
ARTICLE

Different Mortality Effects of Extreme Temperature Stress
in Three Large City Clusters of Northern and Southern China

Lingyan Zhang1 • Zhao Zhang1 • Chenzhi Wang1 • Maigeng Zhou2 •

Peng Yin2

Published online: 6 December 2017

� The Author(s) 2017. This article is an open access publication

Abstract Extreme temperature events have affected Chi-

nese city residents more frequently and intensively since

the early 2000s, but few studies have identified the impacts

of extreme temperature on mortality in different city

clusters of China. This study first used a distributed lag,

nonlinear model to estimate the county/district-specific

effects of extreme temperature on nonaccidental and car-

diovascular mortality. The authors then applied a multi-

variate meta-analysis to pool the estimated effects in order

to derive regional temperature–mortality relationship in

three large city clusters—the Beijing-Tianjin-Hebei (BTH)

region, the Yangtze River Delta (YRD), and the Pearl

River Delta (PRD), which represent northern and southern

regions. With 0–3 days’ lag, the strongest heat-related

mortality effect was observed in the BTH region (with

relative risk (RR) of 1.29; 95% confidence interval (CI):

1.13–1.47), followed by the YRD (RR = 1.25; 95% CI:

1.13–1.35) and the PRD (RR = 1.14; 95% CI: 1.01–1.28)

areas. With 0–21 days’ lag, the cold effect was pronounced

in all city clusters, with the highest extreme cold-related

mortality risk found in the PRD area (RR = 2.27; 95% CI:

1.63–3.16), followed by the YRD area (RR = 1.85; 95%

CI: 1.56–2.20) and BTH region (RR = 1.33; 95% CI:

0.96–1.83). People in the southern regions tended to be

more vulnerable to cold stress, but the northern population

was more sensitive to heat stress. By examining the effects

of extreme temperature in city clusters of different regions,

our findings underline the role of adaptation towards heat

and cold, which has important implications for public

health policy making and practice.
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stress � Health risk � Mortality risk

1 Introduction

According to the Fifth Report of the Intergovernmental

Panel on Climate Change (IPCC), evidence of climate

system warming is unequivocal, and the global mean sur-

face temperatures in 2081–2100 will be up to 3.7 �C higher

than those of 1986–2005 under the Representative Con-

centration Pathway (RCP) 8.5 scenario, with an uncertainty

range from 2.6 to 4.8 �C (IPCC 2014). As global warming

continues, there is increasing evidence that extreme cli-

matic events are becoming more frequent, more intense,

and longer-lasting (Guo et al. 2013; Gao et al. 2015).

Extreme heat events have increased human mortality in

North America (IPCC 2014) and Europe (Conti et al. 2005;

Michelozzi et al. 2009; Lass et al. 2011; Schuster et al.

2014). Cold weather also contributes to a wider range of

impacts on public health, including death from respiratory

and cardiovascular diseases (CVD) (Braga et al. 2002;

Barnett et al. 2012).

The IPCC report claims that in urban areas climate

change is projected to increase risks for people, assets,

economies, and ecosystems, including risks from heat

stress. As the world is increasingly urbanized, the twenty-

first century agenda would have to focus on greatly

reducing vulnerabilities of people and infrastructure in
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urban areas to the impacts of a changing climate (IPCC

2014). Due to their dense population and significant eco-

nomic status, cities have become hot spots of health risk

caused by extreme temperature events (Yang et al. 2012;

Chen et al. 2015).

A city cluster is defined as a group of cities that are

geographically colocated and linked by interdependencies

in improving their competitiveness and economic devel-

opment. In modern China, the collective economic capacity

and interdependency of city clusters have influenced

regional and national social and economic development

(Shao et al. 2006; Zhang 2009). The role of city clusters

can be seen in many aspects: comprising only 25% of

China’s total area, the 23 city clusters concentrated 62% of

the Chinese population, 80% of the national GDP, 70% of

investment in fixed assets, 76% of total retail sales of social

consumer goods, and 85% of college students in 2012.

Overall planning for and development of industries, mar-

kets, the environment, infrastructure, and social security

have been relatively integrated in each city cluster (Fang

et al. 2005; Fang 2014). Particularly in recent years, a large

number of government policies have been formulated that

target the coordinated and integrated development of urban

agglomerations and city clusters due to their spatial prox-

imity, economic connections, and the shared climate,

environment, culture, and development potential among

cities within these clusters. The increasing impact of cli-

mate disasters on China’s urban areas, especially in the

Yangtze River Delta (YRD), the Pearl River Delta (PRD),

and the Beijing-Tianjin-Hebei (BTH) region of eastern

China and other densely populated urban areas and

industrial clusters (Dong et al. 2010; Du et al. 2013), makes

it important to examine regional differences in health

impacts in order to facilitate the development of regional

risk reduction strategies and policies. In contrast to a focus

on individual cities, comparison of city clusters as aggre-

gated units of analysis offers a unique advantage for

investigating issues and impacts driven by regional scale

events, such as climate extremes.

In response to the increasing number of disasters, in

2016 China’s National Development and Reform Com-

mission promulgated the City Climate Action Planning

program, which proposes to construct climate-adapted

cities according to their climatic and geographical condi-

tions and economic and social development. This docu-

ment identifies and characterizes related risks in urban

areas, particularly public health risks; the health risks from

extreme temperature events are considered an especially

important task for climate action planning (NDRC 2016).

Existing studies have examined temperature–mortality

relationships according to different study objectives; some

have focused on a single city (Guo et al. 2011; Yang et al.

2012; Chen et al. 2015), and others have concentrated on

special climatic or geographic zones (Curriero et al. 2002;

Li et al. 2014; Gao et al. 2015; Ma, Wang et al.). But few

studies have examined the issue in city clusters. Many

studies have used a traditional linear threshold modeling

strategy, which only provides a partial picture of possibly

complex dependencies and cannot effectively capture the

relationship between temperature and mortality (Gasparrini

et al. 2012; Ma, Wang et al.). Therefore, it is necessary to

use advanced statistical modeling techniques to improve

our understanding of the association between mortality risk

and temperature in different city clusters.

In this study, we examined the effects of extremely high

and low temperatures on daily mortality in three city

clusters using a two-stage analysis approach. The Beijing-

Tianjin-Hebei region, the Yangtze River Delta, and the

Pearl River Delta are the largest and most developed city

clusters in eastern China. Given their spatial locations,

climatic conditions, and significance with regard to popu-

lation and economy, these city clusters were selected for

our study. Because of the important role city clusters play

in China, and the differences in impact of temperature

extremes on the city clusters of different regions, our

findings may provide useful information for policymakers

to develop effective regional-specific responses to climate

extremes.

2 Research Methods

This study takes the BTH, YRD, and PRD regions as focus

areas, and uses daily meteorological and mortality data of

county-level administrative units as well as statistical

analysis tools. The research employs these data and tools to

examine empirical relationships between extreme temper-

ature and mortality, which is used to infer health risks.

2.1 Data Collection

The geographic coverage of BTH, YRD, and PRD regions

is defined in Ni (2017); the Development Planning of the

Yangtze River Delta Urban Agglomeration issued by the

National Development and Reform Commission and the

Ministry of Housing and Urban–Rural Development in

20161; and the New Type of Urbanization of Guangdong

Province issued by Guangdong Provincial Department of

Housing and Urban–Rural Development and the Guang-

dong Provincial Development and Reform Commission in

2017.2 Moreover, the social economic data in 2014 for the

1 http://www.ndrc.gov.cn/zcfb/zcfbghwb/201606/W0201607155456

38297734.pdf (in Chinese).
2 http://zwgk.gd.gov.cn/006939799/201708/t20170823_719625.html

(in Chinese).
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covered cities of the BTH, YRD, and PRD regions were

obtained from the China City Statistical Yearbook 2015

(National Bureau of Statistics of China 2015) and included

area, population size, and gross domestic product (GDP).

Within the three city clusters, a total of 25 county-level

cities, counties, and urban districts, where daily mortality

data for the study period could be accessed, were selected

to represent their respective city cluster and their mortality

data were used for the analysis. The BTH, YRD, and PRD

regions are characterized by rapid economic development

and high levels of urbanization, and represent different

climatic zones and geographic features, (Fig. 1). The

Qinling Mountains-Huaihe River line is generally accepted

as the geographical dividing line between northern and

southern China. The BTH region is located in northern

China and has a temperate monsoon climate and a cold

winter. The YRD is located in eastern China and has a

subtropical monsoon climate and four distinct seasons. The

PRD is located in southern China and has a subtropical

monsoon climate, a warm winter, and a hot summer

(Huang et al. 2012; Yang et al. 2016).

The daily mortality data of five county-level cities, eight

counties, and twelve urban districts from 1 January 2007 to

31 December 2012 were obtained from the Chinese Center

for Disease Control and Prevention.3 Cardiovascular mor-

tality (coded as I00–I99 in the 10th International Classifi-

cation of Diseases) and nonaccidental mortality (defined as

deaths not resulting from external causes and coded as

A00–R99 by the World Health Organization in (2011) were

extracted to create the daily mortality dataset for this study.

Data on more counties would improve the estimation

accuracy, but daily cardiovascular and nonaccidental

mortality data for all other county-level administrative

units of the study area were inaccessible to the authors, and

(as later statistical tests would prove) 25 county-level units

is a sufficiently large sample for our analysis. Therefore,

the mortality data of the 25 cities, counties, and districts

were used to represent the data of urbanized areas in the

three city clusters.

Following the procedure of previous studies (Ma, Wang

et al.), a thin-plate spline method was applied by Yuan

et al. (2014) to generate daily gridded meteorological

variables based on daily meteorological data from 600

national climate stations in the publicly accessible China

National Weather Data Sharing System.4 The newly gen-

erated weather data, which include mean temperature and

relative humidity (RH), have superior accuracy, are avail-

able at 0.25� 9 0.25� grid divisions, and thus were used in

our study. A county/district’s daily weather data are

derived from average values of all grids covered by the

county or district rather than employ a single value from

within or around the county or district, as some previous

studies have done (Chen et al. 2015; Yang et al. 2016). The

averaging method employed in this study is more reason-

able, because the derived climate measurements better

characterize the spatial variations within a county than

those employing station measurements.

Fig. 1 Locations of the study’s

three city clusters and the 25

county-level administrative

units in eastern China

3 http://www.chinacdc.cn/ (in Chinese). 4 http://data.cma.cn/site/index.html (in Chinese).
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2.2 Statistical Analysis

We used a two-stage approach to analyze data in this study.

First, a quasi-Poisson regression model, combined with the

distributed lag nonlinear model (DLNM), was used to

estimate the relationship between temperature and mor-

tality at a county scale. This analysis employed a cross-

basis function that describes a bidimensional association

between temperature and number of lag days (Gasparrini

et al. 2010). To control for potential confounders, the RH,

long-term and seasonal trends, day of the week (DOW),

and holidays were introduced into the model simultane-

ously. The temperature–mortality relationship was descri-

bed using the following model form:

LogE Ytð Þ ¼ a þ cb Tmean; lagð Þ þ ns Rht; df ¼ 3ð Þ
þ nsðTimet; df

¼ 9 � 6Þ þ Dowt þ Holidayt

where Yt refers to the number of deaths on day t; a is the

intercept; df means degrees of freedom; the degrees of

freedom in the model were all chosen by the Akaike

information criterion for quasi-Poisson (Q-AIC) (Akaike

1973); cb means cross-basis function, defined by a natural

cubic spline with 4 degrees of freedom (df) for the lag

space and a quadratic B-spline with 5 df for the tempera-

ture space, centered at minimum-mortality temperature

(MMT) that corresponds to the lowest mortality risk; Tmean

refers to the mean temperature on day t; ns means the

natural spline function; Rht refers to the RH on day t, with

3 df; Timet refers to the time variable to adjust for time

trends, with 9 df per year; Dowt is a categorical variable for

DOW, and Holidayt is the binary variable indicating public

holidays.

For each county or district, we fitted a separate DLNM

for CVD and nonaccidental death (total mortality minus

that from external causes). Then we reduced the first

stage’s fit of the bidimensional DLNM to the overall

cumulative exposure–response relationship, which is

associated to the whole exposure history within the lag

period (Gasparrini 2011). The relative risk (RR) of mor-

tality at each temperature was calculated by dividing the

response value (LogE(Yt)) at that temperature by that at the

MMT.

In the second stage, a multivariate meta-analysis was

applied to pool the county/district-specific estimates to

derive the cluster-level and overall nonlinear temperature–

mortality relationship, as has been done in previous studies

(Gasparrini and Armstrong 2013; Ma, Wang et al.). Rela-

tive risk of mortality at the 1st and 99th percentile of

temperature was regarded as the extreme cold- and heat-

related mortality risk of each city cluster, respectively.

Finally, the maximum extreme temperature-related mor-

tality risk among all lag periods was used to indicate cold

and heat effects—the significant mortality increases asso-

ciated with cold stress and heat stress—respectively.

2.3 Sensitivity Analysis

During DLNM analysis, the temperature–mortality asso-

ciation is very sensitive to lag time. We set the lag time as

0–3, 0–5, 0–7, 0–10, 0–15, 0–21, 0–28, and 0–30 days to

check the robustness of our estimates, then compared the

effect of extreme temperature within each grouping of lag

days, and selected the reasonable lag days to quantify the

cold/heat effect. The concentration of fine particulates in

parts per million (PM2.5) and air pollution index (API)

were included in the analysis of Beijing and the relative

results of air pollution effect are discussed.

The R software package version 3.2.5 (RDCT 2016) was

used to perform these analyses. The temperature–mortality

associations were estimated using the package dlnm (ver-

sion 2.3.2), and multivariate meta-analysis was performed

using the package mvmeta (version 0.4.7).

3 Results

Temperature–mortality relationships of the county/district

units were analyzed and this section presents the results at

the aggregated city cluster level for these relationships to

estimate relative risk. This section also presents the effect

of lag days on the estimation results.

3.1 Statistical Description of the City Clusters

We summarize the information on the number and name of

the county-level cities, counties, and districts, daily aver-

age mortality counts for each county/district, meteorolog-

ical condition, and socioeconomic condition of each city

cluster in Table 1. Overall, 477,240 deaths from 2007 to

2012 were recorded in the Chinese Center for Disease

Control and Prevention dataset, with the PRD and BTH

having the most daily average nonaccidental deaths and

highest daily average cardiovascular mortality counts,

respectively. Mean temperature and RH are annual aver-

ages from 2007 to 2012, both of them increased from north

to south. Socioeconomic conditions in different city clus-

ters were summarized by the area, population, and GDP in

2014. While the three city clusters occupy only 6% of

China’s territory and encompass only about 25% of the

country’s total population, they accounted for nearly 40%

of the GDP in 2014 (National Bureau of Statistics of China

2015).
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3.2 Sensitivity of Lag Days

Figure 2 shows the extreme cold/heat-related mortality risk

(relative risk) with different lag days in the three city

clusters and the overall study area. The confidence intervals

of extreme cold/heat-related mortality risk become wider

with the increased maximum lag time. The highest extreme

cold-related mortality risk was found at lag 0–21 days in

most regions except in the PRD. Although the extreme

cold-related mortality risks at lag 0–28 and 0–30 days are

higher than that at lag 0–21 days in the PRD, its confidence

intervals also changed hugely especially for CVD, sug-

gesting an aggravated uncertainty. The extreme heat-re-

lated mortality risk decreased slightly or has little change

with maximum lag time increasing. In general, the optimal

maximum lag time should be placed at the day where the

shape of the temperature–mortality curve will not change

significantly even when longer lag time is applied.

According to the sensitivity analysis and previous studies

(Guo et al. 2011; Wu et al. 2013; Ma, Zeng et al. ; Wang

et al. 2017), 0–3 and 0–21 days were finally selected as the

Table 1 Summary mortality, weather statistics, area, population, and economic data in three city clusters in eastern China

City cluster Beijing-Tianjin-Hebei Yangtze River Delta Pearl River Delta

Number and

names of

cities/

districts

10

(Hua County, Anyang; Ci County, Handan;

Wuan City, Handan; Tongzhou District,

Beijing; Dongchen District, Beijing; Ji

County, Tianjin; Haigang District,

Qinhuangdao; Xuanhua County,

Zhangjiakou; Qiaodong District,

Zhangjiakou; Qianxi County, Tangshan)

12

(Wucheng District, Jinhua; Fenhua City,

Ningbo; Daguan District, Anqing; Xiacheng

District, Hangzhou; Jing County, Xuancheng;

Anji County, Huzhou; Tongxiang County,

Jiaxing; Wuzhong District, Suzhou;

Zhangjiagang City, Suzhou; Tianchang City,

Chuzhou; Songjiang District, Shanghai;

Pukou District, Nanjing)

3

(Yuncheng District,

Yunfu; Yuexiu District,

Guangzhou; Sihui City,

Zhaoqing)

Daily average mortality counts per county/district

Nonaccidental

mortality

8 (2–24) 9 (3–16) 10 (4–19)

Cardiovascular

mortality

5 (1–14) 4 (1–7) 4 (2–7)

Meteorological condition

Relative

humidity (%)

57.3 72.9 74.8

Temperature (�C)
11.2 (-14.2–30.1) 17.2 (-2.6–32.7) 22.1 (4.0–31.5)

SD 11.6 9.1 6.6

Socioeconomic conditions

Megacities Beijing, Tianjin, Tangshan Shanghai, Nanjing, Hangzhou Guangzhou, Shenzhen

Area

(1000 km2)

222.3 211.7 181.0

Population

(million)

115.6 144.0 72.5

Percentage in

national

population

8.5% 10.5% 5.3%

GDP (CNY

billion)

6835.7 12,670.0 6216.6

GDP per capita

(CNY)

59,132.3 87,986.1 85,746.2

Percentage in

national

GDP

10.7% 18.5% 9.8%

Numbers in parentheses indicate range of county unit’s mortality and temperature

Data source Daily mortality data were recorded by the Chinese Center for Disease Control and Prevention (http://www.chinacdc.cn/), daily

meteorological data were obtained from the China National Weather Data Sharing System (http://data.cma.cn/site/index.html), and the

socioeconomic data were extracted from the China City Statistical Yearbook (National Bureau of Statistics of China 2015)
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maximum lag times for quantifying the cold/heat effect,

respectively, in this study.

3.3 Pooled Temperature–Mortality Relationships

of All Counties/Districts

In order to first depict an overall picture of the tempera-

ture–mortality relationships for all city clusters, Fig. 3

shows the relative risks (RRs) of pooled averages of all

counties and districts from multivariate meta-analysis with

the 0–3 and 0–21 days’ lags. Given the wide temperature

range of the city clusters across eastern China, temperature

percentile instead of actual temperature is used to plot the

curves. The pooled relationships between temperature and

mortality are U- and L-shaped with the 0–3 and 0–21 days

lags, respectively. The heat effect was obvious with the

0–3 days’ lag, indicating that high temperature affects

mortality relatively rapidly. However, high RRs were

observed for mortality at low temperature with the

0–21 days’ lag, meaning that the cold effect took place

relatively slowly and could last 3 weeks. For the pooled

nonaccidental and CVD curves in Fig. 3, the pooled RRs

for extremely high temperature were 1.24 (95% CI:

1.17–1.31) and 1.28 (95% CI: 1.19–1.38), respectively.

The pooled RRs for extremely low temperature were 1.73

(95% CI: 1.48–2.03) and 1.94 (95% CI: 1.61–2.33),

respectively.

3.4 Pooled Temperature–Mortality Relationships

of City Clusters

Figure 4 illustrates the effects of temperature on mortality,

examined with both the 0–3 and the 0–21 days’ lags in

each city cluster. With the 0–3 days’ lag, the curves are

basically U or V shapes in the city clusters, with the BTH

region and the YRD showing a relatively higher extreme

heat-related mortality risk, while the PRD region reacts

quickly to cold stress. With the 0–21 days’ lag, the curve

shapes are ‘‘W’’ in the BTH region and ‘‘L’’ in the YRD

and PRD, with a consistently higher extreme cold-related

mortality risk for all city clusters than that of heat. Among

the city clusters, the cold effects are stronger in the two

southern city clusters (YRD and PRD).

The MMTs, which were lower in northern China, are

also displayed in Fig. 4. Specifically, for the 0–3 lag days,

MMT for nonaccidental mortality was 1 �C in the BTH

region, 12.4 �C in the YRD, and 18 �C in the PRD. Min-

imum mortality temperatures with the 0–3 days’ lag were

consistently lower than those with the 0–21 days’ lag; and

the MMTs were generally close to the 25th and 75th per-

centiles of local ambient temperature with the lag days of

0–3 and 0–21, respectively.

3.5 Cold and Heat Effects

According to the sensitivity test of different lag days, in

this study we quantified the ‘‘heat effect’’ as the extreme

heat-related mortality risk with 0–3 lag days; and we used

the models with lags of 0–21 days to calculate the extreme

cold-related mortality risk as the ‘‘cold effect.’’ The results

for each city cluster are displayed in Fig. 5 and Table 2.

The results indicate a higher risk of CVD than nonac-

cidental mortality under extreme temperature events in all

city clusters. From northern China to southern China, the

cold effects became stronger—the relative risk (and 95%

confidence interval) was 1.33 (0.96–1.83), 1.85

(1.56–2.20), and 2.27 (1.63–3.16) for BTH, YRD, and

PRD, respectively, and the heat effects became weaker—

the relative risk was 1.29 (1.13–1.47), 1.25 (1.13–1.35),

and 1.14 (1.01–1.28) for BTH, YRD, and PRD, respec-

tively. Such results imply that the northern population is

Fig. 2 Sensitivity analysis of extreme cold/heat-related mortality risks with confidence intervals of different maximum lag time in three city

clusters in eastern China. a Lag effect of extreme cold-related mortality risk. b Lag effect of extreme heat-related mortality risk
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more vulnerable to heat stress and southern city residents

are more sensitive to extreme cold events.

4 Discussion

In this section alternative approaches for estimating cold/

heat effects are first examined. Then outstanding issues,

such as regional differences in people’s vulnerability to

cold and heat stress and reasons for these variations are

further elaborated. The need for a balanced focus on both

cold and heat risks, as well as the impact of air pollution on

mortality risk, is also discussed.

4.1 Identifying Cold/Heat Effect Using Alternative

Approaches

Many previous studies have reported that heat effects

appeared immediately and lasted for about three days

(Anderson and Bell 2009; Guo et al. 2011, 2014; Gao et al.

2015), but cold effects were delayed and lasted for about

3 weeks or even longer (Analitis et al. 2008; Gasparrini

and Armstrong 2013; Ma, Wang et al.). Therefore, it is

very important to identify a reasonable lag time that cap-

tures accurately the magnitude of the cold/heat effect.

Many other studies have chosen the same lag time, such

as 0–21 days (Guo et al. 2014; Ma, Wang et al. 2015a;

Yang et al. 2016), to calculate extreme heat/cold-related

mortality risk. This practice would appear to underestimate

the magnitude of the heat effect (acute and last only for a

few days) and may not adequately explore the impact of

heat stress. Apart from the lag time(s) on which a study is

based, quantitative analysis methods can also affect the

calculated cold/heat effects. Guo et al. (2011) and Hajat

et al. (2007) regarded the relative risk increase in mortality

for a 1 �C temperature decrease below the cold threshold

and that for a 1 �C of temperature increase above the hot

threshold as the cold and heat effects, respectively.

Therefore, we calculated the cold/heat effects by the same

methods suggested by Ma, Wang et al. and Guo et al.

Fig. 3 Pooled effects of temperature on nonaccidental and cardio-

vascular disease (CVD) mortality with 0–3 and 0–21 lag days from 25

counties/districts in BTH, YRD, and PRD, with reference to mortality

risk at the minimum-mortality temperature (MMT) of the temperature

distribution; the pooled results are shown as smooth red lines and the

gray areas are 95% confidential intervals
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(2011) and compared the results of different approaches.

The calculated results for the three city clusters are sum-

marized in Table 3.

The cold and heat effects for nonaccidental mortality in

all counties/districts calculated by the approach that Guo

et al. (2011) suggested are 1.07 (95% CI: 1.02–1.11) and

1.08 (95% CI: 1.03–1.13), which are both very close to 1. It

would be hard to distinguish the impact degree of cold and

heat stress on local residents. Furthermore, the relative

risks are all very small and close to each other across the

three city clusters, which increases the difficulty of finding

out the regional characteristics of cold/heat effect. The

overall heat effect was 1.08 (95% CI: 1.00–1.16) in all

counties/districts of the three city clusters calculated by the

approach used by Ma, Wang et al., which is very weak and

lower than that in our study (1.24 (95% CI: 1.17–1.31)).

The underestimated heat effects (Ma, Wang et al.) make it

impossible to compare regional differences. Therefore, the

approach applied in this study is reasonable, which can

better capture the magnitude and regional characteristic of

cold/heat effect.

Fig. 4 Pooled effects of

temperature on nonaccidental

and cardiovascular disease

(CVD) mortality with 0–3 and

0–21 lag days in each city

cluster, with reference to

mortality risk at the minimum-

mortality temperature (MMT)

of the temperature distribution.

The pooled results are shown as

smooth red lines, and the gray

areas are 95% confidential

intervals. The light blue points

on the curves are the MMT

points (the specific values are

shown above the points), and

the three black points from left

to right on the curves represent

the 25th, 50th, and 75th

percentile of the temperature

distribution, respectively.

a 0–3 days’ lag. b 0–21 days’

lag
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4.2 Regional Differences in People’s Vulnerability

to Cold and Heat Stresses

The population of southern China tends to be more vul-

nerable to low temperatures, and residents in the north are

more sensitive to heat (Fig. 5). This regional difference in

vulnerability is consistent with other studies conducted in

Europe, the United States, and China (Curriero et al. 2002;

Analitis et al. 2008; Guo et al. 2013; Ma, Wang et al.).

Among the three city clusters, the BTH region and the PRD

had a quicker response to heat stress and cold stress,

respectively. The different responses to temperature

extremes between residents of northern and southern China

are both a result of and have further contributed to their

respective ability to adapt to their local climates. Such

adaptation may occur either by acclimatization, behavioral

change, technology uptake, or other adaptive mechanisms

(Keatinge et al. 2000; Medina-Ramón and Schwartz 2007).

For example, central heating, an important adaptive mea-

sure against cold, is almost universal in northern China,

which may explain why northern residents seemed more

acclimatized to cold than the southern population. Central

heating is rare in southeastern and southern China, how-

ever, and the heating function of air conditioning units may

not work well under extreme cold events. Thus, the vul-

nerability of southern China residents to low temperatures

could be explained by their limited adaptive measures to

cold. Air conditioning is less prevalent in the BTH region

than the YRD and the PRD, which provides a partial

explanation of northern China residents’ susceptibility to

extremely high temperatures.

4.3 The Need for a Balanced Focus on Both Cold

and Heat Risks

In our study, CVD showed a higher susceptibility to

extreme cold in all city clusters (Table 2). Associations of

higher CVD risk with cold have also been commonly found

in previous studies (Medina-Ramón et al. 2006; Son et al.

Fig. 5 Cold/heat effects in the three city clusters of eastern China

Table 2 Pooled cold and heat effects of temperature on nonaccidental mortality and CVD in the three city clusters of eastern China

Relative risk (RR) (95% CI)

Cold effecta Heat effectb

Nonaccidental Cardiovascular Nonaccidental Cardiovascular

Beijing-Tianjin-Hebei 1.33 (0.96,1.83) 1.67 (1.16,2.41) 1.29 (1.13,1.47) 1.35 (1.15,1.58)

Yangtze River Delta 1.85 (1.56,2.20) 2.03 (1.49,2.77) 1.25 (1.13,1.35) 1.34 (1.22,1.46)

Pearl River Delta 2.27 (1.63,3.16) 2.28 (1.35,3.85) 1.14 (1.01,1.28) 1.18 (1.05,1.32)

Numbers in parentheses indicate mortality risk at 95% confidence interval
aMortality risk at the 1st percentile of temperature relative to that at the MMT, with the 0–21 days’ lag
bMortality risk at the 99th percentile of temperature relative to that at the MMT, with the 0–3 days’ lag

Table 3 The calculated cold/heat effects for nonaccidental mortality of the three city clusters using different methods

Approach Beijing-Tianjin-Hebei Yangtze River Delta Pearl River Delta Overall

Cold effect Guo et al. (2011) 1.08 (0.98,1.19) 1.04 (0.98,1.11) 1.04 (0.96,1.14) 1.07 (1.02,1.11)

Ma, Wang et al. 1.33 (0.96, 1.96) 1.85 (1.56,2.20) 2.27 (1.63, 3.16) 1.73 (1.50,1.99)

Our study 1.33 (0.96, 1.96) 1.85 (1.56,2.20) 2.27 (1.63, 3.16) 1.73 (1.50,1.99)

Heat effect Guo et al. (2011) 1.13 (1.02,1.25) 1.09 (1.03,1.16) 1.07 (0.97,1.19) 1.08 (1.03,1.13)

Ma, Wang et al. 1.05 (0.91,1.21) 1.09 (0.98,1.22) 1.21 (0.88,1.65) 1.08 (1.00,1.16)

Our study 1.29 (1.13,1.47) 1.25 (1.17,1.35) 1.14 (1.01,1.28) 1.24 (1.17,1.31)

Numbers in parentheses indicate mortality risk at 95% confidence interval
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2011). The underlying mechanism for the CVD increase

with cold temperatures may be related to the fact that blood

pressure is elevated during the winter. Moreover, human

plasma cholesterol and plasma fibrinogen levels have been

reported to increase upon exposure to cold temperatures,

which could lead to thrombosis (Medina-Ramón et al.

2006).

Previous studies have mainly focused on heat waves,

with relatively less focus on cold stress. Medina-Ramón

and Schwartz (2007) even argued that decreases in cold-

related mortality as a result of decreasing frequency of

extreme cold would compensate for increases in heat-re-

lated mortality. In our study, the cold effect appeared more

obvious than the heat effect in all city clusters (Table 2),

and was consistent with the results of Anderson and Bell

(2009), Guo et al. (2013), and Ma, Wang et al. . Therefore,

considering the high sensitivity of population to cold stress,

more attention should be paid to both types of extreme

events, rather than only heat waves.

4.4 Limitations and Implications

Some of the present study’s limitations need to be con-

sidered. It was impossible for us to obtain daily air pollu-

tion data during the period of more than 10 years across all

city clusters because of a strict confidentiality rule on such

data in China. Especially, data on ozone, which has

potential effects during high temperature days (Chen et al.

2015), are desired but unavailable. As an alternative, we

collected data on the concentration of fine particulates

(PM2.5) and API in Beijing, and tested the impact of these

two indices on mortality by comparing the risks of extreme

temperature with versus without air pollutants in Beijing.

The daily PM2.5 levels and API were recorded by the U.S.

embassy in Beijing5 and by the Ministry of Environmental

Protection of the People’s Republic of China,6 respectively.

The API that excludes PM2.5 in monitoring was used to

report the status of ambient air quality before 2012 in

China.

Some previous studies have suggested that temperature

effects on health outcomes are generally robust or even

independent of air pollution (Anderson and Bell 2009;

Yang et al. 2012), but others have found interactive or

synergistic effects between temperature and air pollution

leading to some sort of hyper-additive mortality effect in

Europe (Keatinge et al. 2000; Burkart et al. 2013) and the

United States (Ren et al. 2008). Table 4 displays the

comparison of extreme temperature effects with and

without pollutions in our study, indicating that air pollution

could aggravate the extreme cold-related CVD mortality

risk (increased from 2.20 to 2.35 when considering the

impact of air pollution) but does not have significant

Table 4 Comparison of heat and cold effects with and without including PM2.5 and API in the temperature–mortality model of Beijing

Air pollution adjustment Relative risk (RR) (95%CI)

Cold effecta Heat effectb

Nonaccidental Cardiovascular Nonaccidental Cardiovascular

Without PM2.5 and API 1.77 (0.81–3.87) 2.20 (0.78–6.19) 1.39 (1.18–1.64) 1.45 (1.17–1.80)

With PM2.5 and API 1.80 (0.82–3.95) 2.35 (0.83–6.63) 1.40 (1.17–1.68) 1.46 (1.17–1.83)

Numbers in parentheses indicate mortality risk at the 95% confidence interval
aMortality risk at the 1st percentile of temperature relative to that at the MMT, with the 0–21 days’ lag
bMortality risk at the 99th percentile of temperature relative to that at the MMT, with the 0–3 days’ lag

Fig. 6 Average level of PM2.5 and Air Pollution Index (API) in

summer (June, July, and August) and winter (December, January, and

February) of Beijing from 2007 to 2012. The dashes and open-circles

in the boxes are the median and mean values. Boxes and whiskers

present 25 to 75 and 10 to 90 percentiles of seasonal pollutants over

2007–2012. Data source Daily PM2.5 levels were recorded by the

U.S. embassy in Beijing (https://data.epmap.org/usembassy_air) and

API values were reported by the Ministry of Environmental Protec-

tion (http://www.zhb.gov.cn/ (in Chinese))

5 https://data.epmap.org/usembassy_air.
6 http://www.zhb.gov.cn/.
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impact on the extreme heat-related mortality risk (1.45 vs.

1.46 for relative mortality risk without and with consider-

ation of air pollution). Figure 6 shows the box plot for

PM2.5 concentration and API in the summer (June, July,

and August) and the winter (December, January, and

February) from 2007 to 2012, reflecting that both the level

of PM2.5 and API were higher in the winter than the

summer. Therefore, the small possible difference between

the impacts of air pollution on extreme cold- and heat-

related mortality risks might be attributable to the rela-

tively good air quality in the summer but a higher level of

pollution in the winter of Beijing (Table 4 and Fig. 6).

5 Conclusion

Based on the study of the three largest Chinese city clus-

ters, we found that residents of southern China tended to be

more vulnerable to low temperature stress, but that the

northern population was more sensitive to heat stress.

Furthermore, the extreme cold-related mortality risk was

consistently higher than that of heat. Therefore, it is

important to develop different public health policies such

as early warning/forecasting system, climate-adapted plan

(NDRC 2016), among others, for both extreme cold and

heat events, and for different regions according to their

specific local climates.

Future research should examine the impact of potential

confounding factors. For example, due to the growing

concern about air pollution in China, we intend to explore

the effect of PM2.5 on human health in further studies. In

addition, the temperature–mortality association could be

modified by factors such as gender, age, educational level,

and the availability of air conditioning and central heating,

which were not considered in the present study but can be

examined and controlled for in further research.
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