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Abstract

+ Key message A climate-sensitive aboveground biomass
(AGB) equation, in combination with nonlinear mixed-
effects modeling and dummy variable approach, was devel-
oped to examine how climate change may affect the allome-
tric relationships between tree diameter and biomass. We
showed that such changes in allometry need to be taken into
account for estimating tree AGB in Masson pine.

+ Context As a native species and being widely distributed in
subtropical China, Masson pine (Pinus massoniana Lamb.)
forests play a pivotal role in maintaining forest ecosystem
functions and mitigation of carbon concentration increase at
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the atmosphere. Traditional biomass allometric equations do
not account for a potential effect of climate on the diameter—
biomass relationships. The amplitude of such an effect re-
mains poorly documented.

- Aims We presented a novel method for detecting the long-
term (2041-2080) effects of climate change on the diameter—
biomass relationships and the potential consequences for
long-term changes of biomass accumulation for Masson pine.
« Methods Our approach was based on a climate-sensitive
AGB model developed using a combined nonlinear mixed-
effects model and dummy variable approach. Various climate-
related variables were evaluated for their contributions to
model improvement. Heteroscedasticity was accounted for
by three residual variance functions: exponential function,
power function, and constant plus function.

+ Results The results showed that diameter at breast height,
together with the long-term average of growing season tem-
perature, total growing season precipitation, mean tempera-
ture of wettest quarter, and precipitation of wettest quarter,
had significant effects on values of AGB. Excessive rain dur-
ing the growing season and high mean temperature in the
wettest quarter reduced the AGB, while a warm growing sea-
son and abundant precipitation in the wettest quarter increased
the AGB.
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« Conclusion Climate change significantly affected the allo-
metric scale of biomass equation. The new climate-sensitive
allometric model developed in this study may improve bio-
mass predictions compared with the traditional model without
climate effects. Our findings suggested that the AGB of
Masson pine trees with the same diameter at breast height
under three climate scenarios including representative concen-
tration pathway (RCP) 2.6, RCP 4.5, and RCP 8.5 in the future
period 2041-2080 would increase by 24.8 + 32.7%
(mean * standard deviation), 27.0 + 33.4%, and
27.7 + 33.8% compared with the constant climate (1950—
2000), respectively. As a consequence, we may expect a sig-
nificant regional variability and uncertainty in biomass esti-
mates under climate change.

Keywords Masson pine - Subtropical China - Climate
change - Climate-sensitive aboveground biomass model -
Nonlinear mixed-effects model - Dummy variable approach

1 Introduction

Global climate change affects all aspects of forest community
structure and ecosystem production, such as seedling estab-
lishment (Daniels and Veblen 2004), tree growth and mortality
(Peng et al. 2011; Subedi and Sharma 2013; Lei et al. 2016),
tree species distribution (Hamann and Wang 2006; Sinervo
et al. 2010), competition among species (Hamann and Wang
2006; Boisvert-Marsh et al. 2014; Monleon and Lintz 2015),
and forest biomass and productivity (Jiang et al. 2015; Tian
et al. 2016). Forests play an important role in mitigation of
climate change by removing carbon from the atmosphere and
storing it in biomass. Consequently, it becomes increasingly
important to understand how climate affects forest biomass.
The information on the effect of climate on forest biomass can
provide valuable insights for formulating forest management
strategies, with respect to sustainability and climate change
adaptations (Marlon et al. 2008; Lei et al. 2016).
Process-based models have been used to describe climatic
effects on forest biomass and productivity for various climatic
zones and tree species (Eggers et al. 2008; Shuman and
Shugart 2009; Poudel et al. 2011). Not surprisingly, the re-
sponses are inconsistent. For the Mediterranean climate zone
in Europe, it has been speculated that climate change may
increase forest productivity by 12—14% and carbon stock by
23-31% in the next 50 years (Eggers et al. 2008). For the
Eurasian boreal forests, Shuman and Shugart (2009) found
that a significant relationship existed between altered precip-
itation and biomass. Their analysis also showed that a modest
increase in temperature of 2 °C over 200 years would have no
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significant effects on biomass. For the temperate continental
climate zone in north-central Sweden, an average regional
temperature increase of 4 °C over the next 100 years was
suggested to increase annual forest productivity by 33% and
the potential annual harvest by 32% (Poudel et al. 2011). The
temperate moist forests with cool temperatures and moderate-
ly high precipitation were found to have the highest biomass
and carbon stocks (Keith et al. 2009). For the tropical forests,
Stegen et al. (2011) found that aboveground biomass was
inversely related to mean annual temperature in wet tropical
forest sites and positively related in moist tropical forests and
that biomass was positively related to annual precipitation in
dry tropical forests. In addition, empirical studies have re-
vealed that rising temperatures increase the availability of soil
nitrogen and when combined with a longer growing season, it
is expected to increase overall tree growth/biomass
(Stromgren and Linder 2002). However, on some sites, in-
creasing temperature may result in temperature-induced
drought stress and thus reduce tree growth/biomass
(Wilmking et al. 2004). To our knowledge, the magnitude of
climate effects on forest biomass remains poorly characterized
for the subtropical forests. Traditional biomass allometric
equations do not account for a potential climate—biomass re-
lationship and may produce bias for biomass and carbon esti-
mation (Xiang et al. 2011; Zeng et al. 2011; Fu et al. 2016).
The subtropical climate zone in China is located in
the eastern part of the country between latitudes 22°
and 34° N and longitudes 98° and 123° E (Yang et al.
20006). Its climate is characterized by hot, humid sum-
mers and chilly winters (Yang et al. 2006). The subtrop-
ical area in China is stratified into three different sec-
ondary climate zones (north-, middle-, and south-
subtropical zones) based on the mean air temperature
and the number of days without frost (Huang 1992).
This zone accounts for 63% of the total plantation area
(SFA 2012) and about 25% of the total forest biomass
in China (Lin et al. 2012). China’s subtropical forests,
which include Masson pine (Pinus massoniana Lamb.)
and Chinese fir (Cunninghamia lanceolata Lamb. Hook)
dominated stands, supply about two thirds of the har-
vested roundwoods, and are crucial to the economic and
social development of rural populations, as well as re-
gional carbon storage and cycling (SFA 2012). Masson
pine dominates the regional forests and plays an impor-
tant role in maintaining the structure and functions of
the forest ecosystems in the entire subtropical zone.
Masson pine covers a total of 1.13 million ha of forest-
ed land, spread throughout 17 provinces in China.
Owing to its wide distribution and ability to grow in
poor site conditions and regenerate naturally, as well
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as its rapid growth rate, Masson pine can greatly con-
tribute to carbon sequestration and storage. Several in-
dividual tree biomass models have been developed to
estimate the biomass and carbon storage of Masson pine
in the subtropical China (Xiang et al. 2011; Zeng et al.
2011; Fu et al. 2016); however, these models did not
consider the effects of climate change on biomass
allometry.

The limited knowledge of how changes in the regional
climate affect the biomass of Masson pine in the subtrop-
ical China makes it challenging to prepare for the poten-
tial consequences of climate change. According to the
Abdus Salam International Centre for Theoretical
Physics (ICTP) Regional Climate Model version 3
(RegCM3) with the A1B scenario (IPPC 2001), the mean
temperatures in the periods of December—January—
February (DJF) and June—July—August (JJA) in China
are expected to rise by 5.5 and 5.0 °C, respectively, by
the end of the twenty-first century (Gao et al. 2012).
Therefore, the objectives of this study were (1) to develop
an individual climate-sensitive aboveground biomass
(AGB) model with Masson pine as a case study and (2)
to examine how climate change may affect the allometric
relationships between diameter and biomass and assess
the potential error in predicting AGB of Masson pine
under different climate scenarios based on the developed
AGB model.

2 Materials and methods
2.1 Biomass data

The biomass data used in this study were collected accord-
ing to the protocol of data collection for tree biomass
modeling which was drafted by the State Forestry
Administration of China (SFA 2014). A total of 150
Masson pine trees from both natural and planted forests
in subtropical China were destructively sampled in 2009
(Fig. 1). The sample trees were located in a broad area in
which various forests of Masson pine were distributed and
covered nine provinces (Jiangsu, Zhejiang, Anhui, Fujian,
Jiangxi, Hunan, Guangdong, Guizhou, and Guangxi) ran-
domly selected from the 16 provinces in this region
(Fig. 1). The number of the trees sampled in each province
was determined depending on the provincial area, stand
origin, and diameter at breast height (D) class in proportion
to its contribution to the total stocking volume of the spe-
cies in the entire region. The number of the sample trees
allocated to natural and planted forests was also

determined on a pro rata basis with 77 trees selected from
the former and 73 trees from the latter. The sample trees
were distributed evenly among D classes of 2, 4, 6, 8, 12,
16, 20, 26, 32, and >38 cm (i.e., 15 trees for each D class,
except for the 26 and 32 cm classes in which there were 14
and 16 trees, respectively). Additionally, the sample trees
in each D class were classified, as evenly as possible, into
three to five height classes, with three to five trees in each
height class. The sample trees represented the characteris-
tics of forests in each secondary climate zone in subtropical
China. Their percentages among the D classes and climate
zones (north-, middle-, and south-subtropical zones and the
entire subtropical zone) are shown in Fig. 2a, b,
respectively.

The diameter at breast height (D) was measured on each
standing sample tree in the field. After a tree was felled, the
total tree length, the length of its living crown, and the
diameter at ground level were also measured. The fresh
masses of stem wood, stem bark, branch, and foliage were
weighted, and all the subsamples (stem sections of a sam-
ple tree) were selected and weighed in the field for water
content analysis. After being taken to the laboratory, all the
subsamples were oven-dried at 85 °C until a constant dry
weight was reached. Using the dry weight to fresh weight
ratio, the biomass of each component (wood, bark, branch,
and foliage) was calculated and added together to get the
total AGB of each tree. The relationship of AGB with D for
each climate zone with stand origin (natural and planted) is
shown in Fig. 2c.

The complete biomass dataset was randomly divided
into two groups: 120 trees for model calibration (cali-
bration dataset) and the other 30 trees for model vali-
dation (validation dataset). The data and relevant stand
characteristics for the calibration and validation datasets
are summarized in Table 1.

2.2 Climate data

Climate data for the subtropical China were obtained from
the WorldClim database (http://www.worldclim.org) with
18 candidate bioclimatic variables (Table OR1 in
supplementary file) at a 1 km X 1 km spatial resolution
(Hijmans et al. 2005). The growing season was determined
using temperature-based rules, starting when the mean dai-
ly temperature was greater than 6.0 °C for five consecutive
days, and ending when the average temperature fell below
10.5 °C after the first day of August (Feng et al. 2011). The
observations of the variables were averaged for the period
1950-2000.
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Fig. 1 Distribution of Masson pine sample sites across the subtropical
China. The distribution of Masson pine forests in China can be divided
into four subregions, namely, the north-subtropical, middle-subtropical,
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south-subtropical, and other climate zones (such as mid-temperate zone).
However, the fourth subregion had less than 1% of the stand volume of
Masson pine in China and was thus not included in this study (SFA 2012)
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Fig. 2 The percentages of the sampled trees falling. a Diameter at breast
height (D, cm) classes. b Climate zones including the north-, middle-, and
south-subtropical zones and the entire subtropical zone (denoted by NS,
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MS, SS, and ST, respectively). ¢ The relationship of aboveground biomass
(AGB, kg) with D for different stand origins with natural and planted
forests
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Table 1

Summary statistics of diameter at breast height (D) and total aboveground biomass (AGB) of Masson pine by origins (natural and planted

forests) and secondary climate zones for model calibration and validation datasets used in this study (N denotes the total number of observations, and SD

denotes the standard deviation)

Variable Calibration data Validation data
N Mean SD Min Max N Mean SD Min Max

Natural

D (cm) 62 17.38 12.24 2.00 43.10 15 18.45 13.61 2.00 47.20

AGB (kg) 62 178.16 233.07 0.54 1039.14 15 213.35 295.64 0.59 981.78
Planted

D (cm) 58 15.48 11.36 1.50 40.70 15 15.48 13.62 2.10 39.20

AGB (kg) 58 146.42 209.30 0.32 751.94 15 175.08 272.75 0.75 797.05
North-subtropical

D (cm) 19 11.84 11.01 1.60 41.40 3 10.07 542 5.90 16.20

AGB (kg) 19 77.14 144.87 0.54 575.09 3 34.37 43.09 4.08 83.71
Middle-subtropical

D (cm) 73 17.82 11.62 1.50 43.10 21 19.13 15.04 2.00 47.20

AGB (kg) 73 188.48 237.14 0.38 1039.14 21 250.65 315.57 0.59 981.78
South-subtropical

D (cm) 28 16.06 12.41 1.70 37.50 12.83 8.18 5.90 25.20

AGB (kg) 28 154.07 212.94 0.32 751.94 76.62 104.13 491 268.05
Total

D (cm) 120 16.47 11.81 1.50 43.10 30 16.96 13.47 2.00 47.20

AGB (kg) 120 162.82 221.54 0.32 1039.14 30 194.22 280.16 0.59 981.78

2.3 Climate-sensitive aboveground biomass model

Allometric models are most commonly used to estimate
tree biomass by relating tree biomass to easily measured
variables (e.g., D) (Zeng et al. 2011; Chave 2014). Zeng
et al. (2011) developed an allometric model (model 1) for
Masson pine AGB estimation based on D, coupled with a
dummy variable approach to address tree origins. They
reported that their AGB model provided higher predictive
accuracy than other Masson pine AGB models tested. We
selected model (1) as the base function to develop our
AGB models in this study.

AGB = exp(fy + L x S)D”' + ¢, (1)

where AGB is the aboveground biomass (kg); D is the diam-
eter at breast height (cm); S is a dummy variable representing
the stand origins, which takes a value 1 for plantations and 0
for natural forests; 3y, 31, and L are model coefficients; and
is the error term.

The allometric scaling theory suggests the existence of a
universal power—law relationship between tree biomass and D
with a fixed allometric power (e.g., close to 8/3) which has
been verified by numerous studies for various tree species in
geographically and ecologically different regions around the

world (West et al. 1997, 1999; Vieilledent et al. 2012; Anitha
et al. 2015). Therefore, in this study, it was assumed that
climate would only affect the allometric scale, that is, intercept
term [, in model (1) in the allometric model. The parameter
was modified by the subtropical zone-related dummy vari-
ables and climatic variables. Firstly, we introduced two addi-
tional dummy variables, 7; and 75, to represent differences
among three secondary climate zones in the subtropical
China: 77 = 1 and 75 = 0 denoted the south-subtropical zone;
T1=0and 75 = 1 the middle-subtropical zone; and 7' = 0 and
T, = 0 the north-subtropical zone. Then, the AGB model took
the following form

AGB = exp(By +L x S+ ki Ty + ko To)D” + ¢, (2)

where k; and &, were the model coefficients, and the other
variables were defined as above for model (1).

To explicitly include climatic variables, we modified model
(2) by incorporating the temperature- and precipitation-related
variables described previously. Model (2) was first fitted to the
calibration dataset for Masson pine using generalized least-
squares (GLS) in R (R Development Core Team 2011). Then,
a combination of temperature- and precipitation-related vari-
ables was introduced to the model and evaluated for their con-
tributions to model improvement. The climate variables that
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Table 2  Parameter estimates and fit statistics (standard error (SE),
Akaike’s Information Criterion (AIC), logarithm likelihood (log-
likelihood)) of models (2) and (3) using generalized least-squares, and
model (7) using a nonlinear mixed-effects model approach for Masson

pine data from the subtropical China (8y—0s, k1, k», and L are the model
coefficients; o2 is the scaling factor of the error dispersion; and u5 and us
represent the random-effect coefficients)

Parameters Model (2) Model (3) Model (7)

Estimates SE Estimates SE Estimates SE
Bo —2.9435 0.2809 -2.7271 1.3385 —1.4544 2.2098
ky 0.2876 0.0680 —0.0285 0.1079 -0.0175 0.1237
ks 0.3821 0.0632 0.0077 0.1069 0.0767 0.0819
L —0.0031 0.0292 0.0240 0.0272 —0.0285 0.0471
0 2.5037 0.0760 24715 0.0683 2.3697 0.0296
5 -0.9078 0.4667 —0.7053 0.5677
B3 1.1108 0.4566 0.7337 0.4842
on —1.1991 0.3104 —0.3961 0.3679
Bs 1.0760 0.4030 0.4973 0.5346
Variance components
o’ 0.5792 0.4380 0.0450
var(us) 0.0001
var(us) 0.00003
cov(us, us) 0.00001
Autocorrelation structure
p 0.1412
Weight (power of D)
ol 2.1463
AlC 1241.4790 1214.1370 889.7032
Log-likelihood —614.7396 —597.0685 —429.8516

were both significant (o = 0.05) and improved model fitting
were selected. During the variable selection, we prioritized
choosing a set of variables with minimum multicollinearity
assessed using the variance inflation factor.

The evaluation of combining the temperature- and
precipitation-related variables indicated that the total growing
season precipitation (TGSP), mean growing season tempera-
ture (MGST), mean temperature of wettest quarter (MTWQ),
and precipitation of wettest quarter (PWQ) were significant in
explaining variations in the AGB of Masson pine (p < 0.05)
(Table 2). The spatial distributions of the four climate vari-
ables for the period 1950-2000 are displayed in Fig. 3. After
the variables were involved, the model (hereafter referred to as
the full model) was as follows

AGB = exp(fBy + L x S+ k\ T\ + kaT2)D* TGSP*

MGST» MTWO% PWQ% + ¢ 3)

where By—3s, k1, L, and L are the model coefficients, and the
other variables were as defined previously.
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When the long-term averages of the four climate variables
were included, Akaike’s information criterion (AIC) and the
logarithm of the likelihood function (log-likelihood) indicated
that the model fitness was improved (Table 2).

2.4 Model calibration and evaluation

When the relationship of tree AGB with stand or tree
variables are modeled, the measurements of tree variables
are often collected from trees growing in sample plots
located in different stands with different regions. This
hierarchical structure (i.e., trees within regions) can lead
to dependence among the measurements, as the observa-
tions from the same sampling unit (i.e., each province in
this study) are likely to be significantly correlated (i.e.,
autocorrelation likely exists) (Pinheiro and Bates 2000).
To address the problem of autocorrelation, nonlinear
mixed-effects modeling (e.g., Fu et al. 2014a, 2014b),
recognition of the correlation structure (e.g., Diéguez-
Aranda et al. 2006), or both (e.g., Trincado and
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Fig. 3 Surface maps of average
mean growing season
temperature (MGT) (a), average
mean temperature of wettest
quarter (TWQ) (b), average total
growing season precipitation
(TGP) (¢), and average
precipitation of wettest quarter
(PWOQ) (d) for the period from
1950 to 2000 in three secondary
climate zones (north-, middle-,
and south-subtropical) in the
subtropical China

TGP(mm)
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Burkhart 2006) have been used. We chose to use the non-
linear mixed-effects modeling approach provided in the S-
Plus nlme function (Pinheiro and Bates 2000) to develop
the full model. Random-effect parameters were added se-
quentially, starting with one coefficient as a random
effect.

The residuals of the AGB prediction model with random
grouping (i.e., province) effects were analyzed for possible
autocorrelation or heteroscedasticity. To account for within-
province autocorrelation and heteroscedasticity in the
variance-covariance matrix (R;) of the error term (g;) (the sub-
script i denotes the /™ province, i=1, ... ,9), the approach of
Davidian and Giltinan (1995) was used

R; = &*G{*TI;G}* (4)

where ¢ is a scaling factor of the error dispersion, which is
equal to the residual variance of the estimated model; G; is a

~
—
°

2119
280
336
393
475
593
762

1003,
1350

660 1,320 Kilometers

VI South subtropical ? 330

n; x n; diagonal matrix of the within-province variances; and
T'; is a n; x n; matrix showing the within-province autocorre-
lation structure of the errors.

The empirical autocorrelation function (ACF) for model
(3) indicated that the autocorrelation was significant
(a = 0.05) among the residuals within the provinces
(Fig. 4a). As a result, the final model was estimated as a
nonlinear mixed-effects model, accounting for the within-
province autocorrelation. The autocorrelation structure
autoregressive process of order one (AR (1)) for matrix T';
was applied in this study.

Preliminary analysis for fitting model (3) showed clear ev-
idence of heteroscedasticity in our datasets (Fig. 5a). Some
heteroscedasticity remained even after incorporating the auto-
correlation structure in the nonlinear mixed-effects model.
The heteroscedasticity was removed by specifying a within-
province variance function (Pinheiro and Bates 2000). Three
common variance functions, e.g., the exponential function
[var(e;;) = o? exp(2vD;;)], the power function

INRA 2 springer

"~ SCIENCE & IMPACT



42 Page8of 15

Annals of Forest Science (2017) 74: 42

Fig. 4 Empirical autocorrelation a
function (ACF) corresponding to 1.0 1 -
the standardized residuals of the
Masson pine biomass data for
model (3) (a) and model (7) b 0.8 7 i
with an autoregressive process of
order one (AR (1)) 0.6 L
autocorrelation structure -
(a=0.05) 2
=04 2
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[var(e;) = o’ | Dyl 7, and the constant plus power function
[var(e;) = o? (’71 + D;?) 2 ] were evaluated, where D, is

the diameter at breast height of the jth tree in the ith province,
and ~, 71, 72 and ;3 are estimated parameters (Pinheiro and
Bates 2000). The function that gave the best fit (e.g., the
smaller AIC) and provided the smallest residuals with better
behavior was selected. The coefficients of the final model
were estimated using the restricted maximum likelihood
method (Pinheiro and Bates 2000).

We assessed the accuracy of our AGB model using both the
calibration and validation datasets in Table 1 based on the
mean bias e (observed AGB — predicted AGB), the variance
of residuals (v), and the root mean square error (RMSE)
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(RMSE = vé® 4+ v ). RMSE, which combines the mean bias
and the variation of the residuals, was used as the primary
criterion for AGB model evaluations.

2.5 Potential effects of changing allometry on tree biomass
estimates under future climate scenarios

Model (3) was applied to predict the future AGB of Masson pine
trees with the same dataset (Table 1) on each sampled site under
future climate scenarios in the three secondary climate zones of
subtropical China. The relative difference (Ragg) in AGB be-
tween current and future climate scenarios was derived (Eq. (5)).
For avoiding the uncertainties from D predictions in the future
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Fig. 5 Distribution of standard residuals for model (3) (a) and model (7)
(b) predictions of the aboveground biomass of Masson pine trees in the
subtropical China

and making reasonable comparisons, the D values (that is, ob-
served values) of the sample trees were considered constant and
applied for estimating the future AGB of Masson pine tree under
each climate change scenario. Thus, the effects of different cli-
mate scenarios in the future on AGB variation in the different
climate zones (e.g., north-, middle-, and south-subtropical zones
and the entire subtropical zone) were evaluated under the con-
straint of the same D. We used the latest climate change scenarios
of the fifth Assessment Report from the IPCC based on a down-
scaled global climate model (GCM) applied in three

Table3  Performance assessment of nonlinear mixed-effects model (6)
using the Masson pine biomass data with autocorrelation structure
autoregressive process of order one (AR (1)) and three variance
functions (exponential function, power function, and constant plus
power function), respectively (AIC denotes the Akaike information
criterion; Log-likelihood denotes the logarithm likelihood; and variance
function 1 means that the variances are homogeneous)

Type AlC Log-likelihood
Autocorrelation structure AR (1) 889.7032 —429.8516
Variance functions
Exponential function 956.9301 —464.465
Power function 889.5079 —430.7540
Constant plus power function 890.9463 —430.7732
1 1193.8790 —583.9392

representative concentration pathways (RCPs): RCP 2.6, RCP
4.5, and RCP 8.5 (IPCC 2013). The scenarios indicated low,
medium, and high concentrations of greenhouse gases and pre-
dictive radiative forcing. The GCM was Beijing Climate Center
Climate System Model (BCC-CSM1-1) developed in China.
The future climate data at a spatial resolution of 1 km x 1 km
for the two periods 2041-2060 and 2061-2080 were
downloaded from the WorldClim dataset (Hijmans et al. 2005).

AGB/;)~AGBp

1
T 00% (5)

AGB —

where R g is the relative difference in AGB between current
and future climate scenarios, and AGB,p and AGB s, are the
observed and estimated AGB with the same D under the cur-
rent and future scenarios, respectively.

3 Results
3.1 Climate-sensitive aboveground biomass model

Considering nine model parameters (Gy— s, L, ki, and k)
involved, a total of 512 different combinations of the random
effects at the province level were obtained for the full model
(model (3)). Among these nonlinear mixed-effects model al-
ternatives, only 45 models converged with meaningful param-
eter estimates. The following nonlinear mixed-effects AGB
model (6) showed the smallest AIC (AIC = 1193.88) and the
largest log-likelihood (log-likelihood = —583.94) among the
models that converged

AGBy = |exp(fy + L x S+ ki Ty + ko T2)TGSP,"MGST}> ™! MTWQ.* WO\ ™) | DIl 4 ¢, (6)

y
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where AGB;; is the aboveground biomass of the jth tree in the
ithprovince j=1, ... ,n;i=1, ... ,9); n;is the total obser-
vations in the ith province; TGSP;, MGST;, MTWQ;;, and
PWQ);; are the total growing season precipitation (mm), mean
growing season temperature (°C), mean temperature of wet-
test quarter (°C), and precipitation of wettest quarter (mm) for
the jth tree in the ith province, respectively; and ¢;; is the
estimation error for the jth tree in the ith province. u3; and
us; represent the random-effect coefficients generated for the
ith province, and other variables and parameters were as de-
fined previously.

The evaluation indices of autocorrelation structure AR (1)
and three variance functions applied to model (6), respective-
ly, are listed in Table 3. For comparison purpose, the

assessment results of model (6), in which the variances of
error terms were assumed to be homogeneous (i.e., when G;
and T'; are identity matrices), were also given (Table 3). The
AIC and log-likelihood of model (6) with AR (1) were
25.48% smaller and 26.39% larger than those of model (6)
with homogeneous assumption, respectively, which indicated
that the within-province autocorrelation in the Masson pine
biomass data could be successfully removed by the AR (1).
The power variance function demonstrated the best perfor-
mance among the variance functions we examined.
Therefore, model (6) was fitted with an AR (1) autocorrelation
structure and a power variance function of D. The final non-
linear mixed-effects AGB model was as follows

y

AGB; = {exp(ﬁo +L xS+ ki Ty + koT2) TGSPMGST,* " MTWQ, PWOL* ™) | D) + ¢

&= (5[17 (XS gini)TNN(Oa R; = JZG?'SI‘iG?'S)
G = diag(\DnZ”---a 7Din,2’y)
Ti~AR(1)

where the superscript 7" denotes the matrix transpose opera-
tion, and the other variables and coefficients were as defined
previously.

3.2 Estimation of parameters

All estimated coefficients of model (7) were significant
(a = 0.05) (Table 2). Coefficients (33 and 35 were positive,
which implied that a warmer growing season or an increase
in PWQ favored AGB accumulation. Coefficients 3, and (3,
were negative, suggesting that excessive rain during the grow-
ing season, or high mean temperature in the wettest quarter,
would decrease AGB. The negative coefficient for L implied
that the AGB of Masson pine tree of natural origin exceeded
the AGB of planted trees. Coefficient k; was negative and k,
was positive, which showed that the AGB values of trees with
the same S, D, TGSP, MGST, MTWQ, and PWQ from the
middle-subtropical zone were the highest, followed by those
in the north- and south-subtropical zones. The positive sign of
p indicated that the model error terms were positively corre-
lated with prediction residuals.

3.3 Model evaluation

Models (3) and (7) were further evaluated using both the calibra-
tion and validation datasets. The prediction accuracy of model (7)
(e =5.18 kg, v =43.14, RMSE = 43.45 kg for the calibration
dataset; e = 1.08 kg, v = 45.75, RMSE = 45.76 kg for the
validation dataset) was much higher than that of model (3) (e
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= 5.30 kg, v = 52.56, RMSE = 52.82 kg for the calibration
dataset; e = 7.87 kg, v = 46.13, RMSE = 46.80 kg for the
validation dataset). Especially, the RMSE of model (7) based
on the calibration dataset was 17.7% smaller than that of model
(3), and the mean bias of model (7) based on the validation
dataset was 86.3% lower than that of model (3). The residuals
from the calibration data for model (7) displayed no discernable
patterns, indicating that heteroscedasticity was effectively
accounted for by the power variance function (Fig. 5b). Similar
residual patterns were found for the validation dataset, and the
error structures did not show any signs of autocorrelation
(Fig. 4b).

3.4 Potential effects of changing allometry on tree biomass
estimates under future climate scenarios

Figure 6 shows the box plots and distributions of the Rxgp in
predicted AGB of Masson pine trees between the current and
climate scenarios—RCP 2.6, RCP 4.5, and RCP 8.5—during
the periods of 2041-2060 and 2061-2080 for the different
climate zones (north-, middle-, and south-subtropical zones
and the entire subtropical zone) and tree origins (natural and
planed). The results indicated that both the increase and the
decrease of AGB occurred in the subtropical China.
Generally, the predicted values of tree AGB in three secondary
climate zones under each climate scenario for the periods of
2041-2060 and 2061-2080 increased with the increased re-
gional annual mean temperature and mean total precipitation.
The differences of the increases in AGB among the climate
zones for the same time period under three climate scenarios



Annals of Forest Science (2017) 74: 42

Page 11 of 15 42

rcp 2.6 (2041-2060 ) rcp 4.5 (2041-2060 ) rcp 8.5 (2041-2060 )

o C P o T : o . T
< 21 T T L | 52 - b | 52 T b
X - B - b o8 T o - - % 1
3 R S A S B S B (- T oo
Q84 _ - b gge o T L | @8] Lo
) TE ‘ III : ' H I ) ‘ B I II I I I H ) TE ‘ II I QB

.| eEENENERE-0| . =EsNNNEER=-E | .| =EEnRNENEC:

. A R i . A L4l R L4 Ll L4 L

? @ @

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
NN NP NS MN MP MS SN SP SS STN STP ST NN NP NS MN MP MS SN SP SS STN STP ST NN NP NS MN MP MS SN SP SS STN STP ST
~#— RCP 2.6 (2041-2060)
° —=— RCP 2.6 (2061-2080)
© —o— RCP 4.5 (2041-2060)
~— RCP 4.5 (2061-2080)
4 —A— RCP 8.5 (2041-2060)
— = RCP 8.5 (2061-2080)
X Q| »
< 8
<< =2 o T b o 4
73] f-pey -eﬁ‘ﬂ -‘ - "‘..‘
o ¥ T el Y NN 2= - e
¢ - o~ =2~ -~u
Z AN TS Sy gl
& M‘—W
N
o_
T T T T T T T T T T T T
NN NP NS MN MP MS SN sP 8§ SN STP ST
rcp 2.6 (2061-2080) rcp 4.5 (2061-2080) rcp 8.5 (2061-2080)

o - +- T P T o - T +— T o T i 2 i i H
o P T T e 2T o B e N ol [ B - T
g - - bbb _ T Tl T_T i T T e | T A
8 [ N S T N A A T A B R i S S S R Qe S
2 3- : [ | [ I 28_ 1 | I 28' 1 i ; I
s | | ]| Eeih= | | ] | et ]

S B e el i B i e o B B Ch Il i S A R e A of T i T I

° . . . £ L -t ° - de . ke °

21 @ @ 1

T T T T T T T T T T
S MN MP MS SN SP SS STN STP ST

T
NN NP N MN

Fig. 6 The relative differences (Ragp) in predicted aboveground
biomass (AGB) of Masson pine trees between the current and future
climate scenarios: RCP 2.6, RCP 4.5, and RCP 8.5 during the periods
0f2041-2060 and 2061-2080 for three different secondary climate zones
and the entire subtropical zone in China: a—f the box plots of Ragp and g
the distributions of the mean values of Rogg; NN, MN, SN, and STN

were substantially large (Fig. 6). The estimated average of
AGB under each climate scenario in the secondary climate
zones was the highest for the period 2061-2080, followed
by the period 2041-2060, and the period 1950-2000 (Fig. 6g).

With other variables (e.g., D, secondary climate zone, and
climate scenario) being equal, the estimated AGB of planted
trees was higher than that of natural trees for the periods
2041-2060 and 2061-2080 (Fig. 6). The greatest increase in
AGB was predicted for the planted trees in the north-
subtropical zone for the period 2061-2080 under the RCP
8.5 climate scenario (overall increasing by 41.0 + 44.6%
(mean + standard deviation) over the current AGB). For the
time periods 2041-2060 and 2061-2080, Fig. 6g also shows
that overall, the estimated average AGB under each secondary
climate zone was the highest for the RCP 8.5, followed by the

MP MS SN SP SS STN STP ST

T T T T T T T T T T T T T T T T T T T

NN NP NS MN MP MS SN SP SS STN STP ST

denote trees of natural origin in the north-, middle-, and south-
subtropical zones and the entire subtropical zone, respectively; NP, MP,
SP, and STP denote trees of plantations in the north-, middle-, and south-
subtropical zones and the entire subtropical zone, respectively; NS, MS,
SS, and ST denote all trees in the north-, middle- and south-subtropical
zones and the entire subtropical zone

RCP 4.5, and the lowest for the RCP 2.6. The tree AGB of
Masson pine in the entirety of the subtropical China was pre-
dicted to increase from the current levels under the RCP 2.6,
RCP 4.5, and RCP 8.5 climate scenarios by 19.0 = 30.6,
19.6 + 30.4, and 20.5 + 31.0% for the period 2041-2060
(Fig. 6a—c); by 30.6 & 33.6, 34.5 + 34.7, and 34.8 £ 35.0%
for the period 2061-2080 (Fig. 6d—f), respectively; and by
24.8 £32.7, 27.0 £ 33.4, and 27.7 + 33.8% for the whole
periods 2041-2080, respectively.

4 Discussion

Tree growth and AGB accumulation differ with different cli-
mate, site conditions, and management practices (Landsberg
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and Sands 2011). Climate variables need to be incorporated
into AGB models of trees if these models are utilized to di-
rectly account for the impact of changing climate on tree bio-
mass accumulation. This can be accomplished, at least in the
composite model form (e.g., Wykoff 1990), by modifying the
intercept term (i.e., (3p) in biomass models such as model (2).
In this study, it was assumed that climatic variables only in-
fluence the allometric scale of AGB equation with the obser-
vation of a universal allometric power (West et al. 1997, 1999;
Vieilledent et al. 2012; Anitha et al. 2015) although there were
some exceptions (Chave et al. 2005). The space—time replace-
ment approach (Pickett 1989) was applied in this study to
develop the climate-sensitive AGB model. Results showed
that the inclusion of climate variability in the allometric scale
of the biomass equation yielded improved estimation and the
scale power was close to 8/3 which supported our assumption.

It was found that a combination of the temperature- and
precipitation-related variables (TGSP, MTWQ, MGST, and
PWQ) was significant in explaining the variation in AGB of
Masson pine trees across three secondary climate zones in the
subtropical China. The modeling results indicated that more
precipitation over the growing season negatively affected the
AGB of Masson pine trees. Previous studies indicated that the
relationship between mean annual precipitation and tree AGB
or net primary productivity, on the most of sites, could be
described by a nonlinear, concave-down function (Hsu et al.
2012). The decline in the AGB was likely an indirect effect
mediated by the availability of other resources (Hsu et al.
2012; Subedi and Sharma 2013). While additional moisture
usually increases tree biomass in dry-to-mesic ecosystems,
increasing precipitation in humid ecosystems may reduce tree
biomass by decreasing radiation, increasing nutrient leaching,
or reducing soil oxygen availability (Schuur 2003; Hsu et al.
2012). Increasing precipitation may also reduce the diffusion
of oxygen through water-filled pores, as well as decomposi-
tion rates (Subedi and Sharma 2013). In addition, the results
that an increase in precipitation led to the decrease of AGB
could be also explained by biological traits of Masson pine.
For example, Masson pine trees mostly grow well in the
ridges of hills or mountains with good light and dry sites
(Xia et al. 1996; Zhang et al. 2013).

However, more precipitation during the wettest quarter
positively impacted the AGB of Masson pine trees in our
model. The wettest period in the subtropical China occurs
during the months of May, June, July, and August (falling in
the second and third quarters). This period also has the highest
yearly temperatures (Yang et al. 2006); thus, it had the highest
AGB of Masson pine trees. This is consistent with the findings
from the previous study by Zhang et al. (2013).

Understanding seasonal growth patterns of the subtropical
coniferous trees is important to explain the relationship be-
tween moisture availability and tree AGB. In the case for
temperate trees (Tardif et al. 2001), the cumulative annual
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biomass growth of Masson pine trees can be described using
three distinct phases. In March to April, an initial period of
swelling of a stem occurs, indicating the upward passage of
water. This is followed by the period (May—November) of
active cell division, indicating the “grand period” of growth.
During the third period (December to February), tree growth
stops, the cells dehydrate, and the cambial tissue rests.
Optimal growing conditions during the grand period are very
important for Masson pine trees. The positive relationship that
we found between increased moisture availability during the
“grand period of growth” and AGB was as expected.

It was found that a warmer growing season increased the
AGB of Masson pine trees, which is consistent with previous
findings (e.g., Gholz 1982). The warming-induced increase in
tree productivity may be a direct effect of either increased
photosynthesis at higher temperatures, longer growing sea-
sons, or an indirect effect of increased nutrient availability,
resulting from increased rates of litter decomposition and N
mineralization. Both the direct and indirect effects of the
warming could be particularly important in the north-
subtropical zone in which both temperature and nutrient lim-
itations are more critical relative to the other two subzones.

The mean temperature during the wettest quarter appeared
to be the main factor in limiting AGB of trees (Table 2). It is
likely that increasing temperatures increase evaporative de-
mand, causing increased water stress, which may impact tree
growth more strongly than the increase in temperature alone
(Ciais et al. 2005). The temperature in the subtropical China in
the wettest quarter is quite high overall, thereby increasing
evapotranspiration and reducing the availability of soil mois-
ture to trees. Therefore, trees in this period may have less
available moisture for photosynthesis and consequently, lower
growth. This is also supported by a simulation study of sea-
sonal photosynthesis in the northwest USA, which indicated
that growing-season photosynthesis was greatly restricted by
drought (Emmingham and Waring 1977).

The results showed that there was the highest AGB of
Masson pine trees in the middle-subtropical zone, followed
by the north- and south-subtropical zones (Table 2; Fig. 6).
This ranking is similar to that found by Yang et al. (2006). In
the middle-subtropical zone, the number of days without frost,
or with a mean daily temperature >10 °C, is more than
230 days, the corresponding accumulated temperature is
above 5000 °C, and the range of annual mean precipitation
is 1000-2500 mm. These are favorable conditions for tree
growing (Yang et al. 2006). In the north-subtropical zone,
although there is abundant precipitation (the range of annual
mean precipitation is 800—1800 mm), the temperature slightly
lower than that in the middle-subtropical zone reduces the
potential for tree growing (Yang et al. 2006). In the south-
subtropical zone, precipitation is quite close to the middle-
subtropical zone, but the mean temperature is higher.
Therefore, the evaporation in this subregion is higher than that



Annals of Forest Science (2017) 74: 42

Page 13 of 15 42

in the middle-subtropical zone, which, in turn, decreases the
biomass of trees (Yang et al. 20006).

When the effects of future climate change on AGB using
the climate-sensitive AGB model developed in the study were
analyzed, ideally, the D growth of sample trees should be
predicted related to climate change (Zeng et al. 2017). The
climatic impacts on AGB of each sample tree under climate
change scenarios should be then analyzed. However, in prac-
tice, in addition to climatic zones and climatic-related vari-
ables, other factors, such as tree height, crown size, develop-
ment stage, forest types, site characteristics, stand structure,
stand density (including tree recruitment and death), and com-
petition, might significantly contribute to the variation in the
individual tree D (Subedi and Sharma 2013; Ashraf et al.
2015). Some of these factors interact with each other and vary
with future climate change, which would result in the com-
plexity and very large uncertainty in future AGB estimates of
sample trees for this method when D growth is considered. In
addition, a fixed allometric power in the power—law relation-
ship between tree biomass and D was commonly assumed in
the biomass modeling, which was further verified in this study
(Table 2). Relative to traditional biomass allometric equations
[e.g., model (1)], the developed climate-sensitive AGB model
[model (7)] accounted for potential climate—biomass relation-
ships effectively (Table 2) by parameterization of allometric
scale. Thus, the effects of different future climate scenarios on
AGB variation were evaluated under the constraint of the
same D in this study. Additionally, the effects of wood density
on AGB were also observed (Zhang et al. 2012; Deng et al.
2014) and used for improving biomass estimation (Chave
et al. 2014). Unfortunately, we did not measure the wood
density of each sample tree in the data collection. But, the
effect of wood density may be indirectly reflected by climatic
factors and random effects.

According to the climate-sensitive AGB model developed
in the study, we estimated the AGB of Masson pine trees in the
subtropical China under future climate changes and found that
the AGB would increase by 10.91 to 41.01% under the RCP
2.6, RCP 4.5, and RCP 8.5 climate scenarios for the period
2041-2080 (Fig. 6). Therefore, traditional biomass equation
without climate variables will produce some bias in biomass
and carbon estimation as expected. The magnitude of the
effects of climate change on AGB revealed the variation and
uncertainty of AGB predictions with stand origin, climate
zones, and climate scenarios. Our study also showed clear
positive effects of future climate change on AGB of Masson
pine trees. Medlyn et al. (2011) summarized the uncertainties
about the effects of climate change in terms of direction and
magnitude on forest productivity due to the differences in
model strategy, climate variables, climate scenarios, tree spe-
cies, and regions. The uncertainties need to further be ad-
dressed when the potential factors affecting tree biomass are
investigated in the future.
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