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Abstract This article examines electric power restoration

following catastrophic damage in modern cities and

regions due to extreme events and disasters. Recovery time

and non-restoration probability are derived using new data

from a comprehensive range of recent massive hurricanes,

extensive wildfires, severe snowstorms, and damaging

cyclones. Despite their totally disparate origins, over three

orders of magnitude severe wildfires and hurricanes have

the same non-restoration probability trends, which are of

simple exponential form. The results fall into categories

that are dependent on and grouped by the degree of damage

and social disruption. The implications are discussed for

emergency response planning. These new results demon-

strate that the scientific laws of probability and human

learning, which dominate risk in modern technologies and

societies are also applicable to a wide range of disasters

and extreme events.

Keywords Damage categories � Hurricanes � Restoration
probability � Storms � Wildfires

1 Introduction

This research provides a new technical and realistic basis

for determining the likelihood of when electric power will

be restored after damage due to extreme events and dis-

asters. The recovery time and non-restoration probability

are derived by using new power outage data from a wide

range of recent hurricanes, storms, snowstorms, cyclones,

and extensive wildfires. The result is a new method for

making outage time predictions in repairable power sys-

tems following disasters that is independent of the specific

electrical system and its protocols.

Recent extreme events have highlighted the fragility of

the power system in major cities, urban complexes, and

industries that have been built totally dependent on elec-

tricity. There were 52 extreme events recorded in 19

countries causing power outages in 2013 alone (Klinger

et al. 2014). ‘‘In the light of increasing demand and reli-

ance, power outages will continue to have far-reaching

impacts upon the health of vulnerable populations who are

increasingly reliant on electrically powered technology’’

(Klinger et al. 2014, §7). The Great North-East Blackout

also highlighted how failures can cascade throughout an

internationally coupled transmission system (U.S.-Canada

2004). Just the economic impacts of outages due to

extreme weather events was estimated to cost up to USD

30 billion per year for the United States alone (U.S. Office

of the President 2013), and total disaster relief funding is

an even larger amount.1

The ideal is for ‘‘perfect restoration’’ to all disconnected

customers. There are hundreds of technical papers on the

subject of retaining grid stability, automated control,

emergency planning, and system dynamics (Adibi and

Milanicz 1999; IEEE 2013). Small or even area-wide

blackouts due to blown transformers, faulty switchgear, or
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1 See for example U.S. Public Law 113-2 (Pub.L. 113–2, H.R. 152,

127 Stat. 4, enacted 29 January 2013), containing Division A:

Disaster Relief Appropriations Act, 2013 and Division B: Sandy

Recovery Improvement Act of 2013; https://riskcenter.wharton.

upenn.edu/disaster-aid/federal-disaster-rebuilding-spending-look-

numbers/, 22 February 2018, Brett Lingle, Carolyn Kousky, and

Leonard Shabman, U. Penn. Wharton Risk Management and

Decision Processes Center.
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power line failures on average take a few hours to restore

power using emergency repair crews (EIA 2016). But

people also live where major flood and other natural haz-

ards are known but largely ignored, and low-income groups

are particularly risk exposed (Masozera et al. 2007;

Crowell et al. 2010). Despite being in a designated flood

zone, many areas do not even have adequate sea walls or

effective flood prevention and control.

There are regional mutual assistance groups where emer-

gency help is mobilized to restore power with repair crews

literally borrowed or contracted from unaffected systems. But

as a recent report notes (EEI 2016, p. 6): ‘‘Our current mutual

assistance program works well for regional events, but was

not designed to be scalable for national events.’’ Following

Hurricane Irma, the President and CEO of FPL (Florida

Power & Light) was quoted in a 2017 FPL news report as

part of a lengthier statement expressing a commitment that

highlights this need: ‘‘For example, we understand that what

our customers want to know more than anything else is when

will their power be restored. Unfortunately we were not able

to accurately and consistently provide the kind of useful and

detailed restoration estimates that our customers have come

to expect from us during normal operations. We are going to

get better at this and we’re already working on it’’ (FPL 2017,

§3). In order to make such predictions, the probability of

failure to restore power (or the chance of non-restoration)

must be determined or estimated as a function of time, so new

data and outage prediction methods are clearly needed. Pre-

vious estimates have only been made for the average outage

duration times following hurricanes using statistically-based

geographic models, not the time-varying outage number

(Nateghi et al. 2014).

In contrast, dynamic restoration management and outage

duration prediction require using data that are time varying

and not time-averaged values. There are online catalogs

and lists of past and present power outage events (Wirfs-

Brock 2014; Klinger et al. 2014; U.S. DOE 2017; Bluefire

Studios 2018), but there are no national or international

centers that collect detailed or openly publish dynamically

varying power outage duration data. This study examines

cases of reparable damage, not requiring entire system

reconstruction, or massive rebuilding of fragile power

networks.2 This study collected the publically reported

dynamic power outage numbers for several large inde-

pendent and disparate events, including:

• Superstorm Sandy flooding the U.S. East Coast;

• Hurricane Matthew impacting Florida after decimating

Haiti;

• Hurricane Harvey inundating the U.S. Gulf Coast;

• Hurricane Irma ravaging the entire length of Florida;

• Wildfires destroying large areas of California;

• Winter storms Grayson and Riley sweeping the U.S.

Northeast

For comparison, data were also collected for less severe

events in other national regions, namely Hurricanes Nate

and Ophelia and Cyclone Gita impacting, respectively,

Georgia, the Irish Republic, and New Zealand as down-

graded storms.

Each repair case has unique challenges to be resolved by

the on-the-spot management and restoration teams that deal

with both social disruption and system damage. The rate of

restoration depends on the elapsed time or accumulated

experience for effective action and learning opportunity. The

physical restoration process relies on the ability, experience,

knowledge, and situational awareness of the repair crews

and emergency management staff being deployed, which

naturally increase with increased restoration time. The

integrated system response, management, and repair crew

actions reflect the combination of this myriad of individual

and collective human learning processes. This idea of

applying human learning from experience to fault repair

and/or error correction holds for multiple technological

systems, and disasters are no exception (Duffey and Saull

2008; Thompson 2012). The same trends have been shown

to apply even during the chaos and destruction of warfare on

land (Duffey 2017a) and at sea (Duffey 2017b).

In an earlier study, Duffey and Ha (2013) showed that for

both massive national grid and purely local outages the

‘‘normal’’ restoration probability or outage fraction followed

exponential curves. Using limited extreme event data, Duf-

fey (2014) showed that the probability of restoration was

significantly lower, or restoration took much longer, for an

unexpected storm (Superstorm Sandy) and a major earth-

quake-induced tsunami in Japan. This delayed recovery time

and/or lower probability of restoration were attributable to

the extensive damage, widespread social disruption, and

overloaded emergency response capability.

The focus of this article is to provide extensive new data

and analyses that confirm that these previous results and

trends are common. The previous work and models are

outlined and an expanded validation presented, which

results in new predictive correlations for the dynamic

restoration probability for extreme events.

2 The Physics and Probability of Power
Restoration

The correction and/or repair of failures are part of a sta-

tistically varying but systematic professional, technical,

and personal learning experience and opportunity. Any

2 For example, the recent cases of Puerto Rico and Haiti required

many months for essentially full replacement of major plants and

fragile power grids.
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new analysis must realistically include the variations that

exist because of the inherent randomness and uncertainty

(Chow et al. 1996; Billinton et al. 2001). Since we cannot

describe the innumerable human decisions, actions, and

processes, we reduced this complex outage restoration

problem to an extremely simple model, both mathemati-

cally and physically, by adopting an emergent method for

the external outcomes (Duffey and Saull 2008; Duffey and

Ha 2013; Duffey 2014). This technique implicitly includes

but does not need to explicitly describe all the detailed

restoration processes, or the complexities of internal tech-

nological, organizational, managerial, and regional factors.

The restoration process can be measured in terms of the

outage fraction representing the number of customers who

are still without power. For overall emergency manage-

ment of power system distribution, control, and restoration,

it is not known beforehand when or where each of the

numerous restorations in the entire service region may

occur. Predicting the potential absolute number of outages,

for example in hurricanes, remains highly uncertain, even

using complex geographic computer models tuned to past

events (Han 2008; Guikema et al. 2014).

The occurrence probability, p(n), of the outage out-

comes observed statistically constitutes a Poisson-like

random process (Bulmer 1969) but with a varying or

dynamic occurrence rate, k(h). For n(h), non-repairs, the

probability pi of any non-restoration for the total number

No is given by: pi*(n(h)/N0). The measure of the overall

state of repair (or order) H, in the system is described by

the usual entropy definition, being the probability of the

distributions, H = N0! P (pi/n(h)!). But only specific dis-

tributions can satisfy the applicable physical and hence

mathematical restraints. Adapted and derived from statis-

tical physics for a closed system (Wannier 1987; Jaynes

2003), the distribution and number of outcomes (outage

faults detected and/or corrected) should obey the funda-

mental postulates of statistical learning (see Duffey and

Saull 2008, §5 for the full derivation). Statistical learning is

based on the precepts of human error correction and recall

(Ohlsson 1996; Duffey 2017c) using probabilistic analysis

(Bulmer 1969; Jaynes 2003), where the knowledge and

experience accumulated from the past is adapted to and

corrected in the evolving present, and the most likely

outcome distribution is that actually observed. In the pre-

sent new application of human learning to power outage

correction, the outcomes are the individual restorations,

where the event state space is the number of outage

restorations progressively occurring in any given region or

area as a function of the experience gained or existing at

any restoration time. The restoration is treated as a sys-

tematic learning process occurring in real time subject to:

• Repair or restoration of any and all outages are equally

likely, and hence can occur in any observation interval

during the event duration;

• In any time interval, restorations occur and are

observed stochastically but are a systematic function

of the learning and/or experience of the management

and repair crews during the event;

• For an entire event, there is a known maximum or

nearly constant total number of initial outages to be

restored;

• Total restoration experience of the management and

repair crews accumulated during the entire outage event

duration is finite and conserved;

• The outage repairs and restoration that occur with time

are, on average, the most likely, being the ones that are

actually observed;

• The most likely distribution is that which gives a

maximum number of repairs/restorations (or minimum

number of non-repairs), consistent with learning.

The validity of these assumptions, conditions, and

approximations can and will be fully tested and demon-

strated by the subsequent comparisons to the new event

data reported here. Subject to these mathematical and

physical constraints, and following standard statistical

physics theory (Wannier 1987), the most likely outcome

distribution in any observation sub-interval is exponential

in form. Summing over all the discrete restoration out-

comes gives the instantaneous number of outages, ni, for

any ith sample at any elapsed time, h, as (see also Duffey

and Saull 2008),

ni hð Þ ¼ nm þ ðN0i � nmÞe�bh ð1Þ

Here, nm is the residual or minimum attainable outage

number remaining at very long times; b, is a constant for

that sample; and N0i the total or maximum outage number.

The difficulty of outage correction determines whether the

restoration is ‘‘perfect’’ in which case nm=0. For comparison,

the average number, �n, of outages that have lasted for a total
of say, T hours, from integration of Eq. 1, is,

�n ¼ � 1

T

Z0

T

ni hð Þdh ¼ nm þ N0i � nm

bT

� �
1� e�bT
� �

From conventional reliability theory (Lewis 1994), at some

elapsed time, h, the instantaneous repair or restoration rate,

ki(h), per unit time is

ki hð Þ ¼ � 1

N0i hð Þ � ni hð Þ

� �
dni

dh
ð2Þ

The negative sign accounts for the fact that the number of

outages is declining, with non-restoration being the oppo-

site of restoration. The commonly used intensity or rate,
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I =dni/dhi, does not allow for the varying outage (sample)

size, and applies only if or when Noi [ [ [ ni.

The finite probability of non-restoration, Pi(NR), is

given by the classic Laplace ratio or fraction of the number

of outages remaining, ni(h), or not repaired to the initial or

maximum number, N0i, initially observed in any ith area.

Dividing Eq. 1 by N0i gives the instantaneous non-

restoration probability, P(NR), or outage fraction variation,

P NRð Þ ¼ Pm þ 1� Pmð Þe�bh ð3Þ

with the lowest attainable non-restoration probability

value, Pm = nm/N0i. The probability at any time or outage

interval is therefore decreasing exponentially.

Hence, after the maximum or initial total outages, N0i,

the probability of recovery P(R) is the standard result

(Lewis 1994),

P Rð Þ ¼ 1� P NRð Þ ¼ 1� ni hð Þ
N0i

¼ 1� e
�
R

ki hð Þdh ð4Þ

For an entire service region, the total outage number is the

summation of the recovery over all the i-areas, n(h)= Ri

ni(h), with total or maximum outages, N0 ¼
P

i

N0i at initial

time, h0. The probability of non-restoration at time, h, after

the peak, for an average repair rate,\ k[, is,

P NRð Þ ¼
P

i ni hð ÞP
i N0i

¼ n hð Þ
N0

¼ e
�
R

kdh ¼ e�k h�h0ð Þ ð5Þ

With few remaining outages, Pm� 1, and h � h0, then

Eq. 5 becomes identically Eq. 3 implying physically that

b &\ k[. The expected outage duration for any expected

or future outage number, inverting Eqs. 3 and 5 for

incomplete and complete restoration respectively, is,

h ¼ 1

b
ln

N0 � nm

n hð Þ � nm

� �
or hnm ¼ 0 ¼

1

b
ln

N0

n hð Þ

� �
ð6Þ

Note that both the average number of outages,�n, and the

expected duration depend not only on the outage number,

N0, but also on the two key parameters, the characteristic

e-folding rate, b and the residual number of outages, nm.

The existence of a minimum attainable probability, Pm,

only arises from the potential for incomplete restoration,

implying an imperfect learning response with a residual

non-restoration rate, km. To estimate its value, from Duffey

(2015) the minimum is,

Pm �ðkm=kÞ1=2 ð7Þ

So, as an estimate, the lowest attainable outage correction

rate becomes,

km ¼ kðnm=N0Þ2 ð8Þ

This minimum rate value scales with the inverse square of

the initial outage number, N0, as more outages lead to

better ultimate repair performance. Substituting Eq. 8 into

Eq. 3 and reasonably assuming Pm� 1 yields the working

approximation,

P NRð Þ� km

k

� �1=2

þe�bh ð9Þ

Numerical values are available from previous work (Duffey

and Saull 2008; Duffey 2015). For the rate, km* 5�10-6 per

risk exposure (accumulated outage) hour has been derived

from the lowest attainable error (fatal crash) rate achieved in

any modern technology, namely by commercial airlines with

over 200 million flights for 1977–2000; and k * 0.1 has

been implied by the Superstorm Sandy data (see below).

Hence, as an order of magnitude estimate,

Pm ¼ ðkm= kÞ1=2 � ð5 � 10�6=0:1Þ1=2 ¼ 0:007

In summary, we expect the outage fraction or non-

restoration probability to decrease exponentially towards

some small but perhaps finite minimum.

3 Outages Remaining at Long Times: Defining
the End

There is a risk of extended outage times and ‘‘imperfect’’

restoration, but there is no standard for what constitutes

sufficient completion in time, number, or probability. Ideally

everyone eventually has power restored but, in reality, some

outages may be delayed or even completely irrecoverable

due to damage and access problems. The theoretical mini-

mum probability, Pm, corresponds to a slightly less than 1%

chance of non-restoration even after a very long time.3

When an outage emergency has ended or can be

declared ‘‘over’’ is a potentially controversial determina-

tion. The wide publication and use of a 99.9% overall

reliability for power systems shows the general public does

understand the concept of probability. But the end point is

clearly not the common phraseologies currently being used

like: a ‘‘vast majority’’ with power restored; or, say,

‘‘99.99% have power’’ when that percentage incudes all

those who did not even lose power during the event; or the

intriguing ‘‘close to the finishing line’’; or the general

statement ‘‘restored to essentially all’’ while thousands may

still remain blacked out. One apparently accepted practice

is declaring completion of restoration when the total outage

number for some overall region or total customer number is

3 Instead of unreliability of non-restoration, some experts, media, and

electric utilities prefer to quote the complementary ‘‘reliability’’ for

the restored and still-connected number. The oft-published fraction

{(1-(n/(N ? NP))} 9 100%, is the ‘‘odds’’ of outage if it includes all

those customers who did not even lose power, NP, but is a larger and

more impressive number than the unrestored fraction still left without

power.
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back to ‘‘near normal.’’ This definition is not applicable

when this estimate includes large unaffected parts of the

region and/or customers who were never disconnected by

the event. The sample for measuring restoration probability

and declaring ‘‘success’’ should be limited to those restored

and directly impacted by having outages.

Formal risk/safety/reliability assessments require pre-

cise limits or uncertainty ranges for the smallest possible

probability of non-restoration or extended outage times.

The presence of stubborn or difficult outages requires

extensive data collection (even beyond 500 h) to properly

establish the end point or the correct asymptotic probabil-

ity, Pm, of non-recovery.

What is needed is an objective and technically defined

end state, and some options include:

1. Limit the maximum elapsed time to when all outages

that can be physically restored have been, so

n hð Þ ! nm, as h ! hm and any residual or non-

restorable outages do not then count;

2. Define the non-restoration probability as referenced to

the total that can possibly be restored, that is

P(NR)=(n(h)-nm)/(N0-nm), so

P NRð Þ ! 0 as n hð Þ ! nm, which then requires actu-

ally knowing or defining the lowest average value;

3. Utilize the purely theoretical relation, nm* N0(km/k)
1/2

as a ‘‘best’’ estimate minimum, and hence infer the rate

value from the observations, for example, nm* 0.007

N0, where the maximum outage number is known.4

4 Initial Test with Superstorm Sandy Data

The first scoping test of the prediction model to outage

restoration described in Sect. 2 was for Superstorm Sandy

(Category 2) in 2012 (Duffey 2014) and is briefly sum-

marized again here. Officially listed as the largest hurricane

ever to have formed in the Atlantic Basin, Sandy reached

1000 miles in diameter and record wave heights impacted

New York City and New Jersey. The storm outage num-

bers, n(h), were accessed at the Consolidated Edison

Company website, which at that time constituted the most

complete reporting of the three affected power companies

(Duffey 2014). Data were recorded at approximately daily

intervals from 31 October to 14 November, when some

16,300 customers (* 1%) were still without power. The

probability of non-restoration was calculated from P(NR)

= n(h)/N0, with N0 being the maximum number of outages

observed.

Figure 1 shows two curves given by fitting the predic-

tion model to the Sandy data, using an effective learning

rate constant, k = 0.1 (Duffey 2014), and from Eq. 3 the

best fit line, with an R2 = 0.89,

P NRð Þ ¼ 0:007þ 0:956e�0:012h ð10Þ

This lowest or minimum probability, Pm* 0.007, is con-

sistent with the theoretical minimum expected restoration

probability (Eq. 7). Although encouraging, there were

insufficient data then available for determining a more

definitive correlation. So new data were collected in the

present study to generalize the analysis by encompassing

wider outage scales, more extreme event types, and mul-

tiple power suppliers/restorers.

5 New Extreme Event Power Outage Restoration
Data

To validate the prediction model and the learning trend

predictions, extreme event outage data for diverse modern

cities, regions, and populations for hurricanes, storms, fires,

and floods were collected. Data were accessed at regular

intervals on public ‘‘power tracker’’ or ‘‘outage map’’

websites that update the status, location, and number of

customer outages and give general possible restoration

timescales for those ‘‘without lights.’’ The websites were

usually very complete and only occasionally were not

accessible presumably due to reporting overload, update

intervals intermittently changing, or reporting delays and

gaps of many hours.

5.1 Severe Event Chronology and Data Sources

The data selected were for disparate natural severe events

causing massive damage and societal disruption5:

• Hurricane Harvey (Category 4) in Texas had rapid

initial restoration after landfall at Rockport, Texas, with

the worst rainstorm in U.S. history at a rate of 10’’

(254 mm) per day causing massive concomitant flash

flooding of rivers, creeks, and bayous that entirely

swamped the surrounding suburban areas and the city.6

During the storm from 25 August to 28 September

2017, outage numbers were collected from the local

4 For fire, earthquake, or war damage, some outages may not be

restorable until damaged property is physically rebuilt, which number

should strictly be subtracted from the maximum possible.

5 More details on individual events can be found by name searches at

https://en.wikipedia.org/wiki/ and lists at https://www.ncdc.noaa.gov/

billions/events/US/1980-2018, http://cdfdata.fire.ca.gov/incidents/

incidents_statsevents.
6 We also collected public Flood Warning System (FWS) rainfall and

water level data for selected stations in Harris County to analyze the

predictions for such an extreme event (accessed and available at

https://www.harriscountyfws.org/GageDetail/Index/).
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electric power distribution company website for Hous-

ton’s CenterPoint Energy.7 Outage data for the Corpus

Christi area, including nearby Rockport from American

Electric Power8 with 1,000,000 customers covering the

effects of coastal landfall, were collected.

• Hurricane Irma (Category 4) arrived just 2 weeks later

in 2017, the largest ever hurricane to strike the United

States, and raged over the entire length and width of

Florida. The impact was much wider due to the storm’s

size, and, as Irma progressed northwards, it flooded the

ocean shores and battered everything with over 100

mph winds and heavy rain. Therefore, during the storm

data were collected for Florida’s five major urban

conurbations of Miami, Naples, Fort Lauderdale,

Tampa, and St Petersburg, as well as northwestern

Florida, an area containing a total of about 7,425,000

customers. From 9 to 28 September, the public websites

of the local electric power distribution companies were

monitored: Florida Power and Light9 with 4,900,000

customers; Duke Energy Florida10 with 1,800,000

customers; and the adjacent Tampa Electric Company11

with 725,000 customers. As examples of a more remote

region, from 300 h onwards the data from the two small

power companies that supplied a string of resort

enclaves along the Florida Keys (Florida Power

Electric Cooperative and Keys Energy Services) were

also monitored. Whenever possible, the numbers were

checked against the overall Florida Disaster Organiza-

tion (FDO) county-by-county reports.12 This official

state site was also the source of the limited United

States data that we had collected in 2016 for Hurricane

Matthew (Category 5), which had mainly ravaged

Haiti, Grand Bahamas, and Cuba.

• A week or so later in 2017, Hurricane Nate (Category

1) impacted the Gulf Coast near the Alabama/Georgia

border and quickly downgraded to a tropical storm

(winds less than 75 mph). This event is of interest as a

case where damage and outages were more limited, so

it is an effective baseline to compare against more

severe events. Some 150,000 Alabama Power Company

(APC) customers lost power, and in the absence of an

outage map the data were accessed at APC’s online

social media feed.13

• Almost immediately Hurricane Ophelia (Category 1),

the ‘‘biggest and most destructive storm’’ to form in the

Eastern Atlantic,14 was downgraded to a cyclonic storm

but then swept across the Irish Republic, causing over

200,000 outages or power cuts. From 15 to 27 October,

data from the Electricity Supply Board’s (ESB) two

sources were collected: 30 selected local areas15; and

Fig. 1 Comparison of the

initial scoping test of outage

restoration prediction models

(dashed lines) and Superstorm

Sandy data (circles)

7 http://gis.centerpointenergy.com/outagetracker/.
8 http://outagemap.aeptexas.com.s3.amazonaws.com/external.
9 https://www.fpl.com/storm/customer-outages.
10 https://www.duke-energy.com/outages/current-outages.
11 https://www.tampaelectric.com/residential/outages/outagemap.

12 https://www.floridadisaster.org/info/outage_reports.
13 https://twitter.com/alabamapower.
14 https://www.rte.ie/news/2017/1017/912796-ophelia-aftermath/.
15 https://www.esb.ie/esb-networks/powercheck/.
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the periodically reported overall numbers16 with the

associated occasional ‘‘heat maps’’ of the geographic

distribution of outages.

• Soon afterwards in 2017, driven by high winds, the

largest ever wildfires occurred in California, and are a

major test of the applicability of the prediction model

for a totally different severe event type. The first fire

spread across the northern Napa Valley wine region,

burning about 9000 structures and over 200,000 acres,

and causing more than 300,000 outages and USD 9

billion in property damage. From 10 to 28 October we

collected data twice daily from the Pacific Gas and

Electric outage lists for 15 cities in the fire17 and also

from the occasional News releases.18 The second fire in

the south burned over 230,000 acres in Ventura

County’s Thomas fire and threatened major power

lines. From 5 to 21 December we collected data as

reported a few times daily by Southern California

Edison’s news releases19 and occasionally by its

Customer Support Team, which was created on

December 19 after the onset of the emergency to

provide information, wildfire and mudslide support, and

financial advice to customers impacted by the

disaster.20

• Storm Emma was called the worst storm to hit the U.K.

in 50 years with high winds and record heavy snowfalls

in Eire/Republic of Ireland, so ESB outage data were

again collected from 1 to 5 March 2018.

• For the Southern Hemisphere, a downgraded Cyclone

Gita struck New Zealand with high winds and rain, and

limited outage data were available online from Powerco

from 19 to 26 February 2018.21

• Early 2018 provided baseline data for completely

different event types with heavy snowfall, high winds,

and very cold conditions. Successive and almost

identical ‘‘bomb cyclones’’ or late winter storms Riley,

Grayson, and Quinn blasted the Northeast United

States, providing a further test of the reproducibility

and generality of restoration trends. Relevant outage

data for the Eversource service areas in Connecticut,

Massachusetts, and New Hampshire were downloaded

from 3 to 11 January and for 2 to 6 March.22

Immediately after Riley, Storm Quinn occurred in this

same region and service area with almost identical

outage numbers and type, so data were also collected

from 7 to 11 March, as well as from United

Illuminating.23

The affected regions and their events cover widely dif-

ferent communities and multiple (14) power companies

(Table 1) with diverse power systems. The differing events

also provide tests of the generality of the prediction model

and insights into the underlying common features govern-

ing restoration trends. Therefore, this comprehensive data

set also constitutes a new benchmark for testing outage

restoration predictions for severe events.

5.2 Summary of the Data Set

Table 1 lists the dynamic data sets for these 13 extreme

events occurring between 2012 and 2018, which were

entered into Excel worksheets. Totaling 2900 data points

and covering 5500 h for 17 million outage occurrences,

this is believed to be currently the most comprehensive

database anywhere for such diverse extreme events and

ranges of outage extent.24

One of the lessons learned is the estimated times of

restoration reported on the websites or published in cor-

porate news bulletins were occasionally incorrect, incon-

sistent in style, and/or usually overly optimistic. The

precise causes of these problems are unknown, but they

underscore the need for a verified or independent outage

predictor for extreme events. They illustrate beautifully the

impacts of stress in adversely affecting overall emergency

management response and the increased uncertainties in

planning for, communicating about, and executing recov-

ery during extreme and unexpected circumstances.

6 Comparisons of Reported Data and Model
Predictions

Using the additional detailed outage records from 2016 to

2018 listed in Table 1, the probability of non-restoration,

P(NR)= n(h)/N0, was calculated. The data fell naturally

into distinct main groupings (Sect. 7) depending on the

severity and extent of the extreme event.
16 www.esbnetworks.ie/power-outages-updates/latest-updates.
17 https://m.pge.com/#outages.
18 https://www.pge.com/en_US/about-pge/media-newsroom/media-

newsroom.page.
19 https://www.sce.com/wps/portal/home/outage-center/check-outage-

status.
20 https://www.sce.com/wps/portal/home/safety/family/emergency-

tips/CrisisSupport.
21 https://www.powerco.co.nz/about-us/power-cuts-page/ and www.

powerco.co.nz/news.
22 https://www.eversource.com/clp/outage/outagemap.

23 http://www.uinet.com/outageinfo/outages/outagemap.html.
24 Subsequent to the paper being submitted and reviewed, Hurricane

Florence occurred in the United States and further data were

collected.
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6.1 Extended Restoration: Wildfires

and Hurricanes Harvey, Irma, and Sandy

Figure 2 shows that the six different most severe events

and longest lasting outages (up to about 600 h), with many

billion dollars in consequential costs, follow the same

restoration trajectories. This comparison of P(NR) for

Hurricane Harvey and the California wildfires to Super-

storm Sandy demonstrates that the overall macrotrends are

remarkably similar over three orders of magnitude, and that

all these new restoration data are also exponential in form.

In addition, changing the initial number of outages or type

of event does not markedly change the response, so these

variables are not the key factors. This is confirmed by the

factor of 10 smaller outages for the Ventura (Thomas) fire

whose data were collected after the other events but still

followed the same trends.

By comparing these many and varied disparate events,

we have now shown that common learning and statistical

effects (discussed in Sect. 2) dominate all such extreme

event data. This result is entirely new, and indicates that

non-restoration timescale and probability are essentially

independent of location, size, and type of disaster.

Each series of data for an event can be individually fitted

by its own exponential curve without the minimum, nm, all

with R2[ 0.9, as illustrated by the solid line P(NR) = 0.96

exp–0.012 h example. The dotted line in Fig. 2 is the fitted

curve Eq. 10 from Fig. 1 for Superstorm Sandy but

extrapolated to 600 h from the original 350-h span since

the minimum probability is reached after 600 h. The finite

minimum, Pm = 0.007, is remarkably close to the prior

inferred value for Superstorm Sandy from the initial

scoping test (Duffey 2014). The two fitted curves then

bracket the diverging minimum data points of the larger

‘‘tail’’ for Houston with persistent flooding effects lasting

longer than for Corpus Christi, which suffered mainly

direct landfall damage.25

To compare the hurricane data with differing times of

peak outage, where necessary the time scales for the six

events in Fig. 2 were made relative to the shifted time

origin, h0, for the maximum outage, N0. The result is given

by the established commercial statistical routine Table-

Curve2D,26 with an R2= 0.94:

P NRð Þ ¼ 0:003þ 1:06e�0:011 h�h0ð Þ ð11Þ

This recommended fit, with b = 0.011, is very close to the

independently derived original Superstorm Sandy estimate

from only 15 data points in Eq. 10, proving that pooling the

Table 1 Extreme event outage data summary

City and/or region Data source (event) Data # Span h Minimum outages nm/days Maximum outages N0

New York, NY ConEd (SS) 14 336 16,300/14 1,345,000

Florida FDO (M) 10 240 5650/10 10,234,174

Houston, TX CPE (H) 500 800 1000/30 109,244

Corpus Christi AEP (H) 500 800 100/30 201,635

Florida South FPL (I) 1020 400 3000/15 1,810,290

Florida NW Duke-FL (I) 270 400 1500/15 1,610,280

Tampa, FL TECO (I) 270 400 100/15 330,103

Florida Keys FKEPC/KES(I) 120 400 1500/15 60,000

Alabama APC-SCS (N) 20 60 80/9 156,000

Eire, EU ESB (O) 30 240 1000/10 385,000

Eire, EU ESB (E) 14 60 203/4 127,000

NE, USA Eversource (S) 20 50 320/2 25,796

NE, USA Eversource (R) 22 90 3500/4 220,378

NE, USA Eversource (Q) 34 120 400/5 209,706

Taranaki, NZ Powerco (G) 10 160 135/7 26,000

Napa, CA PGE (F) 40 450 200/15 359,000

Ventura, CA SCE (F) 44 450 32/18 8400

Total 2938 5458 17,218,006

Event key: SS = Sandy, E = Storm Emma, F = Wildfires, G = Cyclone Gita, H = Harvey, I = Irma, M = Matthew, N = Nate, O = Ophelia,

Q = Storm Quinn, R = Storm Riley, S = Snowstorm Grayson

25 Note that standard numerical curve-fit routines find it difficult to

capture such statistical distributions that include the ‘‘tail’’ values,

simply because they are so small, except by using completely

arbitrary high-order polynomials.
26 http://www.sigmaplot.co.uk/products/tablecurve2d/tablecurve2d.

php.

123

Int J Disaster Risk Sci 141

http://www.sigmaplot.co.uk/products/tablecurve2d/tablecurve2d.php
http://www.sigmaplot.co.uk/products/tablecurve2d/tablecurve2d.php


totally different event data for independent power systems

is reasonable.27 The commonality of the data correlation

suggests an apparent inherent limit or constraint on the

present rate of repair of major outages following extreme

events.

There is an overall 50% chance of restoration by about

100 h, 90% within 200 h (4 days), and 99% by 400 h

(16 days). The expected outage duration after the peak is,

from Eqs. 6 and 11,

h � h0 ¼
1

0:011
ln

1:06N0

n hð Þ � 0:003N0

� �
ð12Þ

The simple exponential fit that does not capture the

minimum is given also with an R2 = 0.94 by

P NRð Þ ¼ 1:03e�0:01 h�h0ð Þ ð13Þ

This fit, with b * 0.01, is essentially identical to that used

solely for fitting to the severe wildfire data. The outage data

suggest the range for the minimum probability of non-

restoration is 0.003\Pm\ 0.007. In power loss risk

assessments, this is the lowest proven value from actual

experience that can be adopted for the probability of non-

restoration.28

6.2 Faster Restoration: Hurricanes, Snowstorms,

and Cyclones Compared

Let us now examine and compare the data for seven less

severe extreme events—Hurricanes Matthew, Nate, and

Ophelia, Cyclone Gita, and winter storms Emma, Grayson,

and Riley—with shorter overall total restoration times of

up to some 300 h. Nate quickly downgraded from hurri-

cane to tropical storm strength shortly after landfall, and

Ophelia also downgraded before striking Ireland. The ini-

tial outage peaks are not broad, so there is no need to

correct the time origin.

Figure 3 demonstrates that each event has its own well-

defined trend. Despite the data scatter, there are clearly two

groupings with distinctly different slower or faster

restoration slopes, and either group can contain a snow-

storm or a hurricane event. The trends are also independent

of location, as can be seen by pairs Nate and Grayson, and

Ophelia and Matthew following nearly the same trajecto-

ries. In particular, Eire/Republic of Ireland has data for

both groupings, again showing that restoration trends are

independent of event type, location, and outage magnitude.

As confirmation, the successive winter storms Quinn and

Riley possessed identical restoration characteristics,

suggesting that the unaltered rate of repair between events

may be the maximum attainable. It might the overall

degree of destruction and the degree of difficulty especially

for access that determine restoration timing, not the type of

event.

The Nate best fit exponential curve is given by, with

R2 = 0.95,

P NRð Þ ¼ 1:0e�0:11h ð14Þ

However, for Ophelia, with R2 = 0.85,

P NRð Þ ¼ 1:0e�0:025h ð15Þ

These slope b-values of 0.11 and 0.025 in Eqs. 14 and 15

for milder events can be directly compared to that of 0.011

and 0.01 given by the Eqs. 11 and 13 fits to the more severe

events. Therefore, according to the data, recovery from

power disruption due to major hurricanes and fires can be

expected to typically take twice to 10 times longer than for

smaller events even with massive deployment of restora-

tion crews. As further elaborated in Sect. 7, the reason for

the difference in characteristic timescale must be the

‘‘degree of difficulty’’ of restoration since entirely different

storm ‘‘types’’ in different regions all follow exponential

non-restoration trends, even if the power systems were

widely different in scale and outage number, despite the

restoration techniques and methods employed being

essentially identical.

When the less severe hurricane data is examined in more

detail, the Irma higher non-recovery probability precedes a

faster decline than for comparable events. Figure 4 shows

the area-by-area breakdown, since the overall regional

trend is the summation of the parts (as in Eq. 3). The least

initially damaged cities and less flooded regions with easier

access were fully restored by 200–300 h, except for the

heavily inundated Naples/Collier region, which confirms

that damage and access difficulty dominates recovery.

Overall, the results show no systematic relation between

the total restoration time and the event scale or number of

outages. The well-defined steps or periodic plateau visible

in the data are at precisely daily intervals. The restoration

probability (or outage number) only slightly changed

overnight, presumably as repair crews rested, and these

microtrends further show the unavoidable human

involvement.29

27 During this paper’s review data were obtained for the on-going

Hurricane Florence (CAT 1) with extensive flooding in the United

States, which follow the predictions given by Eq. 11.
28 In reliability terminology, 99.993\P(R)\ 99.997%.

29 Noting that (N–n) is nearly constant overnight, these human-

induced steps cause regular cycles of the instantaneous restoration

intensity, I = dn/dh, periodically peaking in the morning and declin-

ing overnight.
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6.3 Dynamic Restoration Rates Compared

to the Universal Learning Curve

An important finding is the slope parameter value of

b * 0.01 for major events in Eqs. 11 and 13, as it suggests

a lower restoration rate limit for modern power systems.

The systematic difference in non-restoration probability

[between groups (6.1) and (6.2)] occurs despite the

instantaneous dynamic non-restoration rates being compa-

rable. Calculated using Eq. 2, the rates, k, for Hurricanes
Harvey and Irma vary dynamically as shown in Fig. 5, and

are not constant with time. The rate data follow the form of

a Universal Learning Curve trend (Duffey and Saull 2008),

declining exponentially towards a persistent minimum after

250 h. The lowest non-restoration outage rate for extreme

events is in the range 10-5\ km\ 5�10-3 per elapsed

restoration hour. The minimum value is close to the lowest

failure rate attained in modern technological systems where

risk is dominated by the human contribution.

In Fig. 6, the presence of learning is further demon-

strated by comparing the Irma non-restoration rate for the

first 250 h to the non-dimensional Universal Learning

Curve (ULC) that has been shown to be applicable for

technological and warfare systems that exhibit learning and

error correction (Duffey and Saull 2008; Duffey and Ha

2013; Duffey 2017a, b). The ULC has the non-dimensional

form,

E� ¼ ðk hð Þ � kmÞ=ðk0 � kmÞ ¼ e�3N� ð16Þ

The value of the learning rate ‘‘constant’’ * 3 was inde-

pendently determined from data for thousands of events in

multiple modern technological systems (Duffey and Saull

2008). For the Irma data, N* = h/250. The agreement with

the present work demonstrates that extreme events exhibit

fundamentally similar restoration management trends due

to possessing the identical physical and statistical learning

behavior inherent in all human decision making, skill

acquisition, error correction, recall, and recognition

(Ohlsson 1996; Duffey 2017c).

7 Reducing and Managing Outage Risk for Severe
Events

From the outage data analysis, general but distinct cate-

gories of restoration timescales and probability trajectory

have emerged, each characterized by a range of values for

the important e-folding characteristic parameter, b
(Eqs. 11–15). These differences reflect the increasing

impact of damage extent, complexity, and access severity

in degrading error correction times and rates after an event

(Duffey 2014). As explained below, this variation reflects

the increasing ‘‘degree of difficulty’’ that faces repair crews

deployed and operating in the field, which is always greater

than for normal, everyday restorations.

• Type 0: Ordinary, which we may classify as the

baseline of ‘‘everyday’’ outage restorations (Duffey and

Ha 2013; IEEE 2013), with simpler equipment replace-

ment, line repairs, and/or reconnection due to an

effectively instantaneous outage. Without any signifi-

cant additional damage due to extreme events and/or

weather effects, or any degraded access difficulties,

power restoration can be achieved usually within a few

Fig. 2 Outage probability data

for Hurricanes Harvey and Irma

compared to Superstorm Sandy

and Californian wildfires, and to

the theoretically-based trend

lines from Fig. 1 and Eq. 10
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hours to a day (for example, damage limited to

transformer fires, overload breaker trips, single tree

falls).

• Type 1: Normal, b * 0.2, when outage numbers

quickly peak due to finite but relatively limited

additional infrastructure damage. Repairs are still fairly

straightforward and all outages are restored over

timescales of 20 to about 200 h (Fig. 3). Damage is

mainly localized, repair equipment is still available

with ready access, and normal or standard emergency

Fig. 3 Comparison of

restoration trends for less severe

events—Hurricanes Matthew,

Nate, and Ophelia; Cyclone

Gita; and winter storms Emma,

Grayson, and Riley

Fig. 4 Regional variations of

outages for Hurricane Irma and

comparison with Superstorm

Sandy data and the

theoretically-based fitted trend

lines from Fig. 2 and Eq. 10
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response/repair procedures apply directly (for example,

damage that causes multiple failed transformers,

switchgear issues, and/or power distribution faults).

• Type 2: Delayed, b * 0.1–0.02, progressively reach-

ing peak outages in 20 or so hours, as extensive but

repairable damage causes lingering repair timescales of

200–300 h before almost all outages are restored

(Fig. 4). For Type 2 damage, planning and executing

repairs may require specialized equipment. Restoration

may be hindered due to severe or persistent adverse

weather conditions, which require significant modifica-

tion or adaptation of standard emergency response/

repair procedures (for example, damage plus flooding,

snow/ice, strong winds, or extreme cold).

• Type 3: Extended, b * 0.01, with perhaps 50 or more

hours before outage numbers peak due to continued

damage and significant loss of critical infrastructure.

Restoration repair timescales last for 300–500 h or

more (Fig. 2). Residual outages persist, due to addi-

tional damage and major difficulties beyond Type 2 in

gaining access for repairs. There is potentially signif-

icant social disruption that requires the use of nonstan-

dard emergency response/repair procedures (for

example, severe damage plus uncontained fires, emer-

gency evacuations, and impassable roads).

• Type 4: Extraordinary, b * 0.001 or less, for a

cataclysmic event with the electric distribution system

being essentially completely destroyed and not imme-

diately repairable. Complete restoration timescales can

be many months, because the system has to be partially

or totally rebuilt. As a consequence, normal emergency

response/repair procedures are inapplicable (for exam-

ple, damage plus entire power system collapse or

destruction as recently occurred in Puerto Rico and

Haiti).

The different b-values reflect increased repair difficulty

and include increasing workload, fatigue, and stress. Crisis

Fig. 5 Hurricanes Harvey and

Irma instantaneous non-

restoration rates

Fig. 6 Comparison of Irma non-restoration rate data to the non-

dimensional Universal Learning Curve (ULC) (Duffey and Saull

2008)
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response, disaster risk, and emergency managers all need to

recognize which type of event they are facing, particularly

since severe Types 2 and 3 events are challenging to

society. For a conservative or upper bound estimate, the

estimated P(NR) from Eq. 11 with b * 0.011 can be

multiplied by a factor of two to encompass the data scatter.

An excellent report on how to address outage risk due to

weather utilized Florida as a case study (U.S. Office of the

President 2013). Suggested power supply improvements

include strengthening grid poles and transmission struc-

tures, elevated substations, and use of underground cabling.

FPL had invested heavily in such system ‘‘hardening,’’ and

has stated that the return has been measured in significantly

decreased supply system damage (FPL 2017, §3):

Over the last 11 years, FPL has invested nearly $3

billion to make the energy grid smarter, stronger and

more storm-resilient, and those investments are pay-

ing off for customers. No hardened transmission

structures—the backbone of our system—were lost.

All of FPL’s substations were up and running within

a day following Irma. Hardening helped make the

system more resilient and provided for a much faster

restoration. In fact, FPL lost only a fraction of its

poles, which today numbers 1.2 million, as compared

with Wilma—with early estimates of approximately

2500 downed (0.2%) during Irma as compared with

roughly 12,000 during Wilma.

The present Irma data and analysis actually show no

reduction in customer outage restoration time or non-

restoration probability, however, compared to the totally

independent hurricanes Superstorm Sandy, Matthew, and

Ophelia occurring elsewhere. Therefore, no improvement

in restoration times can be directly attributed to the hard-

ening process alone, in accord with other viewpoints on

enhancing grid reliability (Stephens 2017). This does not

suggest responses were inadequate: brave and devoted

professionals worked as quickly and efficiently as possible.

There is simply an inherent limit on the achievable rate of

repair.

Government agencies, private businesses, and emer-

gency organizations will learn from these previous disas-

ters (Duffey and Saull 2008; Thompson 2012), including

the improvement of storm and fire damage mitigation

measures. The Federal Emergency Management Agency

(FEMA) provides overall emergency support30 but actually

building, operating, securing, and protecting critical

infrastructure like the power grid and power plants is the

role and licensed responsibility of the private sector or

some separate quasigovernmental or authorized entity

(DHS 2008; FEMA 2016; ESB 2017). The current allo-

cation of management responsibilities between electric

utility investments, local government emergency pre-

paredness, and federal government national disaster

response works well most of the time, but should be further

refined.

Cost–benefit analysis as a basis for risk improvements

cannot work across such diverse entities and interests. To

improve outage risk management due to extreme events

and disasters, and optimize local, business, and national

investments, the suggested focus and ‘‘smart grid’’ priori-

ties, including emergency planning for cities and utilities,

should be:

• increasing diversity and robustness of supply and

delivery;

• designing for ease and rapidity of restoration;

• managing emergency system response capability;

• improving communications and emergency planning;

• removing or reinforcing vulnerable structures and

facilities;

• revising existing extreme event occurrence criteria;

• enhancing flood barriers and controls on all vulnerable

regions;

• reducing major fire and flooding risk exposure; and

• revisiting national preparedness arrangements and

agreements.

8 Conclusion

This research demonstrated the common dynamic trends in

outage restoration after damage due to extreme events or

disasters. New data were collected and analyzed from

Hurricanes Irma, Harvey, Matthew, Nate, Ophelia, and

Superstorm Sandy (covering Categories 1 through 5),

Snowstorms Grayson, Quinn, and Riley, Cyclone Gita,

Storm Emma, and extensive wildfires in California.

Extending earlier work and utilizing statistical techniques

have successfully reduced this whole panoply of disasters

to a common comparative basis. The data for non-

restoration probability are all well correlated by simple

exponential functions consistent with the result from pre-

vious work, dependent on and grouped by the degree of

damage and social disruption (Types 1–4).

The present results provide a new method for making

outage time predictions in repairable power systems fol-

lowing disasters. These estimations can be used for emer-

gency planning and risk assessment purposes, independent

of event type.

30 FEMA’s primary mission remains ‘‘to support our citizens and first

responders to ensure that as a Nation we work together to build,

sustain, and improve our capability to prepare for, protect against,

respond to, recover from, and mitigate all hazards’’ (FEMA 2016).
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Recovery times from power disruption due to major

hurricanes and fires are typically twice to 10 times longer

than for less severe events. Over three orders of magnitude,

the restoration trends are identical for major wildfires and

most severe hurricanes despite their totally disparate ori-

gins. This similarity confirms the influence of human

learning and decision making in effecting repairs. We also

quantify the systematic deterioration in restoration rates

and times for extreme events that can be attributed to

continuing poor access and repair difficulty.

The minimum attainable non-restoration rate and outage

probability are in accord with independent data for modern

technological systems. Suggestions are made for the pri-

orities for local, business, and national disaster manage-

ment investment.

A key point is that the power restoration processes for

the many and various disaster types share the same fun-

damental physical basis. The power restoration rate follows

the scientific laws of probability and human learning that

dominate risk in all modern technological societies.
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