersampling, augmenting the area 
under the ROC curve statistics, making the model more 
sensitive to the minority class.

Model estimation and optimization
When selecting models for a specific application, sev-
eral aspects should be considered. The most relevant is 
the overall ”capacity” of the algorithm—how a particu-
lar algorithm learns about different patterns existing in 
data without over-fitting to it. Most algorithms regulate 
this capacity by the change of hyperparameters control-
ling various aspects. Finding optimal hyperparameters 
is a matter of discussion in scientific debates as ML has 
gained traction as an everyday tool, as pointed out by 
[17], and is still a growing field for discoveries. Well-
known libraries among data scientists for computational 
ML implement different strategies (see [42] for a good 
example). Most of them are based on grid searches of 
several parameters. Moreover, there are two major dis-
advantages doing this. The first and more obvious one is 
in the process itself, requiring a high number of evalua-
tions in the cross-validation process, directly propor-
tional to the number of folds. The second is less apparent 
and more critical which refers to the search space that 
needs to be crafted and selected (considering all relevant 
parameters for the problem).

While most techniques cannot deal well with the sec-
ond disadvantage (crafting the search space), there is a 
possible improvement usually requiring fewer evalua-
tions in our cross-validation procedure with its roots in 
optimization and statistics. Here we propose Bayesian 
Optimization as in [38] to select model hyperparam-
eters achieving optimal performance within the selected 
grid. Our procedure will be very similar to the method 
described in [48]. The parameters we optimize will be dis-
cussed in the Results section for the selected algorithm.

Other algorithms and heuristics can be considered in 
this optimization problem. There are articles consider-
ing this in different contexts; good examples are [30, 33, 
44], which consider some variations on heuristics from 
traditional particle swarms with different hyperparam-
eter selections to more intricate heuristics such as grav-
itational search algorithm. There is a recent example of 
heuristics that was applied to a biological context in [22]. 
We consider applying heuristics in future revisions of 
our technique with new datasets. The authors opted for 
a Bayesian Optimization approach because our previous 
experience with the algorithm helped us to validate our 
results quickly.
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Brief discussion about feature selection
A good statistical point-of-view in feature selection 
for biometrical applications can be seen in [24]. A ML 
approach can be seen in [9, 20]. We opted not to use 
feature selection methods in our analysis for two main 
reasons. The first one is increased algorithm complexity 
and running time. The second one is that we want for the 
algorithm to select the best variables based on the opti-
mization process. In “Computational results” section, we 
detail the hyperparameters we used in our selected algo-
rithm. We selected L1 and L2 regularization parameters 
to be optimized, and values for these parameters tend to 
shrink feature contribution, effectively working as a cou-
pled feature selection mechanism inside our procedure, 
resembling the inner workings of LASSO [49].

Computational results
Here we present the computational results of our work, 
divided into three parts. First, in “Data” section, we ana-
lyze some data features of our problem, examining some 
variables already mentioned in other sections. In “Pre-
liminary models” section , we use several algorithms 
with default parameters to select the best algorithm type 
to use together with Bayesian Optimization considering 
the hyperparameters to be tuned and their overall per-
formance. In “Optimized models” section, we introduce 
the optimized models for both targets and discuss their 
results.

Data
Our dataset consists of laboratory test data collected 
from 9633 patients from the Sírio Libanês Hospital, who 
sought treatment in several different departments during 
the COVID-19 pandemic in Brazil. All patients from this 
list had a COVID-19 test (we included both positives and 
negatives), and 674 (7%) of them required special care 
treatment (hospitalization in common, semi-, or inten-
sive care units). Among the ones requiring special treat-
ment, the mean number of days needed for each patient 
was 1.52 days with a high variation, considering a stand-
ard deviation of 6.92 days.

There are 165 different types of laboratory test results 
(which in turn helps to understand the aforementioned 
sparsity). Considering demographics, the age and gender 
is available for each patient. Age will be analyzed further 
ahead in more detail.

We first show our exploratory analysis results in 
Table  3 considering some statistics for the dataset vari-
ables (for the ones with most coverage). We also show the 
two-sample Kolmogorov-Smirnov (KS) statistic value for 
each one considering special care target values as a class 
variable to understand the overall statistical difference 
between distributions that can arise between classes.

As pointed out in [5], age seems to be a critical factor 
overall considering COVID-19 and the sample of the 
population we are considering. As it is the only continu-
ous demographic variable, we display the class histogram 
for age with adjusted kernels in Fig. 2. We see a very dis-
tinct separation between classes arising for each one of 
the groups. Moreover, this pattern by itself is not sub-
stantial in terms of making any assumptions or conclu-
sions about our targets.

In Fig.  3, we see the histograms and adjusted kernels 
for selected white blood cell components count, which 
superficially represents immunological responses for 
each one of the patients in data and also mentioned as 
necessary by other authors investigating samples com-
ing from similar conditions, as mentioned earlier. By 
close inspection, we see that separation for the variables 
considering the classes is not evident using only univari-
ate reasoning, which again points to the necessity to use 
multivariate and non-linear algorithms.

This brief analysis shows a perfect match for ML appli-
cations: We have sufficient patient data, with no iden-
tifiable univariate patterns relating to our target, thus 
opening up the possibilities of multivariate analysis and 
algorithms recognizing several different types of trends 
and interactions (the aforementioned non-linearity).

Preliminary models
To begin our modeling, we used several ML algorithms 
without tuning the parameters to select the best algo-
rithm type to be optimized later. Our tests considered 
Naïve Bayes, Decision Trees, AdaBoost, Support Vec-
tor Machines (SVD), Linear Discriminant Analysis 
(LDA), Quadratic Discriminant Analysis (QDA), Logistic 
Regression (and regularized ones such as Ridge Regres-
sion and Least Absolute Shrinkage and Selection Opera-
tor (LASSO)), Orthogonal Matching Pursuit (OMP) and 
other algorithms based on ensembles of trees, such as 
Extra Trees [18], Random Forests [6], xgBoost [10], and 
LightGBM [26]. All results were obtained using Python 
3.7 as our programming language. To obtain the follow-
ing results, data were treated as-is, i.e., without any treat-
ment or imputation strategies.

Model type selection for further optimization should 
consider three critical practical aspects, emphasizing the 
first two. The first one is predictive power—we want an 
algorithm that predicts well and does not overfit our data 
while capturing the multivariate effects that we expect. 
The second aspect involves the number of hyperparam-
eters available to tune the model. The more parameters, 
the more opportunities we have to improve our algo-
rithm predictive power while keeping the generalization 
capacity. The third reason is the training time—which, 
although less important, generates problems when the 
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datasets are large enough and which can be considered 
even within our context because the algorithm requires 
several full training passes through our data when con-
sidering the optimization process. Table  4 presents 
results considering algorithms for the special care tar-
get and all relevant metrics. The baseline for this model 
is a coin with a ROC AUC value of 0.5. Table 5 presents 
results and relevant metrics for the number of days under 
special care target. The baseline here is the mean value of 
the training set.

The final selected algorithm is xgBoost for both tar-
gets. The primary rationale for this is the characteristics 
mentioned above: high predictive power, hyperparameter 
tuning, and overall training time. We could also select 
LightGBM interchangeably as the results were very close 
(and the algorithms are similar). Moreover, it was faster. 
Between the two algorithms, our previous experience 
with xgBoost motivated us to choose it. Algorithms such 
as the Naïve Bayes one stand out as they have almost no 

Table 3 Variable metrics for the ones with most coverage within dataset (146 variables omitted)

Mean Std Min IQR Max Coverage (%) KS statistic

Sex 0.46 0.50 0.0 1.0 1.0 100.0 0.00

Age (years) 42.48 13.99 15.0 17.0 87.0 99.0 0.00

MCH (pg) 29.16 2.26 18.0 2.0 38.0 18.0 0.17

Hematocrit (%) 39.61 5.48 15.0 6.0 62.0 18.0 0.00

CMCH (pg) 33.09 1.23 27.0 2.0 37.0 18.0 0.00

Erythrocytes (million/mm
3) 4.06 0.80 1.0 1.0 7.0 18.0 0.06

Leukocytes (/mm
3) 6258.91 3541.01 100.0 3015.0 55110.0 18.0 0.00

RDW (%) 13.22 2.51 11.0 2.0 38.0 18.0 0.02

Hemoglobin (g/dL) 12.97 1.99 5.0 2.0 21.0 18.0 0.00

Platelets 205748.36 78948.08 7000.0 95000.0 529000.0 18.0 0.00

Neutrophils (%) 61.71 14.57 1.0 19.0 97.0 18.0 0.00

Eosinophils ( mm
3) 81.96 112.61 0.0 100.0 950.0 18.0 0.00

Monocites (%) 9.24 4.49 0.0 5.0 43.0 18.0 0.00

Eosinophils (%) 1.04 1.72 0.0 2.0 14.0 18.0 0.00

Lymphocytes (%) 25.75 12.38 0.0 16.0 84.0 18.0 0.00

Basofils (%) 0.07 0.30 0.0 0.0 4.5 18.0 0.19

Neutrophils ( mm
3) 4132.13 3142.68 20.0 2550.0 53730.0 18.0 0.00

Lymphocytes (/mm
3) 1463.58 841.17 20.0 920.0 14350.0 18.0 0.00

Basofils ( mm
3) 24.15 25.71 0.0 20.0 410.0 18.0 0.00

Monocites ( mm
3) 575.24 420.51 10.0 310.0 9170.0 18.0 0.00

Platelet Volume 9.85 0.92 8.0 1.0 13.0 18.0 0.10

Creatinine (mg/dL) 0.51 0.86 0.0 1.0 11.0 16.0 0.00

Urea (mg/dL) 34.71 18.32 10.0 14.0 201.5 16.0 0.00

Potassium (mEq/L) 3.54 0.55 2.0 1.0 6.5 15.0 0.00

Sodium (mEq/L) 138.42 3.05 121.0 3.0 152.0 14.0 0.00

ALT (U/L) 37.26 38.03 6.0 25.0 521.0 13.0 0.00

AST (U/L) 35.76 45.41 9.0 16.0 1140.5 13.0 0.00

DHL (U/L) 488.87 345.04 201.5 166.0 8958.0 11.0 0.00

Fig. 2 Histogram and adjusted kernels for age, divided using the 
special care target
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hyperparameters to tune and were unconsidered, even 
performing very well in the preliminary analysis.

Optimized models
Having selected the final algorithm type to use, we must 
define which hyperparameters to use in Bayesian Opti-
mization and which strategy to deal with sparsity and 
unbalancing. Table  6 shows all parameters considered 
in the Bayesian Optimization and its respective intervals 
and descriptions. All optimization is performed using Ax 
[2], a platform created inside Facebook that streamlines 
all optimization processes and makes it possible to use 
integer hyperparameters, which are not available in other 
solvers.

For a classification model to be useful, we need to ana-
lyze Receiver Operating Characteristic (ROC) curves 
and Precision-Recall (P/R) curves, which can be a differ-
ent format considering the variable distribution. Figure 4 
summarizes the ROC curve and Fig.  5 summarizes the 
P/R curve. Using the median as imputer in our tests gave 
us the best results overall for the special care target.

It can be observed that our optimization improved the 
ROC statistic by selecting a new set of hyperparameters 
different from the defaults. By doing that, we guarantee 
that we have the best model while keeping model gener-
alization capabilities.

From a hospital perspective, False Positives (the 
abscissa from our ROC plot) constitutes the most lost 

Fig. 3 Histogram and adjusted kernels for white-cell blood components, divided using the special care target
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resources. They are patients that do not need any spe-
cial care, but the model indicates the opposite, and 
we should keep them on a minimum level. We see by 
close inspection of the curves that this is satisfied, and 

the model is indeed useful for classifying patients using 
blood-test samples. At the best threshold value for cut-
off, we obtained 0.94 for ROC AUC and 0.77 for P/R 
AUC.

Moreover, as we used ensembles of trees to make 
predictions, one thing that arises naturally is a vari-
able importance plot. To obtain this plot, we used Shap 
[34], which creates this plot using a game-theoretical 
approach to calculate the variable importance for row 
and data levels. In Fig. 6, it can be observed that some 
of the variables presented as important (mentioned in 
“Method” section) in [16, 53] are indeed some of the 
most relevant in our model, which are in line with the 
expectations (This plot should not be seen as indicating 
any direct causal relationships as our data is not experi-
mental, but observational).

Results for the days under special care were similar 
in performance achievements. Table 7 summarizes the 
findings and compares them with the baseline for this 
model, the mean value of days spent in special care for 
the training set. Best results were obtained using no 
imputer at all (using model-based input gave us the 
worst results in comparison), defying some preconcep-
tions we had from the start. This effect is explained in 
[23]: adding variables to boosted or bagged regressors 
can make the model worse. Using imputers, we forced 
the model to be non-sparse, giving protagonism to all 
variables at once, amplifying this condition. The condi-
tion for classifiers is the opposite: adding variables to 
boosted or bagged models always increases the perfor-
mance (but the improvement could be marginal).

Although our model is capable of making good pre-
dictions as guaranteed by statistical tests, in Fig.  7 we 
see a tendency to overshoot and undershoot the results 
caused by the very nature of the model (splits in trees 
have a very poor tendency in addressing extreme situ-
ations as the capacity to extrapolate wanes as we go to 
the ends of our interval). A more in-depth discussion 
on model improvement can be found in “Limitations 
and possible extensions” section.

Table 4 Results from preliminary models on special care 
target (Top 10 of all models tested)

Chosen algorithm for optimisation is highlighted

Model Balanced 
accuracy

ROC AUC F1 score Time taken (s)

Bernoulli Naïve 
Bayes

0.90 0.90 0.92 0.14

QDA 0.88 0.88 0.91 0.22

Gausssian Naïve 
Bayes

0.85 0.85 0.95 0.15

xgBoost 0.85 0.85 0.96 1.31

LightGBM 0.82 0.82 0.96 0.47

AdaBoost 0.82 0.82 0.96 0.92

SVC 0.81 0.81 0.95 2.52

Random forest 0.81 0.81 0.96 1.14

Baging 0.80 0.80 0.96 0.78

Decision tree 0.80 0.80 0.96 0.23

Table 5 Results from models on number of days of special 
care needed (Top 10 of all models tested)

Chosen algorithm for optimization is highlighted

Model R-squared RMSE Time taken (s)

xgBoost 0.70 2.15 1.28

Vanilla gradient boosting 0.68 2.22 1.98

Random forest 0.66 2.31 7.67

Bagging 0.64 2.38 0.92

LightGBM 0.60 2.49 0.36

Extra trees 0.60 2.50 9.65

Histogram gradient boosting 0.60 2.52 4.75

Huber regression 0.45 2.94 1.70

LinearSVR 0.44 2.96 3.14

Decision tree 0.43 2.99 0.22

Table 6 Parameter grid and intervals used in Bayesian Optimisation procedure

Interval Description

Eta [0.01, 1] Learning rate (shrinkage applied in weights calculation)

Gamma [0, 100] Minimum loss reduction to split a node in tree

Max_depth [1, 9] Maximum depth of each tree in training process

Subsample [0.5, 1] Number of features used to train a tree

Lambda [1, 100] L2 regularization term using in training

Alpha [0, 100] L1 regularization term using in training

n_Estimators [10, 200] Total number of trees
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Limitations and possible extensions
So far, with our classification model we have only dealt 
with 0/1 outcomes. But what happens if we want to 
order our patients according to their risk (risk being 
associated with a measure of probability ranging from 0 
to 1)? The algorithm used to learn our special care from 
data is not well suited for this specific task. In [41], this 
effect is described as the algorithms having difficul-
ties making predictions near the frontiers of the [0,1] 
interval because the variance of the base trees drives 
the result away from the edges in a way to minimize 
the overall cost function. To diagnose this problem, 
one can calculate the overall Brier score [7] for a given 
model or make a calibration plot. To solve this issue, 
we could apply Platt’s method [47], which essentially 
adjusts a Logistic Regression on a different fold during 

the model training phase or use an Isotonic Regression 
[52], again on a different fold during model training. 
However, more data for patients is required to perform 
that in a meaningful way.

To deal with negative predictions arising in the number 
of days under special care targets, we must first under-
stand that the model used to make the predictions is not 
restricted in any form about the prediction interval itself. 
All of its predictions lie within the real line IR , but we 
know that our values are at least limited by 0. A recent 
way to deal with this is emerging in disciplines such as 
Finance and Banking, presented in [46] where ensembles 
of trees are trained to perform the Tobit regression. The 
overall maturity for the packages is increasing fast, pos-
ing as an exciting development as ensembles of trees have 
very high predictive power in general and several hyper-
parameters that can be optimized using Bayesian Opti-
mization in the same process.

To deal with overshooting and undershooting for our 
number of days under special care targets, several pos-
sibilities are arising from traditional statistics worth 
exploring such as the Zero Inflated Negative Binomial 
(ZINB) models [21] in which the target distribution com-
prises a very high proportion of zeroes, such as our tar-
get. The result for this type of model usually consists of 
a probability attached to a counter, probability measur-
ing the overall chance of a given patient needing special 
care, and the counter giving the number of days the same 
patient will spend under such care. The major drawback 
for this from the model is the predictive power (espe-
cially for the probability part), where standard packages 
use only linear terms (which introduce needs on data 
pre-processing, such as multicollinearity removal or vari-
ance inflation factors analysis) and no ensembles to make 
predictions. A viable but not tested alternative could be 
mixing two “worlds,” trying different sets of variables 
on the dataset guided by Bayesian Optimization, and 
then applying a ZINB model for each one, averaging the 
results. The counting model in this situation is discrete, 
also solving the issue with non-integer predictions.

Final remarks
The growing necessity to predict hospital resources’ 
needs guided the exploration of novel methods to cre-
ate and plan policies accessible for everyone. More than 
ever, the COVID-19 pandemic is pushing health systems 
to the limit. Having this in mind, we developed an ana-
lytical approach based on mathematical models and algo-
rithms adopting the most recent techniques available in 
the fields of statistics and machine learning using public 
data available online.

We obtained promising results in this study. The esti-
mated 0.94 area under the ROC Curve combined with 

Fig. 4 ROC Curve for special care target, both classes

Fig. 5 Precision-Recall Curves for special care target, both classes
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0.77 P/R statistic proves that the analytical approach can 
indeed be used in a decision system for hospitals, govern-
ments, and health providers alike to guide their resource 
allocation with minimal requirements as we use test data 
that is available and affordable. The target for the num-
ber of days under special care certainly needs refinement 
but is adequate in our view. Other interesting results are 
also in line with other studies conducted by researchers 
all around the world.

Fig. 6 Variable importance plot for special care target, both classes

Table 7 Results for days under special care target, base-
line and percentual improvement over baseline

Model Baseline Improve-
ment 
(%)

RMSE 1.87 3.96 77.78

MAE 0.41 1.27 67.96

R-squared 0.78 0.00 –
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Our biggest contribution was standardizing a method 
to create decision systems/ML models that can be 
applied to several different diseases, with low processing 
requirements, using cheap datasets that can be collected 
and analyzed easily. Our method also allows for suitable 
customization in the methods used and also for other 
infectious diseases.
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