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Abstract
Purpose of Review  This review aims to analyse the currently reported gene-environment (G × E) interactions in genome-
wide association studies (GWAS), involving environmental factors such as lifestyle and dietary habits related to metabolic 
syndrome phenotypes. For this purpose, the present manuscript reviews the available GWAS registered on the GWAS Catalog 
reporting the interaction between environmental factors and metabolic syndrome traits.
Recent Findings  Advances in omics-related analytical and computational approaches in recent years have led to a better 
understanding of the biological processes underlying these G × E interactions. A total of 42 GWAS were analysed, reporting 
over 300 loci interacting with environmental factors. Alcohol consumption, sleep time, smoking habit and physical activity 
were the most studied environmental factors with significant G × E interactions.
Summary  The implementation of more comprehensive GWAS will provide a better understanding of the metabolic pro-
cesses that determine individual responses to environmental exposures and their association with the development of chronic 
diseases such as obesity and the metabolic syndrome. This will facilitate the development of precision approaches for better 
prevention, management and treatment of these diseases.

Keywords  Gene-environment interaction (GEI) · Environmental factors · Genome-wide association study (GWAS) · 
Precision nutrition · Metabolic syndrome · Cardiometabolic health

Introduction

The transition to westernized lifestyles has stimulated 
an increase in food availability and the opening up of 
food choices across seasons and countries [1], leading an 
increase in food intake, and a reduction in physical activ-
ity which contributed to the development of the current 

obesity pandemic [2]. This burden of obesity, and mainly 
the increase in body fat, has been shown to be the trigger 
for inflammatory processes leading to the development of 
immuno-metabolic disorders [3]. Chronic accumulation of 
adipose tissue, mainly visceral fat, thus induces a chronic 
low-grade inflammatory state associated with insulin resist-
ance, hyperlipidaemia and hypertension [4]. This constel-
lation of metabolic disturbances forms the metabolic syn-
drome (MetS), which is associated with an increased risk 
of premature death.

The increase in the prevalence of MetS has turned into 
one of the major chronic non-communicable diseases 
impacting healthcare costs worldwide [5]. Currently, MetS 
criteria have different thresholds, varying according to spe-
cific characteristics of the target population, such as age [6], 
gender [7] or ancestry [8]. Despite these differences, MetS 
definitions shared some common features: overweight char-
acterised by abdominal adiposity; impaired glucose toler-
ance; high blood pressure; decreased plasma high-density 
lipoprotein (HDL)-cholesterol; and increased triglycer-
ide levels [9]. Regarding MetS prevention and treatment 
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strategies, several studies have shown that individuals may 
respond differently to the same environmental factor [10, 
11] or dietary exposure over the long term [12–14]. Simi-
larly, recent results revealed that the main factors affecting 
postprandial glycaemic response are meal composition and 
genetic factors, while genetic variations did not significantly 
influence patients’ postprandial triglyceride levels [15••]. 
These findings reflect the growing assumption that one-size-
fits-all nutritional recommendations are not optimal for eve-
ryone, highlighting the need for the development of preci-
sion nutrition approaches as a key step toward the effective 
prevention and treatment of MetS [16].

In this regard, genome-wide association studies (GWAS) 
aim to identify genetic markers associated with phenotypes 
by comparing the frequency of millions of genetic variants, 
such as the substitution of an individual base of the genome 
sequence, called single-nucleotide polymorphisms (SNPs), 
in a specific population with common ancestry [17]. The use 
of GWAS has increased with access to larger populations, 
such as the UK Biobank, the high-throughput sequencing 
and fine phenotyping [18]. Studies analysing gene–gene 
and gene-environment (G × E) interactions have increased 
in recent years, in parallel with GWAS. These studies aim to 
elucidate the network of interactions involved in the devel-
opment of complex diseases, such as obesity and MetS, in 
which multiple genes and environmental factors may modu-
late the individual risk for disease development [19].

The increasing availability of larger population sam-
ples and new methodologies for modelling interactions in 
complex diseases is allowing researchers to integrate and 
combine datasets of different natures. These new multivari-
ate models shed light on disease complexity and enable the 
development of new tools for precision medicine and nutri-
tion approaches [20, 21]. In this respect, nutrigenetic and 
nutrigenomic studies are focused on highlighting the key 
role of G × E interactions involving dietary habits and life-
style factors in MetS [22, 23]. It should be noted that this 
type of research has shown that, despite the impact of genetic 
predisposition to the disease, this susceptibility can be miti-
gated. Environmental factors can aggravate or mitigate the 
effects of genetic factors. One can think simply of nutritional 
approaches in which a food or nutrient can be avoided or 
replaced so as not to exacerbate the effect of genetic fac-
tors on health, or supplemented if the effect of the mutation 
is to limit its availability [14]. In this regard, one of the 
most described examples is the presence of polymorphisms 
related with the disruption of one-carbon metabolism associ-
ated with the development of metabolic syndrome traits and 
the role of B vitamin supplementation as methyl donors for 
DNA methylation and its implications in cardiometabolic 
health and offspring well-being [24]. Despite these advances 
in recent years, several authors have emphasised the need 
for further nutrigenetic studies to strengthen the evidence 

on these complex relationships between lifestyle and genet-
ics, and to apply more effective tools for precision nutrition 
counselling [25, 26]. In order to develop new intervention 
strategies and to implement new standardized procedures 
of precision nutrition applications, these novel studies need 
to be supported and integrate previous evidence [27, 28].

With this in mind, the present review aims to analyse the 
current evidence on G × E interactions related to MetS and 
reported in the GWAS Catalog, concretely on environmental 
factors related mainly to lifestyle and dietary habits.

Search Strategy and Selection Criteria

The cumulative knowledge from GWAS has paved the way 
for the study of complex traits by considering pleiotropic 
effects between genetic variants for multiple complex traits 
[29]. As the number of published GWAS increased [30], it 
became necessary to systematically compile the information 
provided by these studies. To this end, the GWAS Catalog 
(available at https://​www.​ebi.​ac.​uk/​gwas/) has been col-
lecting information from GWAS since 2005 and provides a 
public database that summarizes the compiled information 
associated with a large number of traits, such as obesity, 
diabetes, cardiovascular disease or different types of cancer 
[31]. Over the years, the GWAS Catalog has also evolved 
to adapt to new findings and strategies in the field and has 
incorporated new data including large meta-analysis, Men-
delian randomization studies and evidence related to interac-
tions [32]. For this reason, the studies included in this review 
were limited to GWAS registered in the GWAS Catalog [31].

The present review aims to systematically search, identify 
and provide a narrative synthesis of the GWAS that assessed 
interactions between genetic variants and environmental fac-
tor with impact on related metabolic syndrome traits. Data 
were searched using the gwasrapid R package [33] to query 
the registered studies for the following MetS traits: obesity, 
glucose metabolism, cholesterol, blood pressure and triglyc-
erides, as shown in Supplementary Table 1. The search was 
conducted between March 20 and April 14, 2022. A total 
of 281 Experimental Factor Ontology (EFO) were used to 
conduct the inquiry on the GWAS Catalog database (Fig. 1). 
From these selected traits, only GWAS reporting significant 
interactions with at least one of the following environmental 
factors: dietary intake, physical activity, smoking and sleep 
habits, were selected to be included in the review. Thus, out 
of a total of 941 GWAS (without duplication of numbers for 
studies involving more than one trait), only 148 reported 
a G × E interaction and 42 reported interactions with the 
environmental factors studied. The selected articles were 
published between 2011 and 2021.

The information collected from the GWAS Catalog 
included author(s), journal and year of publication, size 

https://www.ebi.ac.uk/gwas/


565Current Nutrition Reports (2022) 11:563–573	

1 3

and ethnicity of the cohort population, information from 
the reported interaction, SNP and the nearest mapped gene, 
associated trait and the environmental factor interacting 
with the SNP, as well as covariates included in the model 
(Supplementary Tables 2 to 6).

A complementary pathway enrichment analysis was 
performed with genes having at least one SNP showing a 
significant G × E interaction within the retained studies. 
The functional significance of these genes was explored by 
using the clusterProfiler R package [34] and the Gene Ontol-
ogy database [35]. Pathways were considered significantly 
enriched at FDR-adjusted p value < 0.05.

Environmental Factors Interacting in GWAS

A total of 310 interactions with 25 environmental factors 
reporting significant interactions with MetS traits were iden-
tified (Fig. 2). The four most common environmental factors 
were alcohol consumption with 51 SNPs, sleep time with 
48 SNPs, smoking habit with 45 SNPs and physical activity 
with 33 SNPs (Fig. 3B). These factors were grouped into 
four main clusters: dietary habits, physical activity, smoking 
and sleeping habits. Amongst these groups, “dietary habits” 
was the group with the greatest variety of factors, includ-
ing adherence to the Mediterranean diet, alcohol consump-
tion, calcium intake, carbohydrate intake, carrot consump-
tion, coffee consumption, dairy intake, fat intake, fish oil 
supplementation, fried food consumption, iron intake, n-3 

Total EFO ID used for the search
n=281

Total screened GWAS studies
n=4140

Studies reporting more than one trait
n=3199

Studies with a unique trait
n=941

Not reporting interactions
n=793

Studies reporting interactions
n=148

Not meeting study criteria
n=106

Final selected studies
n=42

Fig. 1   Flowchart of the GWAS study selection

Fig. 2   Summary of genes and nearby genes exhibiting gene-environment 
interactions with environmental factors in the GWAS Catalog. The figure 
summarizes all the mapped genes and nearby genes to the reported SNPs 

in the GWAS Catalog showing significant gene-environment interac-
tions. The figure was built using PhenoGram [38]
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polyunsaturated fatty acid (PUFA) supplementation, n-6 
PUFA intake, total PUFA intake, plant-based diet, potassium 
intake, protein intake, saturated fat intake, sodium intake and 
sweetened beverages (Fig. 3B). However, although common 
dietary habits are known to have a direct impact on weight 

or health maintenance, such as coffee consumption, fish oil 
supplementation or the consumption of fried foods or sweet 
beverages, most GWAS investigating these dietary traits 
reported interactions with less than 10 SNPs, highlighting 
the need for further and larger studies [36]. Furthermore, 

Fig. 3   Summary of the G × E interactions reported in the present 
review. Panel A shows an upset plot of the intersection between the 
25 environmental factors reported in the GWAS Catalog and the 

metabolic syndrome traits presenting significant gene-environment 
interactions. Panel B shows a density plot of the frequency of SNPs 
reporting significant interactions with environmental factors
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although several studies have investigated the interactions 
between G × E and these environmental factors, most of 
these are candidate gene-based studies and therefore, only a 
limited number of genes and polymorphisms have been stud-
ied. In this respect, the development of new GWAS includ-
ing G × E interactions could provide more eloquent evidence 
to improve the predictive power of genetic markers from 
these studies [37]. In addition, different technologies were 
used to analyse the genome in the revised articles. Affym-
etrix and Illumina platforms represent almost the 95% of the 
articles reviewed (55% and 39% respectively).

On the other hand, we found that 17 out of the 25 reported 
environmental factors were associated with only one MetS 
trait, and only three of them (smoking habit, physical activ-
ity and alcohol consumption) were associated with more 
than three MetS traits (Fig. 3A). To our knowledge, the 
development of models combining MetS traits associated 
with the same environmental factor may shed light on the 
pleiotropic interactions that occur during the development 
of immuno-metabolic alterations [39, 40]. In order words, 
the development of new models combining several MetS 
traits with environmental factors is still needed in the field 
to reveal hidden layers of complexity. Ultimately, this will 
facilitate the development of more effective nutritional 
strategies for the prevention and management of complex, 
multifactorial diseases such as MetS. This also emphasises 
the need to develop further GWAS models. In the present 
review, we found that a total of 12 GWAS considered joint 
MetS traits, but none of them considered interactions with 
environmental factors in their analyses.

MetS Traits Interacting with Environmental 
Factors

Obesity

Obesity is one of the most studied metabolic disorders 
because of its increasing prevalence in recent decades and 
its impact on life quality and overall health. Similarly, obe-
sity has been the study subject of several GWAS aimed at 
shedding light on the polygenic architecture of the disease 
[41]. At the same time, external modulators such as envi-
ronmental factors, cultural values, food choices, economic 
factors, education or stress add complexity to the integration 
of interindividual differences in obesity and MetS manage-
ment and prevention programs [42].

In addition, some authors suggest that the difficulty 
in unravelling risk factors explaining the interindividual 
variability observed in obesity and MetS is related to the 
complex interactions with environmental factors [43, 44]. 
Despite this, our search in the GWAS Catalog revealed 
only eight studies on obesity considering G × E interactions 

(Supplementary Table 2). In this regard, FTO is one of the 
most representative obesity-related genes, which has been 
widely studied due to its association with multiple obesity 
phenotypes and diabetes [45]. Additionally, FTO exhibits 
pleiotropic effects with BMI-independent traits [46], with 
interactions with other genes [47] and with environmental 
factors, such as diet [14]. Herein, we found that FTO was 
the only gene associated with two different traits: obesity 
[48••, 49] and blood pressure [50], and interacting with four 
different environmental factors: physical activity [48••, 49], 
smoking habit [48••], sweet beverage [48••] and alcohol 
consumption [50] (Supplementary Tables 2 and 4). The 
influence of physical activity on the obesogenic effect of 
SNPs located at FTO locus has been widely studied, dis-
playing a consistent attenuation. A meta-analysis reported 
that active individuals exhibited around 20% reduction of 
the BMI-increasing effects of FTO-associated SNPs [49], 
supporting previous results reporting 30% attenuation of the 
genetic effect [51, 52]. However, the mechanism underlying 
this gene-physical activity interaction remains to be eluci-
dated due to the multiple regulatory processes and shared 
pathways [53, 54]. In addition, the interaction network is 
complex, with many G × E interactions with FTO [14].

In this respect, increased adiposity has been linked to 
increased blood pressure by Mendelian randomisation using 
SNPs located at the FTO and MC4R loci as instrumental 
variants [55]. In fact, the use of genetic factors of obesity as 
an instrumental variable provides a valuable tool to under-
stand the biological mechanism linking obesity to metabolic 
complications. A recent review suggests that the application 
of information from obesity-related GWAS data can help 
shed light on the etiological mechanism of obesity-related 
metabolic risk [56]. Furthermore, a recent study carried out 
on twins showed that environmental factors such as smoking 
status, alcohol consumption and physical activity are key 
triggers in the development of obesity-associated hyperten-
sion [57], and a previous meta-analysis suggested that this 
association may be mediated by a SNP at the FTO locus 
[58]. Similarly, another GWAS also showed evidence linking 
alcohol intake with blood pressure through genes previously 
associated with alcohol intake, such as PINX1, GATA4, 
BLK, FTO and GABBR2 [50]. Additionally, ACE, ADRB1 
and CSK, genes interacting with smoking exposure and 24-h 
urinary sodium/potassium ratio (Supplementary Table 4), 
were also reported to interact with hypotensive drugs [59]. 
These results suggest that some of these G × E interactions 
may share the same underlying mechanism as for the effects 
observed with environmental factors themselves. Thus, 
meta-analysis [39] and Mendelian randomization studies 
[60] have analysed the complexity of the pleiotropic effects 
on cardiovascular disease variants, revealing the presence of 
several variants exhibiting multiple associations with obe-
sity and metabolic traits. These results provided additional 
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evidence to explain the classical links between metabolic 
alterations as cardiovascular risk factor and its heritance.

Triglyceride

The APOA5 gene exhibits one of the strongest effects on 
plasma triglyceride levels [61] and is also implicated in the 
development of obesity and MetS [62], interacting with poor 
lifestyle factors [63]. Several SNPs located within this locus 
have been associated with a deficient function of the protein 
associated with severe hypertriglyceridemia [61]. However, 
APOA5 has also been associated with moderate hypertriglyc-
eridemia, related with insulin resistance and increased risk 
of atherogenic dyslipidaemia [64]. In addition, some studies 
have suggested that the impact of APOA5 on plasma triglyc-
eride levels is enhanced by the increase of adiposity [65]. 
Likewise, APOA5 effects on plasma triglyceride levels seem 
to be mediated by its interaction with multiple environmental 
factors, such as smoking habit, carbohydrate, fat, alcohol and 
calcium intake (Supplementary Table 6) [66]. Some authors 
have suggested that the interaction between postprandial 
increase of plasma triglyceride levels and environmental 
factors may be mediated by epigenetic factors, contribut-
ing to the modulation of the risk for cardiovascular disease 
[67]. More specifically, the study carried out by Wojczynski 
et al. [68] described a significant association between five 
different methylation marks and a SNP within ZPR1, a gene 
located close to the APOA1/C3/A4/A5 cluster, and showing 
a significant interaction between postprandial plasma triglyc-
eride levels and a high-fat meal (Supplementary Table 6). 
A subsequent study also found a significant association 
between methylation marks within APOA5 with 20 SNPs in 
the nearby region, and significantly associated with the post-
prandial plasma triglyceride response after a high-fat meal 
[69]. These results suggest that the interindividual differences 
attributable to lipid-related SNPs may be partly explained by 
variations in epigenetic marks caused by environmental fac-
tors. At the same time, these results emphasise the need for 
further studies that integrate epigenetic analyses and GWAS 
to provide a better understanding of the biological processes 
behind these interactions [70].

Cholesterol

Similarly to APOA5, CNTNAP2 seems to interact with 
physical activity [71] and smoking habit [72] to modulate 
plasma cholesterol levels. Despite this gene has been widely 
associated with multiple neurodevelopmental disorders [73], 
it has also been linked with energy homeostasis and body 
weight regulation [74]. A recent study combining GWAS 
and transcriptomics has found a SNP within CNTNAP2 
locus associated with plasma ghrelin levels [75•]. Further-
more, two different epigenetic studies described a decrease 

of methylation levels in this gene associated with the smok-
ing habits of the mother and lower birth weight of the off-
spring [76, 77]. Another recent study analysed the long-term 
effects of smoking habits of the mother on methylation levels 
of their offspring during adolescence and its association with 
the cardiometabolic risk factors [78]. They found differential 
methylation marks in FTO, CYP1A1 and CNTNAP2 genes, 
amongst others. In addition, methylation levels of FTO and 
CYP1A1 genes were also associated with blood pressure, 
plasma triglyceride levels and HDL-cholesterol levels. 
Herein, FTO was identified as being part of the “brown fat 
cell differentiation” pathway (Supplementary Fig. 1A), sig-
nificantly enriched in the present study. Similarly, the above-
mentioned ZPR1 gene was also identified within the “axon 
development” pathway (Supplementary Fig. 1A), as well as 
BDNF, a gene closely associated with the metabolic regula-
tion of body weight, along with FTO [41]. In this regard, we 
found a total of 14 metabolic pathways to be significantly 
enriched with genes having at least one SNP showing a sig-
nificant G × E interaction (Supplementary Fig. 1B). In addi-
tion to those already mentioned, the most relevant pathways 
were related to cardiovascular health, and more concretely, 
to blood pressure regulation (Supplementary Fig. 1B), with a 
significant presence of the aforementioned ACE and ADRB1 
genes in these pathways, suggesting an important role of 
G × E interactions in controlling this metabolic trait.

Blood Pressure

Blood pressure was in fact the most commonly studied 
trait in the GWAS Catalog with 15 studies and 78 differ-
ent genes showing G × E interactions with environmental 
factors (Supplementary Table 4). In contrast, we identified 
only five studies reporting G × E interactions related to glu-
cose levels (Supplementary Table 3). Interestingly, three of 
these studies computed a genetic risk score (GRS) to col-
lect the genetic structure of the individuals and its interac-
tion with environmental factors [79, 80]. GRS constructed 
with GWAS information incorporates the effects of multiple 
SNPs across the genome and captures the interindividual 
variability. This information then allows the stratification 
of individuals according to their risk to exhibit plasma glu-
cose alterations. In this sense, the risk prediction of a wide 
range of SNPs related to glucose homeostasis appears to be 
dependent of clinical features, such as BMI [81]. Similarly, 
G × E interactions collected in this review (Supplementary 
Table 2) may provide a valuable tool for the management 
of glucose metabolism disorders through the application of 
precision nutrition advice. The integration of methylation 
information with GWAS in the risk assessment of complex 
diseases may further enable a more comprehensive interpre-
tation of the biological processes involved [82•].
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Perspectives of the GWAS 
with Environmental Interactions

As seen above, one of the most popular applications of 
GWAS is the estimation of GRS, also known as polygenic 
risk scores (PRS), based on the addition of multiple small 
effects across SNPs associated with a specific trait and able 
to capture part of the individual susceptibility to develop 
a disease. These PRS aim to capture the contribution of 
heredity to multifactorial complex diseases by estimating a 
risk score based on multiple genetic variations that reflects 
the risk of developing a disease compared to a population 
with a common genetic sequence without these genetic 
variations [83]. This has been proposed as a powerful pub-
lic health tool for the prevention and screening of the pop-
ulation to detect high-risk groups [84]. In this regard, other 
studies suggest that the risk prediction of PRS may have 
a modest enhancement added to the traditional guideline-
recommended clinical risk factors [85, 86]. However, these 
studies computed PRS in the traditional way, selecting 
the SNPs to be included based on their association with 
the trait and weighted by the degree of association, but 
without considering the weight of potential interactions 
with environmental factors [87••]. The development of 
new strategies and more efficient statistical analyses con-
sidering G × E interactions in the assessment of complex 
diseases are needed in the field [88, 89]. In addition, the 
inclusion of G × E interactions in the construction of PRS 
is expected to be the main key for improving the predictive 
power of precision medicine and nutrition tools [87••, 90]. 
For this reason, the construction of new PRS accounting 
for G × E interactions that may provide improvements in 
performance prediction and risk stratification has been 
proposed [83].

Despite these promising results, some authors are still 
conservative with the application of PRS because of the 
limited generalizability of GWAS results and the insuf-
ficient diversity of studied populations [91]. This is due, 
amongst other things, to the fact that several studies have 

been conducted on populations of European origin [48••, 
68, 92–100] and to difference in sample size between stud-
ies (from 138 to 347,158 individuals) [48••, 101]. Thus, 
this may create a significant bias for risk prediction when 
these results are extrapolated to other populations [102]. 
This is also noticeable in the results of this review, as 
only seven of the studies conducted analyses in a multi-
ethnic population (Supplementary Tables 2 to 5). How-
ever, an increase in the number of GWAS incorporating 
populations of different ancestry has been observed over 
the past years. Accordingly, we observed a reduction in 
the percentage of GWAS based on European populations, 
from 54% during 2011–2016 to 10% during 2017–2021 
(Fig. 4). Interestingly, the number of GWAS carried out in 
Korean populations has also raised during the 2017–2021 
period (35%), as compared to 2011–2016 (7%) (Fig. 4). 
Increasing the number of ancestries in these studies will 
help to reduce inequalities and provide a truly comprehen-
sive picture of the genetic architecture of human diseases 
[103]. However, there is still an urgent need to increase 
the sample size of these underrepresented populations; the 
expectations are hopeful due to the increased availability 
of large biobanks and cohorts that will increase the num-
ber and the diversity of studied populations [30].

Conclusion

Environmental and genetic factors contribute to the sus-
ceptibility of chronic complex diseases, such as MetS. The 
improvement of analytical and computational approaches in 
the past years has provided tones of information leading to a 
better understanding of the biological processes underlying 
the development of these diseases [104, 105]. However, the 
integration of information from different natures is needed 
for a full comprehension of the interplay between genetic 
and environmental factors. This review updates the previous 
efforts to compile G × E interactions found in GWAS [106]. 
The implementation of GWAS including G × E interactions 

Fig. 4   Frequency of population 
ancestry in the selected GWAS 
over two time periods: 2011 to 
2016 (n = 13) and 2017 to 2021 
(n = 29)
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is a great opportunity for the development of more effec-
tive approaches for the prevention and management of these 
disorders in the clinical practice. The findings shown in the 
present review suggest that there are still some challenges 
that need to be overcome. Advances in data harmonisation, 
the integration of multi-omic approaches and the use of 
larger and multi-ancestry populations, as well as the control 
for environmental exposures, will lead to more comprehen-
sive GWAS. This will contribute to the implementation of 
accurate precision nutrition approaches through the most 
appropriate dietary and lifestyle advice for each individual.
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