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Abstract 

Purpose: Because the infection by Severe Acute Respiratory Syndrome Coronavirus 2 (COVID-19) causes the Pneu-
monia-like effect in the lung, the examination of Chest X-Rays (CXR) can help diagnose the disease. For automatic 
analysis of images, they are represented in machines by a set of semantic features. Deep Learning (DL) models are 
widely used to extract features from images. General deep features extracted from intermediate layers may not be 
appropriate to represent CXR images as they have a few semantic regions. Though the Bag of Visual Words (BoVW)-
based features are shown to be more appropriate for different types of images, existing BoVW features may not 
capture enough information to differentiate COVID-19 infection from other Pneumonia-related infections.

Methods: In this paper, we propose a new BoVW method over deep features, called Bag of Deep Visual Words 
(BoDVW), by removing the feature map normalization step and adding the deep features normalization step on the 
raw feature maps. This helps to preserve the semantics of each feature map that may have important clues to differ-
entiate COVID-19 from Pneumonia.

Results: We evaluate the effectiveness of our proposed BoDVW features in CXR image classification using Support 
Vector Machine (SVM) to diagnose COVID-19. Our results on four publicly available COVID-19 CXR image datasets (D1, 
D2, D3, and D4) reveal that our features produce stable and prominent classification accuracy (82.00% on D1, 87.86% 
on D2, 87.92% on D3, and 83.22% on D4), particularly differentiating COVID-19 infection from other Pneumonia.

Conclusion: Our method could be a very useful tool for the quick diagnosis of COVID-19 patients on a large scale.

Keywords: Bag of visual words (BoVW), Bag of deep visual words (BoDVW), Chest X-ray, COVID-19, Deep features, 
SARS-CoV-2
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Introduction
The disease caused by Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2) [28, 33, 48], com-
monly known as COVID-19, was originated in Wuhan 
city of China in late 2019 [50]. It is believed to be origi-
nated from bats [29, 39]. The virus has been transmitting 
from human to human all around the world [3, 11, 17]. 
It has spread over 200 countries in the world at present 
and become a pandemic that has killed 2,184,120 people1 
and 909 people in Australia alone2 so far. While analyz-
ing the effect of the SARS-CoV-2 virus in human body, it 
has been known that it causes the Pneumonia-like effect 

in the lungs. Thus, the study of Chest X-Ray (CXR) images 
could be an alternative to a swab test for early quick diag-
nosis of COVID-19. An automated CXR image analysis 
tool can be very useful to health practitioners for mass 
screening of people quickly. Also, recent studies show that 
AI-enabled techniques produce higher performance (e.g., 
precision, specificity, and sensitivity) than rapid tests [12].

For automatic analysis of images using algorithms, they 
are represented in machines by a set of semantic features, 
which are either traditional vision-based features [21] or 
deep learning-based features [22]. Large artificial neural 
networks, also known as Deep Learning (DL) models, are 
widely used to extract features from images and shown 
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to work well in various types of images [14, 38, 51, 53–
55]. Several studies have used DL models to analyze CXR 
images for coronavirus diagnosis, too. For instance, two 
recent works [34, 38] include the fine-tuning approach 
of transfer-learning on pre-trained DL models such 
as AlexNet [26], ResNet-18 [15], GoogleNet [57], etc. 
These methods normally require a massive amount of 
data to learn the separable features in addition to exten-
sive hyper-parameter tuning tasks. However, most of the 
biomedical images (e.g., COVID-19 CXR images) are 
normally limited because of privacy issues. Thus, work-
ing with limited amount of data is always a challenging 
problem in DL models. Similarly, unlike other types of 
images, existing feature extraction methods such as GAP 
(Global Average Pooling) features achieved from pre-
trained models may not provide accurate representation 
for CXR images because of their sparsity (i.e., having 
fewer semantic regions in them). Also, CXR images of 
lungs infected by COVID-19 and other Pneumonia look 
similar (i.e., there is a high degree of inter-class similari-
ties). There might be subtle differences at very basic level, 
which, in our understanding, may be captured using the 
Bag of Words approach over deep features.

Bag of Visual Words (BoVW)-based features are shown 
to be more appropriate in images with the characteristics 
discussed above (sparsity and high inter-class similar-
ity). They consider visual patterns/clues (known as visual 
words) in each image in the collection, thereby capturing 
sparse interesting regions in the image, which are useful 
in dealing with the inter-class similarity problem to some 
degree. BoVW-based feature extraction approach is pop-
ular not only in traditional computer vision-based meth-
ods such as Scale Invariant Features Transform (SIFT) 
[35] but also in DL-based methods due to its ability to 
capture semantic information extracted from the feature 
map of pre-trained DL models. The Bag of Deep Visual 
Words (BoDVW) features designed for one domain may 
not work well for another domain due to the varying 
nature of the images. For example, the Bag of Deep Con-
volutional Features (DCF-BoVW) [60] designed for satel-
lite images may not work exactly for biomedical images 
such as CXR images. This is because of the fact that satel-
lite image contains numerous semantic regions scattered 
in the image (dense) and thus DCF-BoVW could capture 
enough semantic regions of such images. However, the 
CXR images contain fewer semantic regions (sparse), 
which may not be captured accurately by DCF-BoVW.

In this paper, we propose a new BoDVW-based fea-
ture extraction method to represent CXR images. Our 
method eliminates some of the intermediate steps pre-
sent in DCF-BoVW [60] and adds new steps because 
of the nature of CXR images. For this, we adopt the 
following steps. First, we extract the raw feature map 

from the mid-level (4th pooling layer) of the VGG16 
pre-trained DL model [49] for each input image. We 
prefer the 4th pooling layer in our work, which has 
been chosen by empirical study and suggestion from 
the recent work by Sitaula et al. [52]. Next, we perform 
L2-normalization of each deep feature vector over the 
depth of the feature map. Using the training set, we 
design a codebook/dictionary over such deep features 
extracted from all the training images. Next, based on 
the codebook, we achieve our proposed features using 
a bag of visual words method for each input image. 
Last, such features based on the bag of visual words 
method is normalized by L2-norm, which results in 
the final representation of the input image. Because 
our final features are based on patterns extracted from 
mid-level features from training images, they capture 
more discriminating clues of sparse CXR images. The 
comparison of two-dimensional projections of features 
produced by DCF-BoVW and our proposed method on 
the COVID-19 image dataset [8] based on the t-SNE 
visualization [37] is shown in Fig. 1. It reveals that our 
features impart the higher separability between differ-
ent classes.

The main contributions in our work are listed below: 

Fig. 1 Scatter plot of two dimensional projection of features 
produced by DCF-BoVW and our proposed method based on t-SNE 
visualization on chest x-ray images of Dataset 4 [8, 24]
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(a) Propose to use the improved version of a bag of 
visual words method over deep features to work for 
the COVID-19 CXR image representation.

(b) Analyze the classification performance of our 
method across deep features extracted from five 
different pooling layers of the VGG16 model. 
Due to higher discriminability of deep features 
extracted from mid-level VGG16 model (see details 
in Sect. 4.4 and Sitaula et al. [52]), we leverage the 
fourth pooling layer ( p_4 ) for feature extraction in 
our work. To design a codebook from deep features 
in our work, we use unsupervised clustering with 
the simple k-means algorithm.

(c) Evaluate our method on four datasets against the 
state-of-the-art methods based on pre-trained DL 
models in the COVID-19 CXR classification task 
using the Support Vector Machine (SVM) classifier. 
The results show that our method produces stable 
and state-of-the-art classification performance.

The remainder of the paper is organized as follows. In 
Sect. 2, we review some of the recent related works on 
CXR image representation and classification. Similarly, 
we discuss our proposed method in Sect.  3 in a step-
wise manner. Furthermore, Sect.  4 details the experi-
mental setup, performance comparison, and ablative 
study associated with it. Finally, Sect.  5 concludes our 
paper with potential directions for future research.

Related works
Deep Learning (DL) has been a breakthrough in image 
processing producing significant performance improve-
ment in tasks such as classification, object detection, 
etc. A DL model is a large Artificial Neural Network 
(ANN), which has been designed based on the work-
ing paradigm of the human brain. If we design our 
DL model from scratch and train it, it is called a user-
defined DL model. Similarly, if we use existing deep 
learning architectures pre-trained on large datasets, 
such as ImageNet [10] or Places [61], they are called 
pre-trained DL models. The features extracted from 
intermediate layers of DL models, either user-defined 
or pre-trained, provide rich semantic features to rep-
resent images that result in significantly better task-
specific performance than traditional computer vision 
methods such as Scale Invariant Feature Transform 
(SIFT) [35], Generalized Search Tree (GIST)-color [41], 
Generalized Search Trees (GIST) [40], Histogram of 
Gradient (HOG) [9], Spatial Pyramid Matching (SPM) 
[30], etc.

Thus, in this section, we review some of the recent 
works in CXR image classification using DL models [2, 7, 

20, 34, 36, 38, 42, 43, 47, 52, 56, 59]. We categorize them 
into two groups: 2.1 standalone deep learning algorithms 
and 2.2 ensemble learning algorithms

Standalone deep learning algorithms
At first, Stephen et al. [56] presented a new model for the 
detection of Pneumonia using DL and machine learning 
approach. They trained a Convolutional Neural Network 
(CNN) from scratch using a collection of CXR images. 
Their method produces the validation accuracy of 93.73% 
on such dataset. Islam et al. [20] devised a Compressed 
Sensing (CS)-based DL model for the automatic clas-
sification of CXR images for Pneumonia disease. Their 
method imparts 97.34% classification accuracy for the 
detection of Pneumonia. Similarly, Ayan et al. [2] used DL 
models on CXR images for early diagnosis of Pneumo-
nia. They used Xception [5] and VGG16 [49] pre-trained 
models. Their results unveil that the VGG16 model out-
performs the Xception model in terms of classification 
accuracy (87.00% versus 82.00%). This strengthens the 
efficacy of VGG16 model for CXR image representation 
and classification. Thus, the use of a pre-trained model 
became widespread in the representation and classifica-
tion CXR images. For example, Varshni et al. [59] lever-
aged several pre-trained models such as VGG16 [49], 
Xception [5], ResNet50 [15], DenseNet121 [18], and 
DenseNet169 [18] individually as the features extrac-
tors and trained four classifiers separately using SVM 
[16], Random Forest [4], k-nearest neighbors [1], and 
Naïve Bayes [31] for the classification purpose. Among all 
those models used in their work, features extracted from 
DenseNet-169 model with SVM yields the highest area 
under curve (AUC) score of 80.02% in the classification. 
Furthermore, Loey et al. [34] used Generative Adversarial 
Networks (GAN) [13] and fine-tuned on AlexNet [26], 
ResNet18 [15], and GoogleNet [57] for the classification 
of the COVID-19 CXR images, where images belong to 
4 categories (Covid, Normal, Pneumonia viral, and Pneu-
monia bacteria). For 2-class problem (Covid vs Normal) 
in their work, all of three methods (AlexNet, ResNet18, 
and GoogleNet) produce 100% classification accuracy. 
Similarly, for 3-class problem (Covid vs Normal vs Pneu-
monia bacteria) and 4-class problem (Covid vs Normal 
vs Pneumonia viral vs Pneumonia bacteria), AlexNet and 
GoogleNet produce the accuracies of 85.19% and 80.56%, 
respectively. In their method, GAN was exploited to aug-
ment the x-ray images to overcome the over-fitting prob-
lem during the training phase. Moreover, Khan et al. [25] 
devised a new deep learning model using the Xception 
[5] model, where they performed fine-tuning on CXR 
images. Their method imparts the overall classification 
accuracy of 89.60% in 4-class problem (Covid vs Pneu-
monia bacteria vs Pneumonia viral vs Normal), whereas 
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it produces 95% accuracy in 3-class problem (Covid vs 
Pneumonia vs Normal).

Moreover, Ozturk et  al. [42] established a new DL 
model for the categorization of COVID-19 related CXR 
images that uses DarkNet19 [45]. Their method provides 
the classification accuracy of 98.08% in 2-class problem 
(Covid vs No_Findings) and 87.02% in multi-class prob-
lem (Covid vs No_Findings vs Pneumonia). Further-
more, Luz et  al. [36] devised another novel DL model, 
which uses the EfficientNet [58] model that adopts 
transfer learning over CXR images for the classification 
task. Their method yields the overall classification accu-
racy of 93.90%. Furthermore, Panwar et  al. [43] estab-
lished a new model, which is called nCOVnet, using the 
VGG16 model, which imparts a prominent accuracy 
for COVID-19 CXR image analysis. This further claims 
that the VGG16 model, which was quite popular in the 
past, is still popular in CXR image analysis. Their method 
imparts 97.62% true positive rate for the prediction of 
COVID-19 cases. Recently, Sitaula et al. [52] established 
an attention module on top of the VGG16 model (AVGG) 
for the CXR images classification. Their method outper-
forms several state-of-the-art methods. Their method 
produces the classification accuracy of 79.58% in 3-class 
problem (Covid vs No_findings vs Pneumonia), 85.43% 
in 4-class problem (Covid vs Normal vs Pneumonia bac-
teria vs Pneumonia viral), and 87.49% in 5-class problem 
(Covid vs No_findings vs Normal vs Pneumonia bacteria 
vs Pneumonia viral).

Ensemble learning algorithms
Ensemble learning methods have also been used in CXR 
image representation and classification, where different 
types of features are combined for better discrimination 
of images. Zhou et al. [62] proposed an ensemble learn-
ing approach of several ANNs for the lung cancer cell 
identification task. Their method provides the encourag-
ing performance on several experimental sets in detect-
ing the cancer cells compared to standalone models. 
For example, the ensemble model provides 17.3% rate 
of overall false identification, whereas standalone model 
provides 48.2% rate of overall false identification on the 
same experimental set. Sasaki et  al. [47] established an 
ensemble learning approach using DL on CXR images. 
In their method, they performed several filtering and 
pre-processing operations on images and then ensem-
bled them using DL for the detection of abnormality in 
CXR images. Their model yields the area under curve 
(AUC) value of 0.99 in the classification of CXR images. 
Li et  al. [32] also utilized multiple CNNs (E-CNNs) to 
reduce the false positive results on lung nodules of CXR 
images. E-CNNs model attains the highest sensitivity of 
94% on CXR images. Moreover, Islam et al. [19] designed 

an ensemble method to aggregate different pre-trained 
deep learning models for abnormality detection (Tuber-
culosis and Cardiomegaly) in lung images. Their model 
provides 90% classification accuracy in Tuberculosis 
detection and 93% accuracy in Cardiomegaly detection. 
Chouhan et al. [7] introduced a model, where the outputs 
of 5 pre-trained deep learning models, namely AlexNet, 
ResNet18, DenseNet121, GoogleNet, and Inception-V3, 
were ensembled for the detection of Pneumonia using 
transfer learning (TL) approach. This helps to learn 
multiple types of information achieved from various 
pre-trained DL models to bolster the classification per-
formance. Their ensemble model provides the classifi-
cation accuracy of 96.40% in CXR images classification, 
which is superior to the performance of standalone mod-
els. Nevertheless, ensemble learning algorithms are ardu-
ous for which we need to be vigilant in hyper-parameter 
tuning in addition to the over-fitting problem.

Most existing methods in the literature need a huge 
amount of data for fine-tuning DL models and most of 
them extract high-level features, which may not be suf-
ficient for CXR images. They require mid-level features 
that are neither more generic nor more specific. In the 
next section, we introduce our proposed approach to 
extract such mid-level features.

Proposed method
The mid-level features of CXR images can be achieved 
from the feature maps extracted from the intermediate 
layers of pre-trained models using a Bag of Visual Words 
(BoVW) method. Since CXR images are sparse (having 
few semantic regions), existing bag of visual words meth-
ods that have been applied to represent other images 
(e.g., satellite images) may not work accurately in this 
domain. To this end, we propose an improved version 
of a bag of visual words method on deep features to rep-
resent CXR images more accurately. In this section, we 
discuss the steps involved in our proposed feature extrac-
tion method. There are three main steps in our method: 
deep features extraction (Sect.  3.1), unsupervised code-
book (dictionary) design (Sect.  3.2), and proposed fea-
tures extraction (Sect.  3.3). The overall pipeline of the 
proposed method is shown in Fig. 2.

Deep features extraction
At first, we extract the deep features from the feature map 
of the 4th pooling ( p_4 ) layer from VGG16 [49], which is 
a deep learning model pre-trained on the ImageNet [10] 
dataset. We prefer VGG16 in our work because of three 
reasons. First, it has a unrivalled performance in recent 
biomedical image analysis works such as COVID-19 CXR 
image analysis [52], breast cancer image analysis [51], etc. 
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Second, it is easy to analyze and experiment with its five 
pooling layers. Third, it uses smaller-sized kernels, which 
could learn distinguishing features of biomedical images 
at a smaller level.

We believe that 4th layer of such a model has a higher 
level of discriminability than other layers as seen in 
Fig. 3. The detailed discussion about the efficacy of the 
4th pooling layer is also presented in Sect.  4.4. Fur-
thermore, we use the VGG16 model due to its simple 
and prominent features extraction capability in vari-
ous types of image representation tasks [14, 27, 55]. 
Authors in [51, 52] highlighted the importance of 4th 
pooling layer compared to other layers in biomedical 
imaging for separable feature extraction. The size of the 
features map from the p_4 layer of the VGG16 model is 
3-D shape having H = 14 (height), W = 14 width, and 
L = 512 (length). From each feature map, we achieve 
14 × 14 features, each of size 512. Then, each feature 
vector is L2-normalized. This normalization helps to 

preserve the separability of deep features of images 
[14]. Let us say that an input image yields feature map 
with 14 × 14 = 196 number of features vectors that are 
represented by x0 , x1 , x2,· · ·,x196 . Each features vector xi 
is of 512-D size (i.e., |xi| = 512 ), which is then normal-
ized by L2-norm as seen in Eq. (1).

In Eq. (1), the features vector x′i represents the ith nor-
malized deep features vector extracted from the cor-
responding feature map. While achieving such feature 
vector, we add ǫ = 1e − 08 with denominator to avoid 
the divide by zero exception because the feature map 
obtained for chest x-ray images is sparse and it is more 
likely to encounter the divide by zero exception in most 
cases.

(1)x′i =
xi

||xi||2 + ǫ

Fig. 2 The overall pipeline of the proposed method. Based on the codebook/dictionary achieved from training block, the proposed features vector 
is extracted for each input image using the bag of visual features approach
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Unsupervised dictionary (codebook) design
We use deep features (extracted from the VGG16 model 
as discussed above in Sect. 3.1) of all training images to 
design a dictionary or codebook. Each image provides 
{x′i}

196
i=1 deep features and let’s say there are m training 

images. Thus, the total number of deep features to design 
our codebook is 196×m . To design the codebook or dic-
tionary, we utilize a simple, yet popular unsupervised 
clustering algorithm called k-means [23] that groups 
deep features having similar patterns into clusters. Given 
a parameter k, k-means algorithm provides k groups or 
clusters ( {c1, c2, · · · , ck} ) of deep features, where deep fea-
tures in each group are similar (i.e., they capture similar 
patterns of images). We use such k cluster centroids as 
a dictionary or codebook of deep visual words, which is 
used to extract features for each input image.

Proposed feature extraction
To extract features of each input image y, we first follow 
step 3.1 to achieve 196 normalized deep features of y and 
then, design a histogram based on the dictionary defined 
in step 3.2. The size of histogram is k (the dictionary size), 
where each code (cluster centroid) in the dictionary cj 

has a weight wj . All 196 deep features of y are assigned 
to their nearest centroids. The weight wj is the number of 
deep features assigned to the cluster cj . In other words, 
histogram is a bag of visual words (centroids), where 
weights are their frequencies. The resulting features of 
y is a k-D vector {w1,w2, · · · ,wk} . The extracted bag of 
visual words features vector is, finally, normalized as in 
Eq. (1), which acts as our proposed features of the cor-
responding input image.

Difference between our BoVW and DCF‑BoVW features
The main differences between our BoVW and DFC-
BoVW features are explained in three different aspects.

Firstly, the L1-normalization used by the DCF-BoVW 
method is more suitable for dense images such as satellite 
images. However, since the chest x-ray images are sparse 
in nature, such normalization becomes counterproduc-
tive as it masks some discriminating clues. Thus, we elim-
inate this normalization in our method due to the nature 
of chest x-ray images.

Secondly, we apply L2-normalization to the deep fea-
tures extracted from the unnormalized feature maps to 
exploit the property of cosine similarity in the k-means 

Fig. 3 Feature maps of an input image from each of the four categories in the COVID-19 dataset extracted from the five pooling layers of VGG16. 
p_i ( i = 1, 2, · · · , 5 ) represents the ith polling layer
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clustering. Note that Euclidean distance on the L2-nor-
malized feature is equivalent to using cosine distance. 
The directions of deep features are more important than 
their lengths to group vectors with similar patterns into 
clusters to define our codebook. This will help us to 
detect sparse patterns in images, which can be useful in 
discriminating abnormalities in x-ray images.

Finally, we replace the L1-normalization of the final 
BoVW features used in the DCF-BoVW method by 
L2-normalization. Again, this allows us to exploit the 
property of cosine similarity in the SVM’s RBF kernel. 
Because BoVW features are sparse as many vector entries 
are zeros, cosine similarity is more appropriate than the 
Euclidean distance.

Complexity analysis
In this subsection, we analyze the time complexity of our 
method. Since our proposed method is based on k-means 
clustering algorithm over training deep features, it takes 
O(m× k × d × i) time complexity, where m, k, d, and i 
denote number of input feature vectors, number of clus-
ters, features size of each vector, and number of itera-
tions, respectively. After that, each testing feature vector 
for each corresponding input image takes O(l × k) time 
complexity during the proposed feature extraction, where 
l denote the total number of deep features representing 
the testing image.

Experimental setup and comparison
Dataset
We utilize four COVID-19 CXR image datasets that are 
publicly available.

Dataset 1 [42] comprises of 3 categories: Covid-19, 
Pneumonia, and No_findings. Here, each category has at 
least 125 images. The No_findings category has several 
ambiguous and challenging CXR images.

Dataset 2 [25] comprises of 4 categories: Covid, Nor-
mal, Pneumonia viral (PneumoniaV), and Pneumonia 
bacteria (PneumoniaB).

Dataset 3 [25, 42] includes 5 categories: Covid, No_
findings, Normal, Pneumonia bacteria (PneumoniaB), 
and Pneumonia viral (PneumoniaV). Dataset 3 is the 
combination of No_finding category from Dataset 1 and 
other categories from Dataset 2. Here, each category 
includes at least 320 CXR images.

Dataset 4 [8, 24] has 4 categories: Covid, Normal, 
PneumoniaV, and PneumoniaB, where each category 
contains at least 69 images. This dataset has been used by 
[34], which can be downloaded from the link3

Example images of COVID-19 are shown in Fig.  4. 
Also, further detailed information of all datasets are pro-
vided in Table 1.

We divide the images of each dataset into 70:30 ratio 
for the train:test sets for each category (class). We com-
pare the average accuracy of five different runs.

Implementation
To implement our work, we use Keras [6] implemented in 
Python [46]. Keras is used to implement the pre-trained 
model in our work. We use the number of clusters 
k = 400 in k-means clustering to define the dictionary 
to extract proposed features. For the classification pur-
pose, we use the Support Vector Machine (SVM) classi-
fier implemented in Scikit-learn [44]. We normalize and 
standardize our features to feed into the SVM classifier. 
Moreover, we fix the kernel as the radial basis function 
(RBF) kernel with the γ parameter as 1e − 05 . We auto-
matically tune the SVM cost parameter C in the range 
of {1, 10, 20, · · · , 100} on the training set using a 5-fold 
cross-validation method and use the optimal setting to 
train the model using the entire training set. We exe-
cute all our experiments on a workstation with NVIDIA 
Geforce GTX 1050 GPU and 4 GB RAM.

Comparison with state‑of‑the‑art methods
We present the results of the experiments conducted 
to compare our method with five recent state-of-the-
art methods (one method uses the BoW approach over 
deep features and four methods adopt transfer-learning 
approach) that are based on pre-trained models on four 
CXR image datasets (D1, D2, D3, and D4) in Table  2. 
In the table, the second, third, fourth, and fifth columns 
enlist the accuracies of contending methods on D1, 

Fig. 4 Example images of chest x-ray images from Dataset 4 [8, 24] 
for four classes: a Covid, b Normal, c PneumoniaB, and d PneumoniaV

3 COVID-19 Dataset Available online: https://drive.google.com/
uc?id=1coM7x3378f-Ou2l6Pg2wldaOI7Dntu1a (accessed on Apr 17, 2020).
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D2, D3, and D4, respectively. Note that the accuracies 
reported in the table are averaged accuracy of five runs 
for each method.

Results in the second column of Table  2 show that 
our method outperforms all five contenders with the 
accuracy of 82.00% on D1. This further highlights 
that it imparts the performance increment of 2.542% 
from the second-best method (AVGG [52]) and 35% 
from the worst method (Luz et  al. [36]). Similarly, on 
D2 in the third column of Table 2, we notice that our 
method outperforms all five methods with an accuracy 
of 87.86%, which is 2.43% higher than the second-best 
method (AVGG [52]) and 17% higher than the worst-
performing method (nCOVnet [43]). In the fourth col-
umn of Table  2 on D3, we observe that our method, 
which yields 87.92% accuracy, is superior to the sec-
ond-best method (AVGG [52]) with a slim margin of 
0.43%, whereas it imparts over 20% accuracy against 
the worst performing method (nCOVnet [43]). Last 
but not the least, in the fifth column of Table 2 on D4, 
we notice that our method, which produces 83.22%, 
outperforms the DCF-BoVW [60] with the margin of 
over 10% accuracy. Please note that for D4, we only 
compare our method with DCF-BoVW [60], which 
can work for a limited amount of data only, and do not 
compare with other DL-based methods that use trans-
fer learning because this dataset has a very limited 
number of CXR images.

The comparison of our method against five different 
recent DL-based methods on four datasets unveils that 
our method provides a stable and prominent perfor-
mance. This result further underscores that the clas-
sification performance of the bag of words approach, 
which captures the more detailed spatial information 
of deteriorated regions more accurately than other 
methods, seems more appropriate to CXR image 
analysis (e.g., COVID-19 CXR images) than other DL-
based methods using transfer learning approach.

Ablative study of pooling layers
In this subsection, we present the results of an ablative 
study on D4, which is the smallest dataset, to analyze the 
effect on the classification accuracy of using deep fea-
tures from the five different pooling layers of VGG16 in 
our method. The detailed results are presented in Fig. 5. 
While observing the line graph, we notice that the 4th 
pooling layer of the VGG16 model produces highly sepa-
rable features than other pooling layers on the COVID-
19 dataset. Furthermore, the lower pooling layers ( p1 , p2 , 
and p3 ), which provide the the generic low-level informa-
tion of the image, and higher pooling layer ( p5 ), which 
provides the specific high-level information of the image, 
are not appropriate to CXR images. This could be because 

Table 1 Description of datasets used in our work

Dataset # of images Categories Ref.

Dataset 1 (D1) 1,125 Covid-19, Pneumonia, and No_findings [42]

Dataset 2 (D2) 1,638 Covid, Normal, PneumoniaB, and PneumoniaV [25]

Dataset 3 (D3) 2,138 Covid, Normal, No_findings, PneumoniaB, and PneumoniaV [25, 42]

Dataset 4 (D4) 320 Covid, Normal, PneumoniaB, and PneumoniaV [8, 24]

Table 2 Comparison with previous methods on four data-
sets (D1, D2, D3, and D4) using average classification accu-
racy (%) over five runs

Note that ’-’ represents unavailable results because of the over-fitting problems 
in existing DL-based methods using transfer learning on D4

Method D1 (%) D2 (%) D3 (%) D4 (%)

DCF-BoVW, 2018 [60] 75.31 81.53 83.72 72.46

CoroNet, 2020 [25] 76.82 80.60 83.41 -

Luz et al., 2020 [36] 47.51 84.29 79.96 -

nCOVnet, 2020 [43] 62.95 70.62 67.67 -

AVGG, 2020 [52] 79.58 85.43 87.49 -

Ours 82.00 87.86 87.92 83.22

Fig. 5 Average classification accuracy (%) achieved by our method 
on D4 using deep features extracted from the five pooling layers ( p_1 
to p_5 ) of the VGG16 model
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of nature of CXR image, which neither prefer generic nor 
specific information for better class separability.

Ablative study of cluster numbers
We analyze different number of unsupervised patterns to 
be used in our experiments on D4. For this, we vary the 
cluster numbers from 100 to 500 using the interval of 50 
and present the results in Fig. 6. From the line graph, we 
notice that the appropriate number of clusters that pro-
duce the best result is k = 400 . Thus, we believe that both 
lower and higher number of clusters than 400 are not 
useful to discriminate CXR image because lower cluster 
numbers may not cover complete discriminating patterns 
to represent the CXR images and higher cluster numbers 
may repeat the discriminating patterns.

Ablative study of class‑wise performance
We study the average class-wise performance of our 
method on D4. The average class-wise performance are 
reported using precision, recall, and f1-score, which are 
defined in Eqs. (2),(3), and (4), respectively.

where TP, FP, and FN represent true positive, false posi-
tive, and false negative results, respectively. We present 

(2)Precision =
TP

TP + FP
,

(3)Recall =
TP

TP + FN
,

(4)F1-score =
2× (Recall× Precision)

(Recall+ Precision)
,

the average precision, recall, and f1-score in Table 3. The 
results show the discriminability of our proposed method 
in all four classes. It shows that our method can distin-
guish the Covid and normal class well and there is some 
confusion among two Pneumonia classes.

We also compare our method with one recent method 
for the class-wise analysis using Receiver Operating 
Characteristic (ROC) curve, which plots the graph based 
on true positive rate and false positive rate. As an exam-
ple for class-wise analysis, we utilize third train/test split 

Fig. 6 Average classification accuracy (%) with different cluster 
number on D4. Note that deep features from the 4th pooling layer 
( p4 ) were used

Table 3 Average class-wise study (%) over five runs of our 
method on D4 using precision, recall, and f1-score

Class Precision (%) Recall (%) F1‑score (%)

Covid 100.00 97.20 98.40

Normal 94.20 93.60 93.80

PneumoniaB 75.80 67.60 71.00

PneumoniaV 68.00 76.80 71.80

Fig. 7 ROC plot of our method (a) and recent method, AVGG [52] (b)
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(f3) of D1. The ROC curves of two methods on this set 
are shown in Fig. 7. While looking at both ROC plots, we 
observe that our method produces superior performance 
in terms of area for two classes (Covid and Pneumonia) 
to one of the recent methods (AVGG [52]) and compara-
ble performance for No_findings class.

Analysis of different train/test splits
In this subsection, we study the classification perfor-
mance of different train/test ratios. For this study, we uti-
lize five different random train/test splits on D1 using five 
different ratios (50/50, 60/40, 70/30, 80/20, and 90/10). 
The results are listed in Table  4. While observing the 
table, we notice that each ratio has its own importance 
in the classification; however, our chest x-ray classifica-
tion performs better on train/test split of 70/30 ratio. 
This helps to maintain the number of training and testing 
images sufficiently for the classification. Thus, we use this 
split ratio throughout our work.

Analysis of hyper‑parameters
In this subsection, we study the effect of different hyper-
parameters used in our work. For such study, we choose 
one split (e.g., third set) of D1 and analyze the effects of 
two main hyper-parameters, C and Gamma ( γ ), used in 
SVM during classification. The sample results are listed 
in Table 5. While observing the table, we notice that the 
best C and Gamma values of the current set for higher 
classification accuracy (%) (80.20 ± 0.03) are 40 and 
1e-05, respectively. Note that we perform such operation 
for each split of each dataset and select C values auto-
matically keeping Gamma fixed to 1e-05. This results in 
variation of C values from one split to another during 
classification for each dataset used in our work.

Conclusion and future works
In this paper, we propose a new feature extraction 
method based on Bag of Deep Visual Words (BoDVW) 
to represent chest x-ray images. Empirical results in the 
classification of chest x-ray images using the COVID-
19 dataset show that our method is more appropriate to 
represent chest x-ray images. This is mainly because our 
features can capture a few interesting regions (sparse 
markers) indicating abnormalities well. Our features are 
extracted using a visual dictionary defined by the cluster-
ing of deep features from all training images. Therefore, 
they can capture patterns in each training image and thus 
help to capture potential markers for various lung infec-
tions such as COVID-19 and Pneumonia. Also, the size 
of our proposed features is relatively very small com-
pared to other existing methods and our method runs 
faster than other existing methods.

Though the evaluation is done on a relatively small 
dataset, our method shows promising results to detect 
and distinguish lung infection due to Pneumonia and 
COVID-19. COVID-19 is a relatively new disease and 
there are not a lot of chest x-ray images available. Nev-
ertheless, given the current crisis with the COVID-19 
pandemic, our method, which is accurate and fast, can 

Table 4 Analysis of different train/test splits using classifi-
cation accuracy (%) on D1

Note that the results are based on the randomly designed single train/test set on 
D1 for each of five different ratios

Train/test Accuracy (%)

50/50 80.24

60/40 81.55

70/30 85.79

80/20 81.77

90/10 83.18

Table 5 Sample analysis of hyper-parameters used with 
RBF kernel in SVM based on classification accuracy (%) ± 
standard deviation in our work

Note that we perform 5-fold cross validation over corresponding training set to 
choose the best hyper-parameters for the SVM classification

Gamma

C 1e‑01 1e‑02 1e‑03 1e‑04 1e‑05

1 44.60 ± 
0.01

71.70 ± 
0.04

79.50 ± 
0.03

69.60 ± 
0.08

68.40 ± 0.07

10 44.60 ± 
0.01

71.40 ± 
0.04

78.40 ± 
0.04

79.50 ± 
0.05

69.60 ± 0.07

20 44.60 ± 
0.01

71.40 ± 
0.04

78.40 ± 
0.04

79.40 ± 
0.05

75.40 ± 0.05

30 44.60 ± 
0.01

71.40 ± 
0.04

78.40 ± 
0.04

78.00 ± 
0.08

78.90 ± 0.04

40 44.60 ± 
0.01

71.40 ± 
0.04

78.40 ± 
0.04

76.90 ± 
0.07

80.20 ± 
0.03

50 44.60 ± 
0.01

71.40 ± 
0.04

78.40 ± 
0.05

76.40 ± 
0.08

80.10 ± 0.04

60 44.60 ± 
0.01

71.40 ± 
0.04

78.40 ± 
0.04

75.70 ± 
0.08

80.20 ± 0.05

70 44.60 ± 
0.01

71.40 ± 
0.04

78.40 ± 
0.04

75.60 ± 
0.07

80.10 ± 0.05

80 44.60 ± 
0.01

71.40 ± 
0.04

78.40 ± 
0.04

75.40 ± 
0.07

79.50 ± 0.07

90 44.60 ± 
0.01

71.40 ± 
0.04

78.40 ± 
0.04

75.20 ± 
0.06

79.40 ± 0.05

100 44.60 ± 
0.01

71.40 ± 
0.04

78.40 ± 
0.04

75.10 ± 
0.06

79.50 ± 0.05
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be very useful for health professionals for mass screening 
of people for COVID-19. Accurate detection and distinc-
tion of lung infections due to COVID-19 and Pneumo-
nia are very important for COVID-19 diagnosis as people 
infected by these diseases show similar symptoms.

In the future, it would be interesting to verify our 
results in a large study with more sample images includ-
ing other types of lung infection such as Tuberculosis. 
Another potential direction is to investigate if a similar 
approach can be used to represent other types of medical 
images such as CT scans, histopathological images, colo-
noscopy images, etc.
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