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The presently accepted theory for indentation hardness

ignores the elastic stress field, and considers the material

indented to behave in a rigid–plastic manner. This postu-

lation provides a useful first approximation, but fails to

explain several of the important characteristics of the

process. A newly developed approach to plasticity makes it

possible to include elastic effects, which play a major role

when the indenter is blunt. After being reviewed, the new

theory is applied to explain several of the phenomenae

associated with practical hardness testing.

In the indentation hardness test, a blunt indenter that

approximates a flat punch is forced into a plane surface.

The size of the impression that remains after the indenter is

removed is a measure of the hardness of the indented body.

Hardness is usually expressed in units of pressure (mg/mm2

or psi), obtained by dividing the maximum applied load (P)

by the area of the indentation measured either over the

surface of the indenter (Brinell hardness) or in the plane of

the surface indented (Meyer hardness). In both the Brinell

and Meyer tests, the indenter is a sphere, Fig. 1(a), and:

HB ¼ Brinell hardness ¼ 2P

pD2ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð2a=DÞ2
q

Þ
ð1Þ

HM ¼ Meyer hardness ¼ P

pa2
ð2Þ

Brinell and Meyer hardness values do not differ greatly, but the

Meyer value is often preferred because of its simplicity and

correspondence to the true mean stress over the area of contact.

Vickers, Fig. 1(b), and Knoop, Fig .1(c), indenters are

blunt pyramids. Faces of the Vickers indenters are inclined

at an angle of 136 deg, while the ridges of the Knoop

indenter have angles of 130 deg and 172.5 deg, respec-

tively. Because the Knoop indenter penetrates only about

half as deeply as the Vickers for the same load, it is fre-

quently preferred for studies of superficial hardness. The

Vickers hardness is the load divided by the contacting

surface area, while the Knoop hardness is the load divided

by the projected area, and hence corresponds to the Meyer

value.

The hardness test is very easily conducted, but not so

easily interpreted. Action beneath the indenter is complex,

and must be understood if full use is to be made of hardness

values. Basically, the hardness test is a measure of the

resistance a material offers to plastic flow.

The simple compression test, Fig. 2, provides another

measure of resistance to plastic flow that is more widely

used in design analysis. If friction is kept to a low value on

the die faces, a compression specimen will deform as

shown by the dotted lines in Fig. 2, without barreling, and

the uniaxial flow stress will be:

r1 ¼
P

A
ð3Þ

where A is the cross-sectional area of the specimen.

It is important to relate Meyer hardness to uniaxial flow

stress, a term with which most engineers are accustomed.

The plastic zone beneath a hardness indentation is sur-

rounded by elastic material which acts to hinder plastic

flow in a manner similar to the die surfaces in a closed die

forging. In the simple compression test the entire specimen
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goes plastic, and there is no resistance to side flow because

the specimen is surrounded by air. Therefore, a greater

mean stress is required to cause plastic flow in the hardness

test than in the simple compression test.

The relation between the Meyer hardness and the uni-

axial flow stress may be expressed as follows:

HM ¼ Cr1 ð4Þ

where C is called the constraint factor for the hardness test.

Experimentally, C approximates three for the Brinell,

Vickers, and Knoop hardness tests. A central problem in

the theory of hardness is to explain the origin of constraint

factor, C.

Theory

The currently adopted explanation of indentation hardness

is given in terms of the so-called slip line field theory [1].

According to this theory, the material beneath a punch

flows plastically over a region consistent with the material

displaced by the punch. At all other points, the specimen is

considered rigid. A suitable flow pattern need only be

consistent from the point of view of velocities; when this is

so, it is said to be a kinematically admissible solution.

The first kinematically admissible solution for a flat two-

dimensional punch is that shown in Fig. 3(a), due to Pra-

ndtl [2]. This flow pattern leads to a constraint factor of

1 ? p/2 = 2.57. Because conditions of equilibrium need

not be satisfied in the slip line field approach, there are

many possible solutions, each of which is an upper-bound

solution. Another kinematically admissible flow pattern for

the flat punch is that due to Hill [1], shown in Fig. 3(b).

This leads to the same value of C (2.57).

According to these theories, upward flow accounts for

the material displaced by the punch. Constraint factor

(C) may be termed a flow constraint from slip line field

point of view.

When a large block of material having a grid applied to a

central plane is loaded by a spherical indenter, flow patterns

such as those shown in Fig. 4 are obtained. Study of these

patterns reveals a plastic zone that passes through the edges of

the punch, Fig. 4(c). There is no evidence of upward flow, and

little resemblance to the plastic zones of Fig. 3.

The deformed grids of Fig. 4 clearly indicate an elastic–

plastic boundary, which has a shape resembling that of a

line of constant maximum shear stress beneath a sphere

Fig. 1 Hardness indenters: (a) Brinell, (b) Vickers, and (c) Knoop

Fig. 2 Simple compression test

Fig. 3 Slip line field solutions for flat two-dimensional punch:

(a) due to Prandtl [2] and (b) due to Hill [1]
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pressed against a flat surface. This elastic problem was first

studied by Hertz. He found that the contact stress was

distributed in a hemispherical pattern over the surface, and

that lines of constant maximum shear stress were as shown

in Fig. 5, where:

M0 ¼ smax

�p
ð5Þ

and

smax ¼ maximum shear stress

�p ¼ mean pressure on punch face ðMeyer hardnessÞ

In Fig. 5, the punch face is shown flat for simplicity,

whereas in reality it is the surface of a large-radiused

sphere. The elastic–plastic boundary of Fig. 4(c) closely

resembles a line between M0 = 0.15 and 0.20.

A new approach to plasticity has recently been presented

[3] in which the material is assumed to be plastic–elastic

instead of plastic–rigid, as in all previously existing theory.

When applied to the indentation hardness problem, the

new theory suggests that, if there is sufficient material

beneath an indenter, the displaced material may be com-

pletely accounted for by the decrease in volume of the

material elastically loaded in compression. There is then no

upward flow, as called for in all slip line field solutions.

When the load is released, the impression remains (except

for a small amount of elastic recovery) due to the residual

Fig. 4 Deformation of grid on

meridional plane in a Brinell

test: (a) plasticine, (b) mild

steel, and (c) interpretation of

(a) and (b) [3]

Fig. 5 Hertz lines of constant maximum shear stress for a frictionless

spherical indenter: M0 ¼ smax=�p
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elastic stresses which develop during plastic flow imme-

diately beneath the indenter.

The constraint factor that arises in this way is termed an

elastic constraint since the displaced volume is accom-

modated by an elastic decrease in volume (instead of by

upward flow, as in the slip-line field approach).

Since there is no evidence of upward flow in Fig. 4(a) or

4(b), the constraint involved is of the elastic variety in both

instances.

By the maximum shear theory of plasticity, one of the lines

of Fig. 4 should correspond to the elastic–plastic boundary.

The shear stress on this particular line should be Y/2 (where Y

is the uniaxial flow stress of the material, as determined in an

experiment such as that of Fig. 2). Reference 3 presents

a procedure for predicting the line in Fig. 4 corresponding

to the elastic–plastic boundary. When this procedure is

applied, the curve corresponding to M0 = 0.177 is found to

represent the particular value. From Eq 5:

M0 ¼ smax

�p
¼ Y

2�p
¼ 0:177

Or the corresponding value of constraint factor C is:

C ¼ �p

Y
¼ 1

2ð0:177Þ ¼ 2:82

However, this constraint factor is referred to the area of the

punch in actual contact during indentation (radius a in

Fig. 4) instead of the area of the plastic impression that

remains after the test. These two areas will differ because

the edge of the indenter is elastically loaded. When an

adjustment is made for the elastically loaded area, the

constraint factor based on the plastic impression is found to

be 2.82/0.94 = 3.0, which is in excellent agreement with

experiment.

The amount of material required to enable an elastic

constraint to be fully developed in a Brinell test of mild

steel corresponds to a hemisphere of radius (10)(2a/D)D;

here, 2a is the impression diameter and D, the ball diam-

eter. The coefficient 10 is directly proportional to the ratio

Young’s Modulus/Meyer hardness = E/�p. For the standard

Brinell test of mild steel (3000 kg load on a 10 mm ball

with 2a/D = 0.4), the impression should be surrounded by

a sphere of material of radius = 10(0.4)(10) = 40 mm

(1.58 in.). If less material surrounds the impression there

must be some upward flow. In fact, complete upward flow

may be demonstrated by use of a thin layer of modeling

clay (low E) on steel (very high E). The material beyond

the plastic zone (steel) then has such a high Young’s

modulus relative to that of the clay that the plastic–rigid

assumption holds, producing flow patterns almost identical

in appearance to those in Fig. 3 [3].

Strain hardening and friction should have no influence

on the value of a completely elastic constraint. However,

these factors have an important influence on flow

constraint.

In order that there be no upward flow, an indenter must

be blunt (small cone angle). Increased friction will post-

pone upward flow as will an increased tendency for strain

hardening. The effective cone angle for most indenters,

however, is such that some upward flow results even when

there is sufficient material surrounding the indenter to

provide a full elastic constraint. Thus, most hardness tests

correspond to a constraint that is predominantly elastic, but

with a small flow component.

Effective Cone Angle

The effective cone angle is a very important variable in

hardness testing. Dugdale [4] has extensively studied the

constraint factor of indenters of different cone angle; his

experimental results are summarized in Fig. 6. The con-

straint value was found to decrease markedly with decrease

in semicone angle (h) when a fully-worked specimen was

indented with very low friction (line AB). However, the

constraint increased with decrease in h when an annealed

material was indented with high friction (line BC). In

Fig. 6, which clearly reveals the influence of friction and

strain-hardening tendency, the horizontal dotted line shows

the fully elastic constraint value from the new theory.

While most of the practical indenters are not conical,

they may be assigned an effective half cone angle (h). The

effective cone angle for the sphere is the angle that the

tangent to the sphere makes with the vertical at the edge of

the indentation, Fig. 7(a). For the sphere:

h ¼ cos�1 2a

D
ð6Þ

Fig. 6 Variation of constraint factor C ¼ �p=Y with cone semiangle

(h) for metals work-hardened to different degrees and with different

amounts of friction on the surface of the indenter
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when 2a/D = 0.4, h = 66.4 deg.

For the Vicker’s indenter, the cone angle h is 136/2 =

68 deg for flow in Direction 1 in Fig. 7(b). For flow in a

direction inclined at an angle a to Direction 1:

�h ¼ tan�1 tan 68

cos a

� �

ð7Þ

For Direction 2, this gives h = 72.18 deg. The mean value

of h may be obtained as follows:

h ¼ 4

p

Z

p=4

0

tan�1 tan 68

cos a

� �

da ¼ 70:3 deg ð8Þ

For the Knoop indenter, Fig. 7(c) the cone angle (h) is

130/2 = 65 deg in Direction 1, and 172.5/2 = 86.25 deg in

Direction 2. The mean value �h, found as above, is 72.12

deg.

These values are summarized as follows:

Indenter 2�h 2hmin 2hmax

Sphere (2a/D = 0.4) 132.8 ��� ���
Vicker’s 140.6 136 144.4

Knoop 144.2 130 172.5

A sphere loaded such that 2a/D = 0.4 is seen to be less

blunt than either the Vicker’s or Knoop indenters.

Applications of Theory

The new theory and the composite picture of Fig. 6 enable

us to understand a number of phenomena associated with

hardness testing that have not previously been fully

explained. For example:

1. Why there is so little rise of material in the surface

surrounding an indentation.

2. Why the apparent plastic strain in the hardness test is

so low.

3. Origin of the ‘‘barrel’’ and ‘‘pin cushion’’ patterns in

the Vicker’s test.

4. Origin of the action of rising in fully worked material

and sinking in annealed material at the lip of a

hardness indentation.

5. Origin of the residual stresses in surfaces peened to

improve the fatigue strength of parts.

6. Explanation of the ‘‘stainless indentation’’.

7. Meaning of the Meyer Exponent.

8. Why Brinell hardness values are sometimes too low

for hard specimens, and why a spherical indenter

approaches a fully-developed plastic state gradually.

Figure 8 shows the slip line field solution for a fric-

tionless indenter with 2h = 140 deg. Since the material

is assumed to behave in a plastic–rigid manner and there

is no change in volume with plastic flow, the volume

displaced (ABC) must equal the volume in the lip (BDE).

In practice, however, the observed rise of material (BD)

will be a fraction of the value shown in Fig. 8 for a

comparable hardness indenter (Vicker’s with

2h = 140.6 deg).

Tabor [5] has empirically estimated the strain at the

outer edge of a Brinell impression to be:

e ffi 0:2
2a

D
ð9Þ

From Equation 6 this will be:

Fig. 7 Effective cone angles:

(a) Brinell test, side elevation;

(b) Vicker’s indentation, plan

view; and (c) Knoop

indentation, plan view

Fig. 8 Slip line field solution for frictionless two-dimensional wedge

of 70 deg semiangle (h)
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e ffi 0:2 cos h ð10Þ

For a value of h of 70 deg, e corresponds to 0.068. From

Fig. 7, the strain at the edge of the impression is:

e ¼ ln
CD

BC
¼ ln 1:5 ¼ 0:41

which is about six times the experimental value.

The new theory explains both of these discrepancies.

Because the bulk of the volume displaced is absorbed

elastically, the volume displaced upward is a small fraction

of that predicted by the plastic–rigid theory (Fig. 8).

When a Vicker’s indenter is used on fully work-hard-

ened material the impression will be barrel-shaped, as at

A in Fig. 9, but may have a pin-cushioned shape, as at B in

Fig. 9 when an annealed material is indented. The expla-

nation for this phenomenon is found in Fig. 6. At the ridge

of the Vicker’s indenter, the effective cone angle is 144.4

deg, but is only 136 deg midway between the ridges. In

Fig. 6, these values are indicated as V2 and V1, respec-

tively. With annealed material, it is evident that it will take

less force to displace material along the ridge (V2) than

between the ridges (V1). As a consequence, this effect will

lead to a flow pattern that is more extensive at the corners

than between the corners (the pin cushion pattern). Simi-

larly, if the material is fully cold-worked, line AB in Fig. 6

will pertain instead of BC. Then it will take more force to

displace material along the ridge (V2) than between ridges

(V1). This effect, of course, leads to the barrel-shaped

pattern.

Due to the cone angle being about 140 deg for most

practical indenters, there will be a small upward flow. This

upward flow is accentuated if the elastic constraint is kept

from developing due to insufficient material being present

beneath the indenter. The upward flow will lie close to the

surface of the indenter, and will ‘‘pile up’’ if the material is

fully work-hardened and friction is low. For an annealed

material, the upward flow will extend farther from the

indenter, and will give the appearance of ‘‘sinking-in’’ at

the indenter if friction is high.

The reason for this behavior is the same as that for the

separation of curves AB and BC in Fig. 6. Figure 10 shows

the slip line field for a frictionless indenter operating on a

fully cold-worked specimen (solid lines); dotted lines

indicate the effects of considerable friction. If the material

work hardens appreciably, the slip line pattern shifts in the

direction of the dotted curve of Fig. 10. The constraint

factor will be:

C ¼ 1þ w ð11Þ

Since the value w increases with either an increase in

friction or an increased tendency to strain harden, the

corresponding value of C should increase as shown in

Fig. 6. At the same time, the upward flow is loss localized

near the indenter for annealed material, Fig. 10. With

annealed material and high friction, the flow at the indenter

will be retarded sufficiently to provide a sinking-in

appearance.

If there were no elastic action, residual stresses would

not arise. The large residual compressive stresses produced

by shot peening to extend fatigue life are unexplained by

the present theory of indentation hardness, which assumes

the material to act in a plastic–rigid manner. The new

plastic–elastic theory [3] enables the magnitude and extent

of residual stresses to be estimated. The maximum residual

compressive stress is estimated to be about 3.2Y at the

surface, and to fall to zero a distance 2.8a beneath the

surface of a spherical indenter (where 2a is the diameter of

the impression left in the surface, and Y is the uniaxial flow

stress).

The strainless indentation hardness is the value obtained

by machining a cavity that precisely fits the indenter, and

then loading until the first evidence of plastic flow is

observed [6]. Alternatively [7], the test may also be per-

formed by alternately indenting to the first sign of plastic

action and annealing until a steady minimum value is

reached. The so-called strainless hardness value obtained

by either of these methods is about one-third the ordinary

value of hardness. It is clearly the value of hardness in the

absence of the residual stresses that arise during plastic

flow in an ordinary hardness test. Alternately, it is the

hardness value in the absence of elastic constraint. The

strainless indentation hardness value should correspond to

the uniaxial flow stress, which it does to an excellent

approximation.

Fig. 9 Plan view of Vicker’s indentation showing (a) barrel-shaped

pattern, and (b) pin cushion-shaped pattern

Fig. 10 Slip line field solution for two-dimensional wedge with

h = 70 deg. Solid lines correspond to frictionless material and dashed
lines to material with friction. The pattern for a frictionless indenter

acting on annealed material will also resemble the dashed-line pattern
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It is interesting to note that lead tested slowly at room

temperature should yield the strainless indentation hard-

ness value because its strain recrystallization temperature is

below room temperature. The same would be true for all

metals when tested above their strain recrystallization

temperatures. The hardness of a metal should decrease

rather abruptly by a factor of approximately three when the

temperature exceeds the strain recrystallization tempera-

ture. This effect should provide a convenient means for

determining the strain recrystallization temperatures of

cold-worked or annealed metals.

When the load (P) on a spherical indenter is plotted

against the diameter of the resulting impression (2a) on

log–log coordinates, a straight line is obtained, corre-

sponding to the equation:

P ¼ Að2aÞn ð12Þ

The exponent n, called the Meyer index, is a measure of the

tendency for the metal to strain harden. For a fully strain-

hardened metal, n will be 2; for an annealed metal, n will

be about 2.5. The quantity A is a constant for a given ball

size, but varies inversely as the ball diameter (D) to the

n - 2 power. Thus, from Eq 12:

P

ð2aÞ2
¼ Að2aÞn�2 ¼ A0

2a

D

� �n�2

ð13Þ

where A0 is a constant for all ball sizes. From Eq 6 and the

definition of Meyer hardness (HM), Eq 2:

HM ¼
4

p
P

ð2aÞ2
¼ 4

p
A0ðcos hÞn�2 ð14Þ

Equation 14 indicates that, for a fully work-hardened

metal, the Meyer hardness (HM) will be constant, since

n = 2. For an annealed metal, HM for a sphere will

increase with load, since n [ 2, and the cone angle (h) will

increase with load.

Because the wedge angle is constant for all loads in the

Vicker’s indenter, Eq 14 indicates there should be no change

in the corresponding Meyer hardness with load for either an

annealed or fully strain-hardened metal. This is found to be

true experimentally; hence, the behavior of a Vicker’s

indenter is simpler to use than that of a sphere in this report.

The Knoop indenter also has a constant mean effective cone

angle for all loads, and gives the same hardness for all loads

regardless of the state of strain hardening.

Other complications are associated with a spherical

indenter. For a very light load (corresponding to 2a=D ffi 0:1),

the constraint factor will be very low, slightly greater than one.

The fully-developed constraint, three, will not be obtained

until (2a/D) has reached about 0.4. This effect is also believed

due to elastic behavior, but of the indenter this time. For the

full constraint of three to be obtained, the distribution of stress

must be Hertzian, semicircular distribution, as shown in

Fig. 5. According to Hertz, the semicircular stress pattern

pertains only when a sphere deforms, under load, into another

sphere of larger radius. When the applied load is small

(2a=D ffi 0:1), it is conceivable that the indenter will deform

as shown in Fig. 11, which in turn will cause the resulting

constraint factor to be too low. Only after the sphere has

penetrated a substantial distance into the specimen will the

deformed indenter also be spherical, establishing the Hertzian

distribution.

At any rate, a spherical indenter develops the full con-

straint of three gradually with load, and should not be used

until (2a/D) has reached a value of about 0.4 for a spherical

indenter made of steel. Since Vicker’s and Knoop indenters

show no such gradual approach to full plasticity, they can

be used over a wider range of loads.

The fact that (2a/D) for fully-developed flow decreases

as the value of Young’s Modulus of a spherical indenter

increases supports the theory that the phenomenon of

gradual approach to full plasticity is associated with elastic

deflection of the indenter. If a steel spherical indenter is

used in a standard Brinell test (3000 kg load, 10 mm diam

ball) when the specimen hardness exceeds about 300 kg/

mm2 (corresponding to 2a/D = 0 .36), the hardness value

will be too low. A tungsten carbide sphere may be used for

specimens with hardnesses of up to about 800 kg/mm2;

beyond this, it is advisable to use a Vicker’s diamond.

Practical Considerations

The more blunt the indenter, the smaller will be the amount

of upward flow. In the absence of upward flow, the hard-

ness will be the same for an annealed and fully strain-

hardened specimen, and friction will play no role. Under

such conditions, the hardness measured corresponds to the

initial yield point of the material.

An indenter that is blunt enough to prevent upward flow

produces an impression that is difficult to see and measure

accurately. The effective cone angle must be decreased to a

Fig. 11 Comparison of Hertzian and actual load distributions for a

large sphere loaded over a small area
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value that approximates that for the Vicker’s and Knoop

indenters for accurate measurement. Presence of the ridges

in Vicker’s and Knoop indentations improves visibility,

and hence accuracy of measurement. O’Neill [8] found that

etched indenters also improved the accuracy of measure-

ment, but had negligible influence on the size of the

impression obtained.

With indenters having effective cone angles as small as

those in the Vicker’s and Knoop indenters, there will be a

small amount of upward flow. The resulting constraint will

still be essentially of elastic origin with a small flow

component included. This flow component causes the

hardness value to correspond to the flow stress at a small

plastic strain (approximately 0.05 in./in.). It also alters the

constraint factor upward or downward, depending upon

whether the metal is fully strain-hardened, or annealed, and

whether the indenter friction is high or low.

Glasses and Polymers

The foregoing discussion does not appear to hold for

glasses and polymers, which appear to behave quite dif-

ferently when indented.

While the possibility of glass flowing plastically in a

hardness test has been questioned by some, Marsh [9] has

presented extensive evidence supporting this phenomenon.

For example, excellent microhardness impressions may be

produced. Marsh finds constraint factors are much lower

for glass than for metals. The ensuing discussion presents a

possible explanation for this, employing the following

notation:

E = Young’s Modulus of Elasticity, psi

Y = uniaxial flow stress (compression), psi

�p = mean pressure on indenter, psi

t = Poisson’s ratio

C = �p=Y

It appears as though solids should be divided into two

classes from the point of view of hardness theory—those

having high values of stiffness to flow stress (E/Y), and

those having low values of E/Y. When loaded by a blunt

indenter, the materials having high values of E/Y (metals)

appear to develop a Hertzian stress distribution over the

contact. Materials having low values of E/Y (glasses and

polymers), however, develop a uniform stress distribution

over the contact area; in this sense, they behave as liquids.

The value of �p=Y (constraint factor, C) is a function of E/Y

for materials of low E/Y (see Marsh [9], p. 424 and Fig.,

p. 425) but not for materials of high E/Y. The value of �p=Y

for low E/Y materials (glass, polymers) is as follows to a

very good approximation (v = 0.3), according to Marsh’s

theory for glasses and polymers:

�p=Y ¼ 0:28þ 0:60 ln 0:7E=Y ð15Þ

The value given by this equation exceeds the constraint

value for high E/Y materials (3.0) when E/Y is less than

133, the critical value that distinguishes the low and high

E/Y regimes.

Steels will have values of E/Y in the range 300 to 1000,

depending on hardness, while glasses and polymers will

have values of E/Y in the vicinity of 25.

It would appear that the two types of behavior are

related to a basic difference in atomic structure. Metals

have long-range order, are extremely dense, and contain

few imperfections relative to glasses and polymers. Glasses

and polymers are capable of substantial densification when

compressed whereas metals are relatively free of densifi-

cation. It therefore appears as though the glasses and

polymers behave as liquids in the vicinity of the applied

load, and develop a stress distribution similar to that pro-

vided by a hydrostatically-loaded hemisphere. Metals, on

the other hand, behave as true solids. The Hertz theory of

elastic contact pertains, leading to a value of �p=Y of three.

Values of �p=Y from Eq 15 are greater than three when E/Y

exceeds 133, but less than three when E/Y is less than 133.

Theories of elastic and flow constraint discussed in this

paper apply only to materials having long-range order

(metals). When considering materials of short-range order,

which naturally have relatively low values of E/Y (\ 133),

the theory of Marsh pertains since it leads to lower values

of �p=Y :
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