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METHODOLOGY

Classification of COVID‑19 chest X‑rays 
with deep learning: new models or fine tuning?
Tuan D. Pham* 

Abstract 

Background and objectives:  Chest X-ray data have been found to be very promising for assessing COVID-19 patients, 
especially for resolving emergency-department and urgent-care-center overcapacity. Deep-learning (DL) methods 
in artificial intelligence (AI) play a dominant role as high-performance classifiers in the detection of the disease using 
chest X-rays. Given many new DL models have been being developed for this purpose, the objective of this study is 
to investigate the fine tuning of pretrained convolutional neural networks (CNNs) for the classification of COVID-19 
using chest X-rays. If fine-tuned pre-trained CNNs can provide equivalent or better classification results than other 
more sophisticated CNNs, then the deployment of AI-based tools for detecting COVID-19 using chest X-ray data can 
be more rapid and cost-effective.

Methods:  Three pretrained CNNs, which are AlexNet, GoogleNet, and SqueezeNet, were selected and fine-tuned 
without data augmentation to carry out 2-class and 3-class classification tasks using 3 public chest X-ray databases.

Results:  In comparison with other recently developed DL models, the 3 pretrained CNNs achieved very high clas-
sification results in terms of accuracy, sensitivity, specificity, precision, F1 score, and area under the receiver-operating-
characteristic curve.

Conclusion:  AlexNet, GoogleNet, and SqueezeNet require the least training time among pretrained DL models, but 
with suitable selection of training parameters, excellent classification results can be achieved without data augmenta-
tion by these networks. The findings contribute to the urgent need for harnessing the pandemic by facilitating the 
deployment of AI tools that are fully automated and readily available in the public domain for rapid implementation.
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Introduction
COVID-19 (coronavirus disease 2019) is an infectious 
disease caused by severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2), which is a strain of coronavi-
rus. The disease was officially announced as a pandemic 
by the World Health Organisation (WHO) on 11 March 
2020. Given spikes in new COVID-19 cases and the re-
opening of daily activities around the world, the demand 
for curbing the pandemic is to be more emphasized.

Medical images and artificial intelligence (AI) have 
been found useful for rapid assessment to provide treat-
ment of COVID-19 infected patients. Therefore, the 

design and deployment of AI tools for image classifica-
tion of COVID-19 in a short period of time with limited 
data have been an urgent need for fighting the current 
pandemic. Radiologists have recently found that deep 
learning (DL) developed in AI, which was able to detect 
tuberculosis in chest X-rays, could be useful for identi-
fying lung abnormalities related to COVID-19 and help 
clinicians in deciding the order of treatment of high-risk 
COVID-19 patients [1]. The role of medical imaging 
has also been confirmed by others as playing an impor-
tant source of information to enable the fast diagnosis of 
COVID-19 [2], and the coupling of AI and chest imaging 
can help explain the complications of COVID-19 [3].

Regarding the image analysis of COVID-19, chest 
X-ray is an imaging method to diagnose COVID-19 
infection adopted by hospitals, particularly the first 
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image-based approach used in Spain [4]. The proto-
col is that if a clinical suspicion about the infection 
remains after the examination of a patient, a sample of 
nasopharyngeal exudate is obtained to test the reverse-
transcription polymerase chain reaction (RT-PCR) 
and the taking of a chest X-ray film follows. Because 
the results of the PCR test may take several hours to 
become available, information revealed from the chest 
X-ray plays an important role for a rapid clinical assess-
ment. This means if the clinical condition and the chest 
X-ray are normal, the patient is sent home while await-
ing the results of the etiological test. But if the X-ray 
shows pathological findings, the suspected patient will 
be admitted to the hospital for close monitoring. In 
general, the absence or presence of pathological find-
ings on the chest X-ray is the basis for making a clini-
cal decision in sending the patient home or keeping the 
patient in the hospital for further observation.

While radiography in medical examinations can be 
quickly performed and become widely available with the 
prevalence of chest radiology imaging systems in health-
care systems, the interpretation of radiography images 
by radiologists is limited due to the human capacity in 
detecting the subtle visual features present in the images. 
Because AI can discover patterns in chest X-rays that 
normally would not be recognized by radiologists [5–8], 
there have been many studies reported in literature about 
new developments of DL models using convolutional 
neural networks (CNNs) for differentiating COVID-19 
from non-COVID-19 using public databases of chest 
X-rays (related works are presented in the next section).

This study attempted to investigate the potential of 
the parameter adjustments in the transfer learning of 
three popular pretrained CNNs: AlexNet, GoogLeNet, 
and SqueezeNet, which are known to have least predic-
tion and training iteration times among other pretrained 
CNNs reported from the ImageNet Large-Scale Visual 
Recognition Challenge [9]. If these fine-tuned networks 
can achieve desired performance in the classification 
of COVID-19 chest X-ray images by a configuration in 
such a way to highly perform the task, then the contri-
bution of the findings to the coronavirus pandemic relief 
would be significant. This is because it can facilitate the 
urgent need for rapidly deploying AI tools to assist clini-
cians in making optimal clinical decisions by saving time, 
resources, and technical efforts in developing models that 
may result in the same or lower performance.

The new contribution of this study is the finding of 
the relatively simple yet powerful performance of sev-
eral fine-tuned pretrained CNNs that can produce bet-
ter accuracy in classifying COVID-19 chest X-ray data 
with less training effort than other existing deep-learning 
models.

Related works
Peer-reviewed works that are related to the study pre-
sented herein are described as follows.

The Bayes-SqueezeNet [10] was introduced for 
detecting the COVID-19 using chest X-rays. The pro-
posed net consists of the offline augmentation of the 
raw dataset and model training using the Bayesian 
optimization. The Bayes-SqueezeNet was applied for 
classifying X-ray images labeled in 3 classes as normal, 
viral pneumonia, and COVID-19. Using the data aug-
mentation, the net claimed to overcome the problem of 
imbalanced data obtained from the public databases.

As another CNN, the CoroNet [11] was developed 
for detecting COVID-19 infection from chest X-ray 
images. This model was based on the pretrained CNN 
known as the Xception [12]. CoroNet adopted the 
Xception as base model with a dropout layer and two 
fully-connected layers added at the end. As a result, 
CoroNet has 33,969,964 parameters in total out of 
which 33,969,964 trainable and 54,528 are non-traina-
ble parameters. The net was applied for 3-class classifi-
cation (COVID-19, pneumonia, and normal) as well as 
4-class classification (COVID-19, pneumonia bacterial, 
pneumonia viral, and normal).

The CovidGAN [13] was proposed as an auxiliary 
classifier generative adversarial network based on GAN 
(generative adversarial network) [15] for the detection 
of COVID-19. The architecture of the CovidGan was 
built on the pretrained VGG-16 [14], which is con-
nected with four custom layers at the end with a global 
average pooling layer followed by a 64 units dense layer 
and a dropout layer with 0.5 probability. The net fur-
ther utilized the GAN approach for generating syn-
thetic chest X-ray images to improve the classification 
performance.

The DarkCovidNet [16], which was built on the Dark-
Net model [17], is another CNN model proposed for 
COVID-19 detection using chest X-rays. The DarkCov-
idNet consists of fewer layers and (gradually increased) 
filters than the original DarkNet. This model was tested 
for a 2-class classification (COVID-19 and no-findings) 
and 3-class classification (COVID-19 no-findings, and 
pneumonia).

The work reported in [18] implemented VGG-19 [14], 
MobileNet-v2 [19], Inception [20], Xception [12], and 
Inception ResNet-v2 [20] as pretrained CNNs for the 
detection of COVID-19 from X-ray images. These pre-
trained CNNs were applied to 2-class and 3-class clas-
sification cases using 2 datasets consisting of images of 
COVID-19, bacterial pneumonia, viral pneumonia, and 
healthy conditions.
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Pretrained CNNs and training parameters 
for transfer learning
Three prerained CNNs, which are AlexNet [21], Goog-
LeNet [22], and SqueezeNet [23], were selected in 
this study. The reason for selecting these CNNs was 
that these three models require the least training time 
among other pretrained CNNs. The architectures and 
specification of training parameters for transfer learn-
ing of AlexNet, GoogLeNet, and SqueezeNet are 
described as follows.

First, the layer graph from the pretrained network was 
extracted. If the network was a SeriesNetwork object, 
such as AlexNet, then the list of layers was converted to 
a layer graph. In the pretrained networks, the last layer 
with learnable weights is a fully connected layer. This 
fully connected layer was replaced with a new fully con-
nected layer with the number of outputs being equal to 
the number of classes in the new data set, which is 2 or 
3, in this study. In the pretrained SqueezeNet, the last 
learnable layer is a 1-by-1 convolutional layer instead. 
In this case, the convolutional layer was replaced with 
a new convolutional layer with the number of filters 
equal to the number of classes.

The original chest X-ray images were converted into 
RGB images and resized to fit into the input image size 
of each pretrained CNN. For the training options, the 
stochastic gradient descent with momentum optimizer 
was used, where the momentum value = 0.9000; gradi-
ent threshold method = L2 norm; minimum batch size 
= 10; maximum number of epochs = 10; initial learn-
ing rate= 0.0003; the learning rate remained constant 
throughout training; the training data were shuffled 
before each training epoch, and the validation data 
were shuffled before each network validation; and fac-
tor for L2 regularization (weight decay) = 0.0001.

Basic properties of the three networks in terms of 
depth, size, numbers of parameters, and input image 
size are given in Table 1. Other hyperparameters of the 
three networks can be found in [21] (AlexNet), [22] 
(GoogLeNet), and [23] (SqueezeNet).

Chest X‑ray databases
This study used 3 public databases of COVID-19 chest 
X-rays: (1) COVID-19 Radiography Database [24], (2) 
COVID-19 Chest X-Ray Dataset Initiative [25], and (3) 
IEEE8023/Covid Chest X-Ray Dataset [26].

The COVID-19 Radiography Database consists of 
chest X-rays of 219 COVID-19 positive images, 1341 
normal images, and 1345 viral pneumonia images. 
The COVID-19 Chest X-Ray Dataset Initiative has 55 
COVID-19 positive images. IEEE8023/Covid Chest 
X-Ray Dataset is part of the COVID-19 Image Data 
Collection of chest X-ray and CT images of patients 
which are positive or suspected of COVID-19 or other 
viral and bacterial pneumonias, in which 706 images 
are chest X-rays. The numbers of images in these data-
bases, which are expected to increase over time with 
more available data, were reported on the date of acc
ess.

Figure 1 shows some chest X-ray images of COVID-
19, viral pneumonia, and normal subjects provided by 
the COVID-19 Radiography Database. Figures 2 and 3 
show some chest X-ray images of COVID-19 obtained 
from the COVID-19 Chest X-Ray Dataset Initiative and 
IEEE8023/Covid Chest X-Ray Dataset, respectively.

Design of chest X‑ray subsets
Six subsets of chest X-ray data were constructed 
out of the COVID-19 Radiography Database (Kag-
gle), COVID-19 Chest X-Ray Dataset Initiative, and 
IEEE8023/Covid Chest X-Ray Dataset to test and com-
pare the performance of the pretrained CNNs. These 6 
subsets are described as follows.

Dataset 1
This dataset includes 403 chest X-rays of COVID-19 
and 721 chest X-rays of healthy subjects . All images 
of the healthy subjects were taken from the COVID-
19 Radiography Database. This dataset was designed 
for a two-class classification to compare with the study 
reported in [13].

Dataset 2
This chest X-ray dataset has 438 images of COVID-19 
and 438 images of healthy subjects. All images of the 
healthy subjects were taken from the COVID-19 Radi-
ography Database. This balanced dataset was designed 
for a two-class classification with more COVID-19 
images.

Dataset 3
This chest X-ray dataset has 438 images of COVID-
19 and 876 images of healthy and viral pneumonia 

Table 1  Basic properties of  3 pretrained convolutional 
neural networks

Network Depth Size (MB) Parameters 
(millions)

Input image size

AlexNet 8 227 61.0 227× 227

GoogLeNet 22 27 7.0 224× 224

SqueezeNet 18 5.2 1.24 227× 227
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subjects (438 healthy and 438 viral pneumonia) cases. 
All images of the healthy and viral pneumonia subjects 
were taken from the COVID-19 Radiography Database. 
This dataset was designed for a two-class classification.

Dataset 4
To carry out a three-class classification, this chest X-ray 
dataset has 438 images of COVID-19, 438 images of 
viral pneumonia, and 438 images of healthy subjects. All 
images of the healthy and viral pneumonia subjects were 
taken from the COVID-19 Radiography Database.

Dataset 5
This two-class dataset consists of all images of the 
COVID-19 (class 1), and healthy and viral pneumo-
nia subjects (class 2) of the COVID-19 Radiography 
Database.

Dataset 6
This three-class dataset consists of all images of the 
COVID-19 (class 1), viral pneumonia (class 2), and 
healthy subjects (class 3) of the COVID-19 Radiography 
Database.

Fig. 1  Chest X-rays from COVID-19 Radiography Database: COVID-19 (Row 1), viral pneumonia (Row 2), and normal (Row 3)

Fig. 2  Chest X-rays of COVID-19 from the Chest X-Ray Dataset Initiative

Fig. 3  Chest X-rays of COVID-19 from the IEEE8023/Covid Chest X-Ray Dataset
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Performance metrics
Six metrics used for evaluating the performance of the 
CNNs are accuracy, sensitivity, specificity, precision, F1 
score, and area under a receiver operating characteristic 
curve (AUC).

The sensitivity (SEN) is defined as the percentage of 
COVID-19 patients who are correctly identified as having 
the infection, and expressed as

where TP is called true positive, denoting the number of 
COVID-19 patients who are correctly identified as hav-
ing the infection, FN false negative, denoting the number 
of COVID-19 patients who are misclassified as having 
no infection of COVID-19, and P the total number of 
COVID-19 patients.

The specificity (SPE) is defined as the percentage of non-
COVID-19 subjects who are correctly classified as having 
no infection of COVID-19:

where TN is called true negative and denotes the number 
of non-COVID-19 subjects who are correctly identified 
as having no infection of COVID-19, FP false positive, 
denoting the number of non-COVID-19 subjects who 
are misclassified as having the infection, and N the total 
number of non-COVID-19 subjects.

The accuracy (ACC​) of the classification is defined as

The precision (PRE) is also known as the percentage of 
positive predictive value and defined as:

(1)SEN =

TP

P
× 100 =

TP

TP + FN
× 100,

(2)SPE =

TN

N
× 100 =

TN

TN + FP
× 100,

(3)ACC =

TP + TN

P + N
× 100.

(4)PRE =

TP

TP + FP
× 100

The F1 score is defined as the harmonic mean of precision 
and sensitivity:

The receiver operating characteristic (ROC) is a prob-
ability curve created by plotting the TP rate against the 
FP rate at various threshold settings, and the AUC rep-
resents the measure of performance of a classifier. The 
higher the AUC is, the better the model at distinguish-
ing between COVID-19 and non-COVID-19 cases. For a 
perfect classifier, AUC = 1, and an AUC = 0.5 indicates 
a classifier that randomly assigns observations to classes. 
The AUC is calculated using the trapezoidal integration 
to estimate the area under the ROC curve.

Results
All results are reported as the average values and stand-
ard deviations of 3 executions of randomly selected ratios 
of training and testing data.

Table  2 shows the classification results obtained 
from the transfer learning of AlexNet, GoogLeNet, and 
SqueezeNet, using Dataset 1 with two different training 
and testing data ratios. The 3 pretrained CNNs achieved 
very high accuracy, sensitivity, specificity, precision, F1 
score, and AUC in all cases. Particularly, GoogLeNet and 
SqueezeNet had almost 100% accuracy with 80% training 
and 20% testing data. The AUCs were almost perfect in 
all cases for all three CNNs.

Figure  4 shows the training processes of the transfer 
learning of the three CNNs, and Fig.  5 shows the fea-
tures at the fully connected layers extracted from transfer 
learning of the three CNNs, all using Dataset 1 with 80% 
training and 20% testing.

Tables 3 and 4 show the classification results obtained 
from the AlexNet, GoogLeNet, and SqueezeNet for a 
2-class classification of COVID-19 and normal cases 
(Dataset 2), and COVID-19 and both normal and viral 
pneumonia (Dataset 3) with 50% of the data for training 

(5)F1 =
2TP

2TP + FP + FN
.

Table 2  Two-class classification results: Dataset 1.

CNN Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score AUC​

80% training and 20% testing

 AlexNet 99.14 ± 0.62 98.44 ± 1.19 99.51 ± 0.66 99.10 ± 1.21 0.988 ± 0.009 0.999 ± 0.002

 GoogLeNet 99.70 ± 0.52 100 ± 0.00 99.54 ± 0.80 99.16 ± 1.46 0.996 ± 0.007 0.999 ± 0.000

 SqueezeNet 99.85 ± 0.26 100 ± 0.00 99.77 ± 0.40 99.57 ± 0.74 0.998 ± 0.004 0.999 ± 0.000

50% training and 50% testing

 AlexNet 99.19 ± 0.23 98.32 ± 0.65 99.65 ± 0.14 99.35 ± 0.26 0.988 ± 0.003 0.999 ± 0.000

 GoogLeNet 99.22 ± 0.46 99.14 ± 0.60 99.26 ± 0.42 98.63 ± 0.79 0.989 ± 0.007 0.999 ± 0.002

 SqueezeNet 98.43 ± 2.10 95.85 ± 6.28 99.81 ± 0.32 99.66 ± 0.032 0.976 ± 0.000 0.999 ± 0.000
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Fig. 4  Transfer-learning processes of the pretrained convolutional neural networks for the 2-class classification using Dataset 1
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and the other 50% for testing, respectively. For Dataset 
2, all classifiers achieved accuracy, sensitivity, specific-
ity, and precision > 99%, and F1 score > 0.990, and AUC 

almost being 1. For Dataset 3, all achieved > 98% in accu-
racy, > 97% in sensitivity, > 98% in specificity and preci-
sion, > 0.975 for F1 score, and almost 1 for AUC.

Table  5 shows the 3-class classification (COVID-19, 
viral pneumonia, and normal) results obtained from the 
transfer learning of three pretrained CNNs using Dataset 
4 with 50% of the data for training and the other 50% for 
testing. All the three CNNs achieved accuracies > 96%, 
sensitivity > 97%, specificity > 95%, precision > 96%, F1 
score ≥ 0.970, and AUC = 0.998.

Table  6 shows the results obtained from the three 
CNNs using Dataset 5, of which accuracies (> 99%), 
AUCs (= 0.999), and specificity (> 99%) are similar for 
both cases of (1) 90% training and 10% testing data, 
and (2) 50% training and 50% testing data. The AlexNet 
achieved the best average sensitivity (98.48%) using 
90% training and 10% testing data, and the SqueezeNet 
achieved the best average sensitivity (98.47%) for 50% 
training and 50% testing data.

For the 3-class classification using Dataset 6, the results 
as shown in Table 7 are still very high but slightly lower 
than those obtained using Dataset 5 for the 2-class clas-
sification. For both cases of 1) 90% training and 10% test-
ing data, and 2) 50% training and 50% testing data, all the 
accuracies are ≥ 96%, specificity > 96%, and AUC > 0.998. 
The SqueezeNet has the highest sensitivity (98.48%) for 
90% training and 10% testing data, while the GoogLeNet 
achieved the highest sensitivity (95.23%) for 50% training 
and 50% testing data. The precision (98.48%) is highest 
for the GoogLeNet using 90% training and 10% testing 
data, and highest (96.75%) for the SqueezeNet using 50% 
training and 50% testing data. The GoogLeNet achieved 
the highest F1 scores as 0.977 and 0.952 for both 90% 
training and 10% testing, and 50% training and 50% test-
ing, respectively.

Comparions with related works
The CovidGAN [13] aimed to generate synthetic chest 
X-ray images using the principle of GAN for the clas-
sification. Using the combination of three databases 
(COVID-19 Radiography Database, COVID-19 Chest 
X-Ray Dataset Initiative, and IEEE8023/Covid Chest 
X-Ray Dataset) with about 80% training and 20% testing 
data, this network achieved 95% in accuracy, 90% in sen-
sitivity, and 97% in specificity. Using the same database 

Fig. 5  Features at the fully connected layers of the pretrained con-
volutional neural networks for the 2-class classification using Dataset 
1: This feature visualization provides insights into the performance of 
the convolutional neural networks for differentiating COVID-19 (left 
images) from normal (right images) conditions. The networks first 
learned simple edges and texture, then more abstract properties of 
the two classes in higher layers, resulting in distinctive features for 
effective pattern classification

Table 3  Two-class classification results: Dataset 2 (50% training and 50% testing)

CNN Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score AUC​

AlexNet 99.40 ± 0.31 99.34 ± 0.54 99.45 ± 0.75 99.44 ± 0.76 0.994 ± 0.003 1.00 ± 0.000

GoogLeNet 99.61 ± 0.13 99.21 ± 0.27 100 ± 0.00 100 ± 0.00 0.996 ± 0.001 0.999 ± 0.000

SqueezeNet 99.69 ± 0.13 99.53 ± 0.47 99.85 ± 0.26 99.84 ± 0.27 0.997 ± 0.001 1 ± 0.000
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combination with 80% training and 20% testing data 
without data augmentation, all three fine-tuned CNNs 
reported in the present study (Table 2) achieved accuracy 
> 99%, sensitivity from 98% (AlexNet) to 100% (Goog-
LeNet and SqueezeNet), and specificity > 99%.

The Bayes-SqueezeNet [10] carried out the 3-class 
classification of X-ray images labeled as normal, bacte-
rial pneumonia, and COVID-19. The Bayes-SqueezeNet 
used the COVID-19 Radiography Database (Kaggle) and 

IEEE8023/Covid Chest X-Ray Dataset, with approxi-
mately 89% (3697 images) training and validation (462 
images) and 11% (459 images) testing data, and applied 
data augmentation for the network training. The accu-
racy, specificity, and F1 scores were 98%, 99%, and 0.98. 
The current study used the updated COVID-19 Radi-
ography Database with 90% training and 10% testing, 
resulting in similar 3-class classification results obtained 
from the fine-tuned AlexNet without data augmentation 

Table 4  Two-class classification results: Dataset 3 (50% training and 50% testing)

CNN Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score AUC​

AlexNet 98.43 ± 0.86 97.35 ± 1.14 98.95 ± 0.86 97.83 ± 1.77 0.976 ± 0.013 0.998 ± 0.002

GoogLeNet 98.82 ± 0.54 97.79 ± 2.24 99.32 ± 0.46 98.58 ± 0.93 0.982 ± 0.009 0.998 ± 0.002

SqueezeNet 98.77 ± 0.31 97.79 ± 1.80 99.24 ± 0.48 98.43 ± 0.96 0.981 ± 0.005 0.999 ± 0.000

Table 5  Three-class classification results: Dataset 4 (50% training and 50% testing)

CNN Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score AUC​

AlexNet 96.46 ± 1.36 97.35 ± 1.37 96.03 ± 1.44 98.11 ± 1.93 0.977 ± 0.015 0.998 ± 0.001

GoogLeNet 96.20 ± 0.44 97.79 ± 2.24 95.43 ± 0.46 98.44 ± 1.15 0.981 ± 0.007 0.998 ± 0.002

SqueezeNet 96.25 ± 0.90 98.10 ± 1.71 95.36 ± 0.53 96.01 ± 1.75 0.970 ± 0.010 0.998 ± 0.001

Table 6  Two-class classification results: Dataset 5

CNN Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score AUC​

90% training and 10% testing

 AlexNet 99.77 ± 0.20 98.48 ± 2.62 99.88 ± 0.21 98.55 ± 2.51 0.985 ± 0.013 0.999 ± 0.008

 GoogLeNet 99.31 ± 0.34 95.45 ± 4.55 99.63 ± 0.37 95.63 ± 4.18 0.955 ± 0.023 0.999 ± 0.001

 SqueezeNet 99.54 ± 0.37 96.97 ± 5.25 99.75 ± 0.43 97.22 ± 4.81 0.970 ± 0.026 0.999 ± 0.002

50% training and 50% testing

 AlexNet 99.13 ± 0.42 91.93 ± 3.69 99.72 ± 0.22 96.37 ± 2.79 0.941 ± 0.029 0.998 ± 0.001

 GoogLeNet 99.47 ± 0.14 96.94 ± 1.40 99.68 ± 0.09 96.07 ± 1.03 0.965 ± 0.010 0.999 ± 0.000

 SqueezeNet 99.38 ± 0.42 98.47 ± 1.06 99.45 ± 0.50 93.83 ± 5.23 0.960 ± 0.026 0.999 ± 0.000

Table 7  Three-class classification results: Dataset 6

CNN Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score AUC​

90% training and 10% testing

 AlexNet 97.59 ± 0.60 95.45 ± 4.55 97.76 ± 0.37 98.55 ± 2.51 0.969 ± 0.014 0.998 ± 0.004

 GoogLeNet 96.09 ± 2.30 96.97 ± 2.62 96.02 ± 2.28 98.48 ± 2.62 0.977 ± 0.023 0.999 ± 0.004

 SqueezeNet 97.47 ± 1.31 98.48 ± 2.62 97.39 ± 1.30 94.20 ± 2.51 0.963 ± 0.026 0.999 ± 0.009

50% training and 50% testing

 AlexNet 95.89 ± 0.42 92.11 ± 6.31 96.20 ± 0.66 96.66 ± 2.30 0.942 ± 0.029 0.998 ± 0.000

 GoogLeNet 96.07 ± 0.63 95.23 ± 1.51 96.14 ± 0.72 95.24 ± 1.72 0.952 ± 0.015 0.999 ± 0.001

 SqueezeNet 95.95 ± 0.52 92.11 ± 3.02 96.26 ± 0.63 96.75 ± 1.20 0.943 ± 0.014 0.998 ± 0.001
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(Table 7: 98% in accuracy, 98% in specificity, and 0.97 for 
F1 score.

To avoid the unbalanced data problem, the Coro-
Net [11] randomly selected 310 normal, 330 bacterial 
pneumonia, and 327 COVID-19 X-ray images from the 
COVID-19 Radiography Database. The 4-fold cross-
validation (75% training and 25% testing) results for the 
2-class classification were: accuracy = 99%, sensitivity = 
99%, specificity = 99%, precision = 98%, F1 score = 0.99. 
The 4-fold cross-validation results for the 3-class classifi-
cation were: accuracy = 95%, sensitivity = 97%, specific-
ity = 98%, precision = 95%, F1 score = 0.96. Using the 
whole updated COVID-19 Radiography Database with 
90% for training and 10% for testing, the 2-class classi-
fication results obtained from the fined-tuned AlexNet 
were (Table 6): accuracy = 100%, sensitivity = 98%, spec-
ificity = 100%, precision = 99%, F1 score = 1.00. With 
50% for training and 50% for testing, the 2-class classifi-
cation results obtained from the fined-tuned GoogLeNet 
were (Table 6): accuracy = 99%, sensitivity = 97%, speci-
ficity = 100%, precision = 96%, F1 score = 0.97. Using the 
whole updated COVID-19 Radiography Database with 
90% for training and 10% for testing, the 3-class classi-
fication results obtained from the fined-tuned AlexNet 
were (Table 7): accuracy = 98%, sensitivity = 95%, speci-
ficity = 98%, precision = 99%, F1 score = 0.97. With 50% 
for training and 50% for testing, the 3-class classification 
results obtained from the fined-tuned GoogLeNet were 
(Table 7): accuracy = 96%, sensitivity = 95%, specificity 
= 96%, precision = 95%, F1 score = 0.95.

The DarkCovidNet [16] used the IEEE8023/Covid 
Chest X-Ray Dataset and Chestx-ray8 Database [27] to 
perform 2-class classification (COVID-19 and no-find-
ings) and 3-class classification (COVID-19, no-findings, 
and pneumonia). Using the 5-fold cross validation (80% 
training and 20% testing) for the 2-class classification, 
the DarkCovidNet achieved accuracy = 98%, sensitivity 
= 95%, specificity = 95%, precision = 98%, and F1 score 
= 0.97. Using the 5-fold cross validation for the 3-class 
classification, the DarkCovidNet achieved accuracy = 
87%, sensitivity = 85%, specificity = 92%, precision = 
90%, and F1 score = 0.87. For the 2-class classification 
(Table  3), the three fine-tuned CNNs reported in this 
study, which used the Dataset 2 with 50% training and 
50% testing , achieved > 99% in accuracy, sensitivity, 
specificity, and precision, and F1 score > 0.99; and for the 
3-class classification (Table 5), > 98% in accuracy, > 97% 
in sensitivity, ≥ 99% in specificity, ≥ 98% in precision, and 
F1 score ≥ = 0.98.

The VGG-19, MobileNet-v2, Inception, Xception, and 
Inception ResNet-v2 were implemented for the classifi-
cation of COVID-19 chest X-ray images [18]. Those net-
works were trained and tested using the IEEE8023/Covid 

Chest X-Ray Dataset and other chest X-rays collected 
on the internet. The best 10-cross-validation (90% train-
ing and 10% testing) results obtained from the VGG-19 
were: accuracy = 98.75% for the 2-class classification and 
93.48% for the 3-class classification. Using the COVID-
19 Radiography Database, the fine-tuned AlexNet, Goog-
LeNet, and SqueezeNet achieved 2-class classification 
accuracies > 99% for both 90% training-10% testing and 
50% training-50% testing (Table  6), and 3-class classi-
fication accuracies > 96% for 90% training-10% testing 
(Table 7).

Discussions
The results obtained from the transfer learning of the 
fine-tuned AlexNet, GoogLeNet, and SqueezeNet illus-
trate the high accomplishment of the pretrained models 
for the classification of COVID-19. Due to the database 
updates over time and the public availability of other 
data collections, it is impossible to carry out exact com-
parisons of the results reported herein and many other 
works. Comparisons with base-line works using the 
same datasets as shown in Table 8 strongly suggest that 
the fine-tuned pretrained networks achieved better per-
formance than several other base-line methods in terms 
of classification accuracy, and partitions of training and 
testing data.

Both AlexNet and SqueezeNet take the least train-
ing and prediction time among many other pretrained 
CNNs. In this study, data augmentation was not applied 
to the transfer learning of the three networks. However, 
very high classification results could be obtained by using 
suitable parameters for the transfer learning of new data. 
This finding emphasizes the role of fine tuning of pre-
trained CNNs for handling new data before adding more 
complex architectures to the networks. The finding in 
this study can be useful for the rapid deployment of avail-
able AI models for the fast, reliable, and cost-effective 
detection of COVID-19 infection.

Conclusion
The transfer learning of three popular pretrained CNNs 
for the classification of chest X-ray images of COVID19, 
viral pneumonia, and normal conditions using several 
subsets of three publicly available databases have been 
presented and discussed. The performance metrics 
obtained from different settings of training and testing 
data have demonstrated the effectiveness of these three 
networks. The present results suggest the fine tuning of 
the network learning parameters is important as it can 
help avoid making efforts in developing more complex 
models when existing ones can result in the same or bet-
ter performance.
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Due to limited data labeling, this study did not consider 
the sub-classification of COVID-19 into mild, moder-
ate, or severe disease. Another issue is that only a single 
chest X-ray series was obtained for each patient. This 
data limitation has an implication that it is not possible 
to determine if patients developed radiographic findings 
as the illness progressed [28]. Nevertheless, hospitals and 
institutions across continents have been trying to rapidly 
develop AI-based solutions for solving the time-sensitive 
COVID-19 crisis. The findings reported in this study can 
facilitate the free availability of AI models to all partici-
pants for clinical validations.
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